1
|
Lopez-Agudelo JC, Goh FJ, Tchabashvili S, Huang YS, Huang CY, Lee KT, Wang YC, Wu Y, Chang HX, Kuo CH, Lai EM, Wu CH. Rhizobium rhizogenes A4-derived strains mediate hyper-efficient transient gene expression in Nicotiana benthamiana and other solanaceous plants. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40203188 DOI: 10.1111/pbi.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/06/2025] [Accepted: 03/27/2025] [Indexed: 04/11/2025]
Abstract
Agroinfiltration, a method utilizing agrobacteria to transfer DNA into plant cells, is widely used for transient gene expression in plants. Besides the commonly used Agrobacterium strains, Rhizobium rhizogenes can also introduce foreign DNA into host plants for gene expression. While many R. rhizogenes strains have been known for inducing hairy root symptoms, their use for transient expression has not been fully explored. Here, we showed that R. rhizogenes A4 outperformed all other tested agrobacterial strains in agroinfiltration experiments on leaves of Nicotiana benthamiana and other solanaceous plants. By conducting an agroinfiltration screening in N. benthamiana leaves using various agrobacterial strains carrying the RUBY reporter gene cassette, we discovered that A4 mediates the strongest and fastest transient expression. Utilizing the genomic information, we developed a collection of disarmed and modified strains derived from A4. By performing vacuum infiltration assays, we demonstrated that these A4-derived strains efficiently transiently transform 6-week-old N. benthamiana leaves, showing less sensitivity to the age of plants compared to the laboratory strain GV3101. Furthermore, we performed agroinfiltration using AS109, an A4-derived disarmed strain, on the leaves of tomato, pepper, and eggplant. Remarkably, AS109 mediated transient gene expression on tested solanaceous plants more effectively than all the tested commonly used agrobacterial strains. This discovery paves the way for establishing R. rhizogenes A4-derived strains as a new option for enhancing transient expression in N. benthamiana and facilitating the functional study of plant genes in other solanaceous species.
Collapse
Affiliation(s)
- Juan Carlos Lopez-Agudelo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Foong-Jing Goh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Sopio Tchabashvili
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Seng Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ching-Yi Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Kim-Teng Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Chieh Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Hao-Xun Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Hang Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
2
|
Loyola-Vargas VM, Méndez-Hernández HA, Quintana-Escobar AO. The History of Agrobacterium Rhizogenes: From Pathogen to a Multitasking Platform for Biotechnology. Methods Mol Biol 2024; 2827:51-69. [PMID: 38985262 DOI: 10.1007/978-1-0716-3954-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Agrobacterium's journey has been a roller coaster, from being a pathogen to becoming a powerful biotechnological tool. While A. tumefaciens has provided the scientific community with a versatile tool for plant transformation, Agrobacterium rhizogenes has given researchers a Swiss army knife for developing many applications. These applications range from a methodology to regenerate plants, often recalcitrant, to establish bioremediation protocols to a valuable system to produce secondary metabolites. This chapter reviews its discovery, biology, controversies over its nomenclature, and some of the multiple applications developed using A. rhizogenes as a platform.
Collapse
Affiliation(s)
- Víctor M Loyola-Vargas
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Mérida, CP, Mexico.
| | - Hugo A Méndez-Hernández
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Mérida, CP, Mexico
| | - Ana O Quintana-Escobar
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Mérida, CP, Mexico
| |
Collapse
|
3
|
Chou L, Lin YC, Haryono M, Santos MNM, Cho ST, Weisberg AJ, Wu CF, Chang JH, Lai EM, Kuo CH. Modular evolution of secretion systems and virulence plasmids in a bacterial species complex. BMC Biol 2022; 20:16. [PMID: 35022048 PMCID: PMC8756689 DOI: 10.1186/s12915-021-01221-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Many named species as defined in current bacterial taxonomy correspond to species complexes. Uncertainties regarding the organization of their genetic diversity challenge research efforts. We utilized the Agrobacterium tumefaciens species complex (a.k.a. Agrobacterium biovar 1), a taxon known for its phytopathogenicity and applications in transformation, as a study system and devised strategies for investigating genome diversity and evolution of species complexes. RESULTS We utilized 35 genome assemblies, including 14 newly generated ones, to achieve a phylogenetically balanced sampling of A. tumefaciens. Our genomic analysis suggested that the 10 genomospecies described previously are distinct biological species and supported a quantitative guideline for species delineation. Furthermore, our inference of gene content and core-genome phylogeny allowed for investigations of genes critical in fitness and ecology. For the type VI secretion system (T6SS) involved in interbacterial competition and thought to be conserved, we detected multiple losses and one horizontal gene transfer. For the tumor-inducing plasmids (pTi) and pTi-encoded type IV secretion system (T4SS) that are essential for agrobacterial phytopathogenicity, we uncovered novel diversity and hypothesized their involvement in shaping this species complex. Intriguingly, for both T6SS and T4SS, genes encoding structural components are highly conserved, whereas extensive diversity exists for genes encoding effectors and other proteins. CONCLUSIONS We demonstrate that the combination of a phylogeny-guided sampling scheme and an emphasis on high-quality assemblies provides a cost-effective approach for robust analysis in evolutionary genomics. We show that the T6SS VgrG proteins involved in specific effector binding and delivery can be classified into distinct types based on domain organization. The co-occurrence patterns of VgrG-associated domains and the neighboring genes that encode different chaperones/effectors can be used to infer possible interacting partners. Similarly, the associations between plant host preference and the pTi type among these strains can be used to infer phenotype-genotype correspondence. Our strategies for multi-level investigations at scales that range from whole genomes to intragenic domains and phylogenetic depths from between- to within-species are applicable to other bacteria. Furthermore, modularity observed in the molecular evolution of genes and domains is useful for inferring functional constraints and informing experimental works.
