1
|
Corkery DP, Nadeem A, Aung KM, Hassan A, Liu T, Cervantes-Rivera R, Lystad AH, Wang H, Persson K, Puhar A, Simonsen A, Uhlin BE, Wai SN, Wu YW. Vibrio cholerae cytotoxin MakA induces noncanonical autophagy resulting in the spatial inhibition of canonical autophagy. J Cell Sci 2021; 134:jcs252015. [PMID: 33106317 DOI: 10.1242/jcs.252015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Autophagy plays an essential role in the defense against many microbial pathogens as a regulator of both innate and adaptive immunity. Some pathogens have evolved sophisticated mechanisms that promote their ability to evade or subvert host autophagy. Here, we describe a novel mechanism of autophagy modulation mediated by the recently discovered Vibrio cholerae cytotoxin, motility-associated killing factor A (MakA). pH-dependent endocytosis of MakA by host cells resulted in the formation of a cholesterol-rich endolysosomal membrane aggregate in the perinuclear region. Aggregate formation induced the noncanonical autophagy pathway driving unconventional LC3 (herein referring to MAP1LC3B) lipidation on endolysosomal membranes. Subsequent sequestration of the ATG12-ATG5-ATG16L1 E3-like enzyme complex, required for LC3 lipidation at the membranous aggregate, resulted in an inhibition of both canonical autophagy and autophagy-related processes, including the unconventional secretion of interleukin-1β (IL-1β). These findings identify a novel mechanism of host autophagy modulation and immune modulation employed by V. cholerae during bacterial infection.
Collapse
Affiliation(s)
- Dale P Corkery
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| | - Aftab Nadeem
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Kyaw Min Aung
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Ahmed Hassan
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| | - Tao Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Ramón Cervantes-Rivera
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Alf Håkon Lystad
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hui Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Karina Persson
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| | - Andrea Puhar
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Bernt Eric Uhlin
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Sun Nyunt Wai
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Yao-Wen Wu
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
2
|
Hamo Z, Azrad M, Nitzan O, Peretz A. Characterization of the Immune Response during Infection Caused by Clostridioides difficile. Microorganisms 2019; 7:microorganisms7100435. [PMID: 31658740 PMCID: PMC6843454 DOI: 10.3390/microorganisms7100435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023] Open
Abstract
The high risk of complications and death following Clostridioides difficile infection (CDI) requires identifying patients with severe disease and treating them accordingly. We characterized the immune response of CDI patients in relation to infection severity. Concentrations of 28 cytokines and chemokines were measured in serum samples, obtained from 54 CDI patients within a median timeframe of 24–48 h after laboratory confirmation of C. difficile infection. Demographic and clinical data were retrospectively collected from medical records. Disease severity score was determined by “Score indices for Clostridioides difficile infection severity”. Of 54 patients (mean age, 76.6 years, 61.1% female), 38 (70.4%) had mild disease and 16 (29.6%) had moderate disease. Seven cytokines were associated with a more severe CDI: granulocyte-macrophage colony-stimulating factor (p = 0.0106), interleukin (IL)-1β (p = 0.004), IL-8 (p = 0.0098), IL-12p70 (p = 0.0118), interferon-α (p = 0.0282), IL-15 (p = 0.0015), and IL-2 (p = 0.0031). Additionally, there was an increased T-helper 1 response in more severe cases of CDI. Cytokines may serve as biomarkers for early prediction of CDI severity. Better and earlier assessment of illness severity will contribute to the adjustment of medical treatment, including monitoring and follow-up.
Collapse
Affiliation(s)
- Zohar Hamo
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 13100, Israel.
- The Clinical Microbiology Laboratory, Baruch Padeh Medical Center, Poriya 15208, Israel.
| | - Maya Azrad
- The Clinical Microbiology Laboratory, Baruch Padeh Medical Center, Poriya 15208, Israel.
| | - Orna Nitzan
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 13100, Israel.
- Unit of Infectious Diseases, Baruch Padeh Medical Center, Poriya 15208, Israel.
| | - Avi Peretz
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 13100, Israel.
- The Clinical Microbiology Laboratory, Baruch Padeh Medical Center, Poriya 15208, Israel.
| |
Collapse
|
3
|
Nagy E. What do we know about the diagnostics, treatment and epidemiology of Clostridioides (Clostridium) difficile infection in Europe? J Infect Chemother 2017; 24:164-170. [PMID: 29289484 DOI: 10.1016/j.jiac.2017.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 12/17/2022]
Abstract
Clostridium difficile, recently reclassified as Clostridioides difficile is responsible for a significant part of diarrheal diseases in the hospitals and in the community. Besides the main pathogenic factors, toxin A, toxin B and the binary toxin, several other putative virulence factors have been investigated. This manuscript summarize recent findings in Europe concerning source of infection, epidemiology of CDI, the changing pattern of PCR ribotypes of C. difficile strains in different European countries, recommendations for diagnosis and treatment of CDI.
