1
|
Hong Y, Song G, Feng X, Niu J, Wang L, Yang C, Luo X, Zhou S, Ma W. The Probiotic Kluyveromyces lactis JSA 18 Alleviates Obesity and Hyperlipidemia in High-Fat Diet C57BL/6J Mice. Foods 2024; 13:1124. [PMID: 38611428 PMCID: PMC11011337 DOI: 10.3390/foods13071124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Obesity poses a significant threat to various health conditions such as heart diseases, diabetes, high blood pressure, and heart attack, with the gut microbiota playing a crucial role in maintaining the body's energy balance. We identified a novel probiotic fungal strain, Kluyveromyces lactis JSA 18 (K. lactis), which was isolated from yak milk and was found to possess anti-obesity properties. Additionally, Lactobacillus plantarum CGMCC 8198 (LP8198) from our previous study was also included to evaluate its anti-obesity properties. The findings indicated that K. lactis caused a notable reduction in weight gain, liver and fat indexes, and hyperlipidemia in mice fed a high-fat diet (HFD). Administering K. lactis and LP8198 to mice on a high-fat diet resulted in a reduction of serum triglyceride levels. Furthermore, the supplements reduced ALT and AST activity, and inhibited the production of inflammatory cytokines such as TNF-α and IL-1β. In addition, lipid metabolism was enhanced by the downregulation of ACC1, PPAR-γ, SREBP-1, and Fasn. Moreover, this study found that K. lactis and LP8198 have little effect on gut bacteria. Additionally, K. lactis partially influenced intestinal fungi, while LP8198 had a minor influence on gut mycobiota. The main goal of this research was to show how effective K. lactis can be as a probiotic in combating obesity.
Collapse
Affiliation(s)
- Yingxiang Hong
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Guodong Song
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Xiaoqian Feng
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Jialei Niu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Lu Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Caini Yang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Sa Zhou
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Wenjian Ma
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
- Qilu Institute of Technology, Jinan 250200, China
| |
Collapse
|
2
|
Zhou S, Xue J, Shan J, Hong Y, Zhu W, Nie Z, Zhang Y, Ji N, Luo X, Zhang T, Ma W. Gut-Flora-Dependent Metabolite Trimethylamine-N-Oxide Promotes Atherosclerosis-Associated Inflammation Responses by Indirect ROS Stimulation and Signaling Involving AMPK and SIRT1. Nutrients 2022; 14:3338. [PMID: 36014845 PMCID: PMC9416570 DOI: 10.3390/nu14163338] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Trimethylamine-N-oxide (TMAO), a gut-microbiota-dependent metabolite after ingesting dietary choline, has been identified as a novel risk factor for atherosclerosis through inducing vascular inflammation. However, the underlying molecular mechanism is poorly understood. Using an in vitro vascular cellular model, we found that the TMAO-induced inflammation responses were correlated with an elevation of ROS levels and downregulation of SIRT1 expression in VSMCs and HUVECs. The overexpression of SIRT1 could abrogate both the stimulation of ROS and inflammation. Further studies revealed that AMPK was also suppressed by TMAO and was a mediator upstream of SIRT1. Activation of AMPK by AICAR could reduce TMAO-induced ROS and inflammation. Moreover, the GSH precursor NAC could attenuate TMAO-induced inflammation. In vivo studies with mice models also showed that choline-induced production of TMAO and the associated glycolipid metabolic changes leading to atherosclerosis could be relieved by NAC and a probiotic LP8198. Collectively, the present study revealed an unrecognized mechanistic link between TMAO and atherosclerosis risk, and probiotics ameliorated TMAO-induced atherosclerosis through affecting the gut microbiota. Consistent with previous studies, our data confirmed that TMAO could stimulate inflammation by modulating cellular ROS levels. However, this was not due to direct cytotoxicity but through complex signaling pathways involving AMPK and SIRT1.