Collapse
Affiliation(s)
- Lin Chou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chen Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Mindia Haryono
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Mary Nia M Santos
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Shu-Ting Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Chih-Feng Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan.,Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan. .,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan. .,Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
4
|
Hooykaas MJG, Hooykaas PJJ. The genome sequence of hairy root Rhizobium rhizogenes strain LBA9402: Bioinformatics analysis suggests the presence of a new opine system in the agropine Ri plasmid. Microbiologyopen 2021; 10:e1180. [PMID: 33970547 PMCID: PMC8087989 DOI: 10.1002/mbo3.1180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/17/2022] Open
Abstract
We report here the complete genome sequence of the Rhizobium rhizogenes (formerly Agrobacterium rhizogenes) strain LBA9402 (NCPPB1855rifR), a pathogenic strain causing hairy root disease. To assemble a complete genome, we obtained short reads from Illumina sequencing and long reads from Oxford Nanopore Technology sequencing. The genome consists of a 3,958,212 bp chromosome, a 2,005,144 bp chromid (secondary chromosome) and a 252,168 bp Ri plasmid (pRi1855), respectively. The primary chromosome was very similar to that of the avirulent biocontrol strain K84, but the chromid showed a 724 kbp deletion accompanied by a large 1.8 Mbp inversion revealing the dynamic nature of these secondary chromosomes. The sequence of the agropine Ri plasmid was compared to other types of Ri and Ti plasmids. Thus, we identified the genes responsible for agropine catabolism, but also a unique segment adjacent to the TL region that has the signature of a new opine catabolic gene cluster including the three genes that encode the three subunits of an opine dehydrogenase. Our sequence analysis also revealed a novel gene at the very right end of the TL-DNA, which is unique for the agropine Ri plasmid. The protein encoded by this gene was most related to the succinamopine synthases of chrysopine and agropine Ti plasmids and thus may be involved in the synthesis of the unknown opine that can be degraded by the adjacent catabolic cluster. The available sequence will facilitate the use of R. rhizogenes and especially LBA9402 in both the laboratory and for biotechnological purposes.
Collapse
|
5
|
The Absence of C-5 DNA Methylation in Leishmania donovani Allows DNA Enrichment from Complex Samples. Microorganisms 2020; 8:microorganisms8081252. [PMID: 32824654 PMCID: PMC7463849 DOI: 10.3390/microorganisms8081252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 11/21/2022] Open
Abstract
Cytosine C5 methylation is an important epigenetic control mechanism in a wide array of eukaryotic organisms and generally carried out by proteins of the C-5 DNA methyltransferase family (DNMTs). In several protozoans, the status of this mechanism remains elusive, such as in Leishmania, the causative agent of the disease leishmaniasis in humans and a wide array of vertebrate animals. In this work, we showed that the Leishmania donovani genome contains a C-5 DNA methyltransferase (DNMT) from the DNMT6 subfamily, whose function is still unclear, and verified its expression at the RNA level. We created viable overexpressor and knock-out lines of this enzyme and characterized their genome-wide methylation patterns using whole-genome bisulfite sequencing, together with promastigote and amastigote control lines. Interestingly, despite the DNMT6 presence, we found that methylation levels were equal to or lower than 0.0003% at CpG sites, 0.0005% at CHG sites, and 0.0126% at CHH sites at the genomic scale. As none of the methylated sites were retained after manual verification, we conclude that there is no evidence for DNA methylation in this species. We demonstrated that this difference in DNA methylation between the parasite (no detectable DNA methylation) and the vertebrate host (DNA methylation) allowed enrichment of parasite vs. host DNA using methyl-CpG-binding domain columns, readily available in commercial kits. As such, we depleted methylated DNA from mixes of Leishmania promastigote and amastigote DNA with human DNA, resulting in average Leishmania:human enrichments from 62× up to 263×. These results open a promising avenue for unmethylated DNA enrichment as a pre-enrichment step before sequencing Leishmania clinical samples.