Collapse
Affiliation(s)
- Elisabeth Nagy
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary.
| |
Collapse
|
4
|
A Nutrient-Regulated Cyclic Diguanylate Phosphodiesterase Controls Clostridium difficile Biofilm and Toxin Production during Stationary Phase. Infect Immun 2017; 85:IAI.00347-17. [PMID: 28652311 DOI: 10.1128/iai.00347-17] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022] Open
Abstract
The signaling molecule cyclic diguanylate (c-di-GMP) mediates physiological adaptation to extracellular stimuli in a wide range of bacteria. The complex metabolic pathways governing c-di-GMP synthesis and degradation are highly regulated, but the specific cues that impact c-di-GMP signaling are largely unknown. In the intestinal pathogen Clostridium difficile, c-di-GMP inhibits flagellar motility and toxin production and promotes pilus-dependent biofilm formation, but no specific biological functions have been ascribed to any of the individual c-di-GMP synthases or phosphodiesterases (PDEs). Here, we report the functional and biochemical characterization of a c-di-GMP PDE, PdcA, 1 of 37 confirmed or putative c-di-GMP metabolism proteins in C. difficile 630. Our studies reveal that pdcA transcription is controlled by the nutrient-regulated transcriptional regulator CodY and accordingly increases during stationary phase. In addition, PdcA PDE activity is allosterically regulated by GTP, further linking c-di-GMP levels to nutrient availability. Mutation of pdcA increased biofilm formation and reduced toxin biosynthesis without affecting swimming motility or global intracellular c-di-GMP. Analysis of the transcriptional response to pdcA mutation indicates that PdcA-dependent phenotypes manifest during stationary phase, consistent with regulation by CodY. These results demonstrate that inactivation of this single PDE gene is sufficient to impact multiple c-di-GMP-dependent phenotypes, including the production of major virulence factors, and suggest a link between c-di-GMP signaling and nutrient availability.
Collapse
|
6
|
Identification of a novel zinc metalloprotease through a global analysis of Clostridium difficile extracellular proteins. PLoS One 2013; 8:e81306. [PMID: 24303041 PMCID: PMC3841139 DOI: 10.1371/journal.pone.0081306] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 10/11/2013] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is a major cause of infectious diarrhea worldwide. Although the cell surface proteins are recognized to be important in clostridial pathogenesis, biological functions of only a few are known. Also, apart from the toxins, proteins exported by C. difficile into the extracellular milieu have been poorly studied. In order to identify novel extracellular factors of C. difficile, we analyzed bacterial culture supernatants prepared from clinical isolates, 630 and R20291, using liquid chromatography-tandem mass spectrometry. The majority of the proteins identified were non-canonical extracellular proteins. These could be largely classified into proteins associated to the cell wall (including CWPs and extracellular hydrolases), transporters and flagellar proteins. Seven unknown hypothetical proteins were also identified. One of these proteins, CD630_28300, shared sequence similarity with the anthrax lethal factor, a known zinc metallopeptidase. We demonstrated that CD630_28300 (named Zmp1) binds zinc and is able to cleave fibronectin and fibrinogen in vitro in a zinc-dependent manner. Using site-directed mutagenesis, we identified residues important in zinc binding and enzymatic activity. Furthermore, we demonstrated that Zmp1 destabilizes the fibronectin network produced by human fibroblasts. Thus, by analyzing the exoproteome of C. difficile, we identified a novel extracellular metalloprotease that may be important in key steps of clostridial pathogenesis.
Collapse
|
7
|
Clostridium difficile: a European perspective. J Infect 2012; 66:115-28. [PMID: 23103666 DOI: 10.1016/j.jinf.2012.10.019] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/16/2012] [Accepted: 10/18/2012] [Indexed: 12/16/2022]
Abstract
Clostridium difficile infection is the leading cause of diarrhoea in the industrialised world. First identified in 1935, our knowledge about the clonal population structure, toxins and PCR ribotypes is still increasing. New PCR ribotypes and sequence types are frequently added. In the last decade hypervirulent strains have emerged and been associated with increased severity of disease, high recurrence and significant mortality. Although previously a primarily hospital- or health-care acquired infection, since the 1990's C. difficile infections that are community-acquired have been increasingly reported. Risk factors include hospitalisation, advancing age and prior antibiotic use. The ubiquitous presence of C. difficile in the environment and asymptomatic intestinal colonisation may be important reservoirs for infection and the changing epidemiology of C. difficile infection. Although surveillance in Europe is now a requirement of the European Commission, reporting is not standardised or mandatory. Here we review the current literature, guidelines on diagnosis and treatment and conclude by highlighting a number of areas where further research would increase our understanding.
Collapse
|