Collapse
Affiliation(s)
- Sa Zhou
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiamin Xue
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingbo Shan
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yingxiang Hong
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenkang Zhu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhiyan Nie
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yujie Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Nanxi Ji
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tongcun Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Wenjian Ma
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Qilu Institute of Technology, Jinan 250200, China
| |
Collapse
|
3
|
Complete Genome Sequence of Lactobacillus johnsonii Strain Byun-jo-01, Isolated from the Murine Gastrointestinal Tract. Microbiol Resour Announc 2018; 7:MRA00985-18. [PMID: 30533732 PMCID: PMC6256439 DOI: 10.1128/mra.00985-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/14/2018] [Indexed: 11/22/2022] Open
Abstract
We report here the complete genome sequence of Lactobacillus johnsonii strain Byun-jo-01, which was isolated from the murine gastrointestinal tract. The genome was determined using both PacBio and Illumina sequencing. We report here the complete genome sequence of Lactobacillus johnsonii strain Byun-jo-01, which was isolated from the murine gastrointestinal tract. The genome was determined using both PacBio and Illumina sequencing. L. johnsonii strain Byun-jo-01 contains a single circular chromosome of 1,959,519 bp, and its GC content is 34.7%.
Collapse
|
4
|
Lappa IK, Mparampouti S, Lanza B, Panagou EZ. Control of Aspergillus carbonarius in grape berries by Lactobacillus plantarum: A phenotypic and gene transcription study. Int J Food Microbiol 2018; 275:56-65. [PMID: 29635101 DOI: 10.1016/j.ijfoodmicro.2018.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/21/2018] [Accepted: 04/02/2018] [Indexed: 02/06/2023]
Abstract
The in vitro and in situ antifungal activity of Lactobacillus plantarum against the ochratoxigenic fungus Aspergillus carbonarius was investigated in this study. Four different fungal isolates from grape berries were co-cultured with four different strains of L. plantarum on Malt Extract Agar (MEA) plates at 30 °C. Bacterial strains inhibited fungal growth up to 88% and significantly reduced toxin production up to 100%. In addition, L. plantarum was evaluated as biocontrol agent against A. carbonarius growth and OTA production on table grapes. Temporal studies of bacterial antagonism were performed with two different grape cultivars. Artificially wounded and unwounded berries were pre-treated with 108 CFU/mL bacteria and inoculated with 106 spores/mL of A. carbonarius ochratoxigenic isolates. Biocontrol agents displayed high rate of colonization on grapes during 5 days of incubation at 30 °C. Scanning electron microscopy (SEM) also determined the presence of microorganisms on grape surface. Bacterial strains were effective in controlling fungal infection reaching up to 71% inhibition rates. However the presence of wounds on grape skin facilitated infection of berries by A. carbonarius, since unwounded berries showed lower levels of infection. Results also revealed significant reduction in mycotoxin production ranging between 32% and 92%. Transcriptome analysis following exposure to co-cultivation, exhibited differential expression for each gene studied of AcOTAnrps (Aspergillus carbonarius OTA nonribosomal), AcOTApks (Aspergillus carbonarius OTA polyketide synthase) and laeA, emphasizing the significance of strain variability. The genes AcOTAnrps and laeA were most influenced by the presence of L. plantarum. This work is a contribution for the potential biocontrol of toxigenic fungi in table grapes by lactic acid bacteria (LAB). The above findings underline the significance of bacterial strain variability on the effectiveness of biopreservative features of L. plantarum strains.
Collapse
Affiliation(s)
- Iliada K Lappa
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Agricultural University of Athens (AUA), Iera Odos 75, 11855 Athens, Greece
| | - Sevasti Mparampouti
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Agricultural University of Athens (AUA), Iera Odos 75, 11855 Athens, Greece
| | - Barbara Lanza
- Laboratory of Electron Microscopy, Research Centre for Engineering and Agro-food Processing (CREA-IT), Council for Agricultural Research and Economics (CREA), Via Nazionale 38, I-65012 Cepagatti, PE, Italy
| | - Efstathios Z Panagou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Agricultural University of Athens (AUA), Iera Odos 75, 11855 Athens, Greece.
| |
Collapse
|