Collapse
|
6
|
Delamuta JRM, Scherer AJ, Ribeiro RA, Hungria M. Genetic diversity of Agrobacterium species isolated from nodules of common bean and soybean in Brazil, Mexico, Ecuador and Mozambique, and description of the new species Agrobacterium fabacearum sp. nov. Int J Syst Evol Microbiol 2020; 70:4233-4244. [PMID: 32568030 DOI: 10.1099/ijsem.0.004278] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Agrobacterium strains are associated with soil, plants and animals, and known mainly by their pathogenicity. We studied 14 strains isolated from nodules of healthy soybean and common bean plants in Brazil, Mexico, Ecuador and Mozambique. Sequence analysis of the 16S rRNA gene positioned the strains as Agrobacterium, but with low phylogenetic resolution. Multilocus sequence analysis (MLSA) of three partial housekeeping genes (glnII, gyrB and recA) positioned the strains in four distinct clades, with Agrobacterium pusense, Agrobacterium deltaense, Agrobacterium radiobacter and Agrobacterium sp. genomospecies G1. Analysis by BOX-PCR revealed high intraspecies diversity. Genomic analysis of representative strains of the three clades indicated that they carry the protelomerase telA gene, and MLSA analysis with six complete housekeeping genes (atpD, glnII, gyrB, recA, rpoB and thrC), as well as average nucleotide identity (less than 90 % with closest species) and digital DNA-DNA hybridization (less than 41 % with closest species) revealed that strain CNPSo 675T and Agrobacterium sp. genomospecies G1 compose a new species. Other phenotypic and genotypic characteristics were determined for the new clade. Although not able to re-nodulate the host, we hypothesize that several strains of Agrobacterium are endophytes in legume nodules, where they might contribute to plant growth. Our data support the description of the CNPSo 675T and Agrobacterium sp. genomospecies G1 strains as a new species, for which the name Agrobacterium fabacearum is proposed. The type strain is CNPSo 675T (=UMR 1457T=LMG 31642T) and is also deposited in other culture collections.
Collapse
Affiliation(s)
- Jakeline Renata Marçon Delamuta
- CNPq, SHIS QI 1 Conjunto B, Blocos A, B, C and D, Lago Sul, 71605-001, Brasília, Federal District, Brazil
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
| | - Anderson José Scherer
- Department of Microbiology, Universidade Estadual de Londrina, C.P. 10011, 86057-970 Londrina, Paraná, Brazil
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
| | - Renan Augusto Ribeiro
- CNPq, SHIS QI 1 Conjunto B, Blocos A, B, C and D, Lago Sul, 71605-001, Brasília, Federal District, Brazil
| | - Mariangela Hungria
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
- CNPq, SHIS QI 1 Conjunto B, Blocos A, B, C and D, Lago Sul, 71605-001, Brasília, Federal District, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, C.P. 10011, 86057-970 Londrina, Paraná, Brazil
| |
Collapse
|
7
|
Thapa SP, De Francesco A, Trinh J, Gurung FB, Pang Z, Vidalakis G, Wang N, Ancona V, Ma W, Coaker G. Genome-wide analyses of Liberibacter species provides insights into evolution, phylogenetic relationships, and virulence factors. MOLECULAR PLANT PATHOLOGY 2020; 21:716-731. [PMID: 32108417 PMCID: PMC7170780 DOI: 10.1111/mpp.12925] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 05/04/2023]
Abstract
'Candidatus Liberibacter' species are insect-transmitted, phloem-limited α-Proteobacteria in the order of Rhizobiales. The citrus industry is facing significant challenges due to huanglongbing, associated with infection from 'Candidatus Liberibacter asiaticus' (Las). In order to gain greater insight into 'Ca. Liberibacter' biology and genetic diversity, we have performed genome sequencing and comparative analyses of diverse 'Ca. Liberibacter' species, including those that can infect citrus. Our phylogenetic analysis differentiates 'Ca. Liberibacter' species and Rhizobiales in separate clades and suggests stepwise evolution from a common ancestor splitting first into nonpathogenic Liberibacter crescens followed by diversification of pathogenic 'Ca. Liberibacter' species. Further analysis of Las genomes from different geographical locations revealed diversity among isolates from the United States. Our phylogenetic study also indicates multiple Las introduction events in California and spread of the pathogen from Florida to Texas. Texan Las isolates were closely related, while Florida and Asian isolates exhibited the most genetic variation. We have identified conserved Sec translocon (SEC)-dependent effectors likely involved in bacterial survival and virulence of Las and analysed their expression in their plant host (citrus) and insect vector (Diaphorina citri). Individual SEC-dependent effectors exhibited differential expression patterns between host and vector, indicating that Las uses its effector repertoire to differentially modulate diverse organisms. Collectively, this work provides insights into the evolution of 'Ca. Liberibacter' species, the introduction of Las in the United States and identifies promising Las targets for disease management.
Collapse
Affiliation(s)
- Shree P. Thapa
- Department of Plant PathologyUniversity of CaliforniaDavisCAUSA
| | - Agustina De Francesco
- Department of Microbiology and Plant PathologyUniversity of CaliforniaRiversideCAUSA
| | - Jessica Trinh
- Department of Microbiology and Plant PathologyUniversity of CaliforniaRiversideCAUSA
| | - Fatta B. Gurung
- Citrus CenterDepartment of Agriculture, Agribusiness and Environmental SciencesTexas A&M University‐KingsvilleWeslacoTXUSA
| | - Zhiqian Pang
- Citrus Research and Education CenterDepartment of Microbiology and Cell ScienceUniversity of FloridaLake AlfredFLUSA
| | - Georgios Vidalakis
- Department of Microbiology and Plant PathologyUniversity of CaliforniaRiversideCAUSA
| | - Nian Wang
- Citrus Research and Education CenterDepartment of Microbiology and Cell ScienceUniversity of FloridaLake AlfredFLUSA
| | - Veronica Ancona
- Citrus CenterDepartment of Agriculture, Agribusiness and Environmental SciencesTexas A&M University‐KingsvilleWeslacoTXUSA
| | - Wenbo Ma
- Department of Microbiology and Plant PathologyUniversity of CaliforniaRiversideCAUSA
| | - Gitta Coaker
- Department of Plant PathologyUniversity of CaliforniaDavisCAUSA
| |
Collapse
|
8
|
Shao S, van Heusden GPH, Hooykaas PJJ. Complete Sequence of Succinamopine Ti-Plasmid pTiEU6 Reveals Its Evolutionary Relatedness with Nopaline-Type Ti-Plasmids. Genome Biol Evol 2020; 11:2480-2491. [PMID: 31386108 PMCID: PMC6733357 DOI: 10.1093/gbe/evz173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2019] [Indexed: 01/14/2023] Open
Abstract
Agrobacterium tumefaciens is the etiological agent of plant crown gall disease, which is induced by the delivery of a set of oncogenic genes into plant cells from its tumor-inducing (Ti) plasmid. Here we present the first complete sequence of a succinamopine-type Ti-plasmid. Plasmid pTiEU6 is comprised of 176,375 bp with an overall GC content of 56.1% and 195 putative protein-coding sequences could be identified. This Ti-plasmid is most closely related to nopaline-type Ti-plasmids. It contains a single T-region which is somewhat smaller than that of the nopaline-type Ti-plasmids and in which the gene for nopaline synthesis is replaced by a gene (sus) for succinamopine synthesis. Also in pTiEU6 the nopaline catabolic genes are replaced by genes for succinamopine catabolism. In order to trace the evolutionary origin of pTiEU6, we sequenced six nopaline Ti-plasmids to enlarge the scope for comparison to this class of plasmids. Average nucleotide identity analysis revealed that pTiEU6 was most closely related to nopaline Ti-plasmids pTiT37 and pTiSAKURA. In line with this traces of several transposable elements were present in all the nopaline Ti plasmids and in pTiEU6, but one specific transposable element insertion, that of a copy of IS1182, was present at the same site only in pTiEU6, pTiT37, and pTiSAKURA, but not in the other Ti plasmids. This suggests that pTiEU6 evolved after diversification of nopaline Ti-plasmids by DNA recombination between a pTiT37-like nopaline Ti-plasmid and another plasmid, thus introducing amongst others new catabolic genes matching a new opine synthase gene for succinamopine synthesis.
Collapse
Affiliation(s)
- Shuai Shao
- Molecular and Developmental Genetics, Institute of Biology, Leiden University, The Netherlands
| | - G Paul H van Heusden
- Molecular and Developmental Genetics, Institute of Biology, Leiden University, The Netherlands
| | - Paul J J Hooykaas
- Molecular and Developmental Genetics, Institute of Biology, Leiden University, The Netherlands
| |
Collapse
|
9
|
Barton IS, Platt TG, Rusch DB, Fuqua C. Destabilization of the Tumor-Inducing Plasmid from an Octopine-Type Agrobacterium tumefaciens Lineage Drives a Large Deletion in the Co-resident At Megaplasmid. G3 (BETHESDA, MD.) 2019; 9:3489-3500. [PMID: 31451548 PMCID: PMC6778807 DOI: 10.1534/g3.119.400554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/22/2019] [Indexed: 11/28/2022]
Abstract
Bacteria with multi-replicon genome organizations, including members of the family Rhizobiaceae, often carry a variety of niche-associated functions on large plasmids. While evidence exists for cross-replicon interactions and co-evolution between replicons in many of these systems, remarkable strain-to-strain variation is also observed for extrachromosomal elements, suggesting increased genetic plasticity. Here, we show that curing of the tumor-inducing virulence plasmid (pTi) of an octopine-type Agrobacterium tumefaciens lineage leads to a large deletion in the co-resident At megaplasmid (pAt). The deletion event is mediated by a repetitive IS-element, IS66, and results in a variety of environment-dependent fitness consequences, including loss of independent conjugal transfer of the plasmid. Interestingly, a related and otherwise wild-type A. tumefaciens strain is missing exactly the same large pAt segment as the pAt deletion derivatives, suggesting a similar event over its natural history. Overall, the findings presented here uncover a novel genetic interaction between the two large plasmids of A. tumefaciens and provide evidence for cross-replicon integration and co-evolution of these plasmids.
Collapse
Affiliation(s)
- Ian S Barton
- Department of Biology, Indiana University, Bloomington, Indiana
| | - Thomas G Platt
- Division of Biology, Kansas State University, Manhattan, KS 66506, and
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana
| |
Collapse
|
10
|
Doonan J, Denman S, Pachebat JA, McDonald JE. Genomic analysis of bacteria in the Acute Oak Decline pathobiome. Microb Genom 2019; 5. [PMID: 30625111 PMCID: PMC6412055 DOI: 10.1099/mgen.0.000240] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The UK’s native oak is under serious threat from Acute Oak Decline (AOD). Stem tissue necrosis is a primary symptom of AOD and several bacteria are associated with necrotic lesions. Two members of the lesion pathobiome, Brenneria goodwinii and Gibbsiella quercinecans, have been identified as causative agents of tissue necrosis. However, additional bacteria including Lonsdalea britannica and Rahnella species have been detected in the lesion microbiome, but their role in tissue degradation is unclear. Consequently, information on potential genome-encoded mechanisms for tissue necrosis is critical to understand the role and mechanisms used by bacterial members of the lesion pathobiome in the aetiology of AOD. Here, the whole genomes of bacteria isolated from AOD-affected trees were sequenced, annotated and compared against canonical bacterial phytopathogens and non-pathogenic symbionts. Using orthologous gene inference methods, shared virulence genes that retain the same function were identified. Furthermore, functional annotation of phytopathogenic virulence genes demonstrated that all studied members of the AOD lesion microbiota possessed genes associated with phytopathogens. However, the genome of B. goodwinii was the most characteristic of a necrogenic phytopathogen, corroborating previous pathological and metatranscriptomic studies that implicate it as the key causal agent of AOD lesions. Furthermore, we investigated the genome sequences of other AOD lesion microbiota to understand the potential ability of microbes to cause disease or contribute to pathogenic potential of organisms isolated from this complex pathobiome. The role of these members remains uncertain but some such as G. quercinecans may contribute to tissue necrosis through the release of necrotizing enzymes and may help more dangerous pathogens activate and realize their pathogenic potential or they may contribute as secondary/opportunistic pathogens with the potential to act as accessory species for B. goodwinii. We demonstrate that in combination with ecological data, whole genome sequencing provides key insights into the pathogenic potential of bacterial species whether they be phytopathogens, part-contributors or stimulators of the pathobiome.
Collapse
Affiliation(s)
- James Doonan
- 1School of Biological Sciences, Bangor University, Bangor, UK
| | - Sandra Denman
- 2Forest Research, Centre for Forestry and Climate Change, Farnham, UK
| | - Justin A Pachebat
- 3Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | | |
Collapse
|
11
|
Wu CF, Santos MNM, Cho ST, Chang HH, Tsai YM, Smith DA, Kuo CH, Chang JH, Lai EM. Plant-Pathogenic Agrobacterium tumefaciens Strains Have Diverse Type VI Effector-Immunity Pairs and Vary in In-Planta Competitiveness. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:961-971. [PMID: 30830835 DOI: 10.1094/mpmi-01-19-0021-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The type VI secretion system (T6SS) is used by gram-negative bacteria to translocate effectors that can antagonize other bacterial cells. Models predict the variation in collections of effector and cognate immunity genes determine competitiveness and can affect the dynamics of populations and communities of bacteria. However, the outcomes of competition cannot be entirely explained by compatibility of effector-immunity (EI) pairs. Here, we characterized the diversity of T6SS loci of plant-pathogenic Agrobacterium tumefaciens and showed that factors other than EI pairs can impact interbacterial competition. All examined strains encode T6SS active in secretion and antagonism against Escherichia coli. The spectra of EI pairs as well as compositions of gene neighborhoods are diverse. Almost 30 in-planta competitions were tested between different genotypes of A. tumefaciens. Fifteen competitions between members of different species-level groups resulted in T6SS-dependent suppression in in-planta growth of prey genotypes. In contrast, ten competitions between members within species-level groups resulted in no significant effect on the growth of prey genotypes. One strain was an exceptional case and, despite encoding a functional T6SS and toxic effector protein, could not compromise the growth of the four tested prey genotypes. The data suggest T6SS-associated EI pairs can influence the competitiveness of strains of A. tumefaciens, but genetic features have a significant role on the efficacy of interbacterial antagonism.
Collapse
Affiliation(s)
- Chih-Feng Wu
- 1Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- 2Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, U.S.A
| | - Mary Nia M Santos
- 1Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shu-Ting Cho
- 1Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hsing-Hua Chang
- 1Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Ming Tsai
- 1Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Delaney A Smith
- 2Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, U.S.A
| | - Chih-Horng Kuo
- 1Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Jeff H Chang
- 2Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, U.S.A
- 3Center for Genome Research and Biocomputing, Oregon State University
| | - Erh-Min Lai
- 1Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
12
|
Haryono M, Cho ST, Fang MJ, Chen AP, Chou SJ, Lai EM, Kuo CH. Differentiations in Gene Content and Expression Response to Virulence Induction Between Two Agrobacterium Strains. Front Microbiol 2019; 10:1554. [PMID: 31354658 PMCID: PMC6629968 DOI: 10.3389/fmicb.2019.01554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/21/2019] [Indexed: 01/15/2023] Open
Abstract
Agrobacterium tumefaciens is important in biotechnology due to its ability to transform eukaryotic cells. Although the molecular mechanisms have been studied extensively, previous studies were focused on the model strain C58. Consequently, nearly all of the commonly used strains for biotechnology application were derived from C58 and share similar host ranges. To overcome this limitation, better understanding of the natural genetic variation could provide valuable insights. In this study, we conducted comparative analysis between C58 and 1D1609. These two strains belong to different genomospecies within the species complex and have distinct infectivity profiles. Genome comparisons revealed that each strain has >1,000 unique genes in addition to the 4,115 shared genes. Furthermore, the divergence in gene content and sequences vary among replicons. The circular chromosome is much more conserved compared to the linear chromosome. To identify the genes that may contribute to their differentiation in virulence, we compared the transcriptomes to screen for genes differentially expressed in response to the inducer acetosyringone. Based on the RNA-Seq results with three biological replicates, ∼100 differentially expressed genes were identified in each strain. Intriguingly, homologous genes with the same expression pattern account for <50% of these differentially expressed genes. This finding indicated that phenotypic variation may be partially explained by divergence in expression regulation. In summary, this study characterized the genomic and transcriptomic differences between two representative Agrobacterium strains. Moreover, the short list of differentially expressed genes are promising candidates for future characterization, which could improve our understanding of the genetic mechanisms for phenotypic divergence.
Collapse
Affiliation(s)
- Mindia Haryono
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Ting Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Mei-Jane Fang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ai-Ping Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Jen Chou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
13
|
Diversity and nodulation effectiveness of rhizobia and mycorrhizal presence in climbing dry beans grown in Prespa lakes plain, Greece. Arch Microbiol 2019; 201:1151-1161. [PMID: 31168635 DOI: 10.1007/s00203-019-01679-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 04/24/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Abstract
The Prespa lakes plain is an isolated area where about 1000 ha are seeded to Phaseolus vulgaris L. and Phaseolus coccineus L. Nodulation, arbuscular mycorrhizal fungal (AMF) presence and the genetic diversity of rhizobia were evaluated by 16S-ITS-23S-RFLP patterns and by sequencing. The bean rhizobial population in the region was diverse, despite its geographic isolation. No biogeographic relationships were detected, apart from a Rhizobium tropici-related strain that originated from an acidic soil. No clear pattern was detected in clustering with bean species and all isolates formed nodules with both bean species. Most strains were related to Rhizobium leguminosarum and a number of isolates were falling outside the already characterized species of genus Rhizobium. Application of heavy fertilization has resulted in high soil N and P levels, which most likely reduced nodulation and AMF spore presence. However, considerable AMF root length colonization was found in most of the fields.
Collapse
|
14
|
Haryono M, Tsai YM, Lin CT, Huang FC, Ye YC, Deng WL, Hwang HH, Kuo CH. Presence of an Agrobacterium-Type Tumor-Inducing Plasmid in Neorhizobium sp. NCHU2750 and the Link to Phytopathogenicity. Genome Biol Evol 2018; 10:3188-3195. [PMID: 30398651 PMCID: PMC6286910 DOI: 10.1093/gbe/evy249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2018] [Indexed: 12/02/2022] Open
Abstract
The genus Agrobacterium contains a group of plant-pathogenic bacteria that have been developed into an important tool for genetic transformation of eukaryotes. To further improve this biotechnology application, a better understanding of the natural genetic variation is critical. During the process of isolation and characterization of wild-type strains, we found a novel strain (i.e., NCHU2750) that resembles Agrobacterium phenotypically but exhibits high sequence divergence in several marker genes. For more comprehensive characterization of this strain, we determined its complete genome sequence for comparative analysis and performed pathogenicity assays on plants. The results demonstrated that this strain is closely related to Neorhizobium in chromosomal organization, gene content, and molecular phylogeny. However, unlike the characterized species within Neorhizobium, which all form root nodules with legume hosts and are potentially nitrogen-fixing mutualists, NCHU2750 is a gall-forming pathogen capable of infecting plant hosts across multiple families. Intriguingly, this pathogenicity phenotype could be attributed to the presence of an Agrobacterium-type tumor-inducing plasmid in the genome of NCHU2750. These findings suggest that these different lineages within the family Rhizobiaceae are capable of transitioning between ecological niches by having novel combinations of replicons. In summary, this work expanded the genomic resources available within Rhizobiaceae and provided a strong foundation for future studies of this novel lineage. With an infectivity profile that is different from several representative Agrobacterium strains, this strain may be useful for comparative analysis to better investigate the genetic determinants of host range among these bacteria.
Collapse
Affiliation(s)
- Mindia Haryono
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ming Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chien-Ting Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Fan-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
| | - Yan-Chen Ye
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Wen-Ling Deng
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
15
|
Pathogenicity, Phylogenetic relationship and NGS based identification and assembly of tumorigenic Agrobacterium radiabacter plasmidic and chromosomic reads isolated from Prunus duclcis. Genomics 2018; 111:1423-1430. [PMID: 30287402 DOI: 10.1016/j.ygeno.2018.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/25/2018] [Indexed: 11/22/2022]
Abstract
Although many Agrobacterium radiobacter strains have already been identified, only a few genomes of strains belonging to genomovar G4 have been sequenced so far. In this study, we report the first virulent genome sequence of Agrobacterium radiobacter strain tun 183, which is highly virulent to almond specie. The genome size was estimated to be 5.53 Mb, with 57.9%GC content. In total, 6486 genes encoding proteins and 61 genes encoding RNAs were identified in this genome. Comparisons with the available sequenced genomes of genomovar G4 as well as with other A. sp. were conducted, revealing a hexapartite genome containing circular and linear chromosomes in addition to two accessory plasmids and a tumor inducing plasmid (pTi) in strain tun 183. The phylogenetic analysis of recA gene clearly showed the clustering of tun 183 strain within genomovar G4, supporting the monophyly within this genomovar.
Collapse
|
16
|
More than Rotating Flagella: Lipopolysaccharide as a Secondary Receptor for Flagellotropic Phage 7-7-1. J Bacteriol 2018; 200:JB.00363-18. [PMID: 30012730 DOI: 10.1128/jb.00363-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022] Open
Abstract
Bacteriophage 7-7-1, a member of the family Myoviridae, infects the soil bacterium Agrobacterium sp. strain H13-3. Infection requires attachment to actively rotating bacterial flagellar filaments, with flagellar number, length, and rotation speed being important determinants for infection efficiency. To identify the secondary receptor(s) on the cell surface, we isolated motile, phage-resistant Agrobacterium sp. H13-3 transposon mutants. Transposon insertion sites were pinpointed using arbitrary primed PCR and bioinformatics analyses. Three genes were recognized, whose corresponding proteins had the following computationally predicted functions: AGROH133_07337, a glycosyltransferase; AGROH133_13050, a UDP-glucose 4-epimerase; and AGROH133_08824, an integral cytoplasmic membrane protein. The first two gene products are part of the lipopolysaccharide (LPS) synthesis pathway, while the last is predicted to be a relatively small (13.4-kDa) cytosolic membrane protein with up to four transmembrane helices. The phenotypes of the transposon mutants were verified by complementation and site-directed mutagenesis. Additional characterization of motile, phage-resistant mutants is also described. Given these findings, we propose a model for Agrobacterium sp. H13-3 infection by bacteriophage 7-7-1 where the phage initially attaches to the flagellar filament and is propelled down toward the cell surface by clockwise flagellar rotation. The phage then attaches to and degrades the LPS to reach the outer membrane and ejects its DNA into the host using its syringe-like contractile tail. We hypothesize that the integral membrane protein plays an important role in events following viral DNA ejection or in LPS processing and/or deployment. The proposed two-step attachment mechanism may be conserved among other flagellotropic phages infecting Gram-negative bacteria.IMPORTANCE Flagellotropic bacteriophages belong to the tailed-phage order Caudovirales, the most abundant phages in the virome. While it is known that these viruses adhere to the bacterial flagellum and use flagellar rotation to reach the cell surface, their infection mechanisms are poorly understood. Characterizing flagellotropic-phage-host interactions is crucial to understanding how microbial communities are shaped. Using a transposon mutagenesis approach combined with a screen for motile, phage-resistant mutants, we identified lipopolysaccharides as the secondary cell surface receptor for phage 7-7-1. This is the first cell surface receptor identified for flagellotropic phages. One hypothetical membrane protein was also recognized as essential for infection. These new findings, together with previous results, culminated in an infection model for phage 7-7-1.
Collapse
|
17
|
Abstract
Agrobacterium tumefaciens 1D1609 is a highly virulent strain isolated from a crown gall tumor of alfalfa (Medicago sativa L.). Compared to other well-characterized A. tumefaciens strains, such as C58 and Ach5, 1D1609 has a distinctive host range. Here, we report its complete genome sequence to facilitate future studies.
Collapse
|
18
|
Barton IS, Fuqua C, Platt TG. Ecological and evolutionary dynamics of a model facultative pathogen: Agrobacterium and crown gall disease of plants. Environ Microbiol 2018; 20:16-29. [PMID: 29105274 PMCID: PMC5764771 DOI: 10.1111/1462-2920.13976] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 01/09/2023]
Abstract
Many important pathogens maintain significant populations in highly disparate disease and non-disease environments. The consequences of this environmental heterogeneity in shaping the ecological and evolutionary dynamics of these facultative pathogens are incompletely understood. Agrobacterium tumefaciens, the causative agent for crown gall disease of plants has proven a productive model for many aspects of interactions between pathogens and their hosts and with other microbes. In this review, we highlight how this past work provides valuable context for the use of this system to examine how heterogeneity and transitions between disease and non-disease environments influence the ecology and evolution of facultative pathogens. We focus on several features common among facultative pathogens, such as the physiological remodelling required to colonize hosts from environmental reservoirs and the consequences of competition with host and non-host associated microbiota. In addition, we discuss how the life history of facultative pathogens likely often results in ecological tradeoffs associated with performance in disease and non-disease environments. These pathogens may therefore have different competitive dynamics in disease and non-disease environments and are subject to shifting selective pressures that can result in pathoadaptation or the within-host spread of avirulent phenotypes.
Collapse
Affiliation(s)
- Ian S. Barton
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Thomas G. Platt
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
19
|
Huang H, Yu W, Wang R, Li H, Xie H, Wang S. Genomic and transcriptomic analyses of Agrobacterium tumefaciens S33 reveal the molecular mechanism of a novel hybrid nicotine-degrading pathway. Sci Rep 2017; 7:4813. [PMID: 28684751 PMCID: PMC5500553 DOI: 10.1038/s41598-017-05320-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/24/2017] [Indexed: 12/12/2022] Open
Abstract
Agrobacterium tumefaciens S33 is able to degrade nicotine via a novel hybrid of the pyridine and pyrrolidine pathways. It can be utilized to remove nicotine from tobacco wastes and transform nicotine into important functionalized pyridine precursors for some valuable drugs and insecticides. However, the molecular mechanism of the hybrid pathway is still not completely clear. Here we report the genome analysis of strain S33 and its transcriptomes grown in glucose-ammonium medium and nicotine medium. The complete gene cluster involved in nicotine catabolism was found to be located on a genomic island composed of genes functionally similar but not in sequences to those of the pyridine and pyrrolidine pathways, as well as genes encoding plasmid partitioning and replication initiation proteins, conjugal transfer proteins and transposases. This suggests that the evolution of this hybrid pathway is not a simple fusion of the genes involved in the two pathways, but the result of a complicated lateral gene transfer. In addition, other genes potentially involved in the hybrid pathway could include those responsible for substrate sensing and transport, transcription regulation and electron transfer during nicotine degradation. This study provides new insights into the molecular mechanism of the novel hybrid pathway for nicotine degradation.
Collapse
Affiliation(s)
- Haiyan Huang
- State Key Laboratory of Microbial Technology, School of life science, Shandong University, Jinan, 250100, People's Republic of China
- Institute of Basic Medicine, Shandong Academy of Medical Science, Jinan, 250062, People's Republic of China
| | - Wenjun Yu
- State Key Laboratory of Microbial Technology, School of life science, Shandong University, Jinan, 250100, People's Republic of China
| | - Rongshui Wang
- State Key Laboratory of Microbial Technology, School of life science, Shandong University, Jinan, 250100, People's Republic of China
| | - Huili Li
- State Key Laboratory of Microbial Technology, School of life science, Shandong University, Jinan, 250100, People's Republic of China
| | - Huijun Xie
- Environment Research Institute, Shandong University, Jinan, 250100, People's Republic of China
| | - Shuning Wang
- State Key Laboratory of Microbial Technology, School of life science, Shandong University, Jinan, 250100, People's Republic of China.
| |
Collapse
|