1
|
Gasser C, Garault P, Chervaux C, Monnet V, Faurie JM, Rul F. Co-utilization of saccharides in mixtures: Moving toward a new understanding of carbon metabolism in Streptococcus thermophilus. Food Microbiol 2022; 107:104080. [DOI: 10.1016/j.fm.2022.104080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 12/01/2022]
|
2
|
Indraratna AD, Everest-Dass A, Skropeta D, Sanderson-Smith M. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6519265. [PMID: 35104861 PMCID: PMC9075583 DOI: 10.1093/femsre/fuac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/29/2021] [Accepted: 01/25/2022] [Indexed: 11/12/2022] Open
Abstract
Host carbohydrates, or glycans, have been implicated in the pathogenesis of many bacterial infections. Group A Streptococcus (GAS) is a Gram-positive bacterium that readily colonises the skin and oropharynx, and is a significant cause of mortality in humans. While the glycointeractions orchestrated by many other pathogens are increasingly well-described, the understanding of the role of human glycans in GAS disease remains incomplete. Although basic investigation into the mechanisms of GAS disease is ongoing, several glycointeractions have been identified and are examined herein. The majority of research in this context has focussed on bacterial adherence, however, glycointeractions have also been implicated in carbohydrate metabolism; evasion of host immunity; biofilm adaptations; and toxin-mediated haemolysis. The involvement of human glycans in these diverse avenues of pathogenesis highlights the clinical value of understanding glycointeractions in combatting GAS disease.
Collapse
Affiliation(s)
- Anuk D Indraratna
- Illawarra Health and Medical Research Institute, Northfields Ave, Keiraville New South Wales 2522, Australia
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Northfields Avenue, Keiraville, New South Wales, 2522, Australia
| | - Arun Everest-Dass
- Institute for Glycomics, Griffith University, Gold Coast Campus, Parklands Drive, Southport, Queensland, 4215, Australia
| | - Danielle Skropeta
- Illawarra Health and Medical Research Institute, Northfields Ave, Keiraville New South Wales 2522, Australia
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Northfields Avenue, Keiraville, New South Wales, 2522, Australia
| | - Martina Sanderson-Smith
- Corresponding author: Illawarra Health and Medical Research Institute, Bld 32, University of Wollongong, Northfields Avenue, Keiraville, New South Wales, 2522, Australia. Tel: +61 2 42981935; E-mail:
| |
Collapse
|
3
|
Buckley SJ, Davies MR, McMillan DJ. In silico characterisation of stand-alone response regulators of Streptococcus pyogenes. PLoS One 2020; 15:e0240834. [PMID: 33075055 PMCID: PMC7571705 DOI: 10.1371/journal.pone.0240834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Bacterial “stand-alone” response regulators (RRs) are pivotal to the control of gene transcription in response to changing cytosolic and extracellular microenvironments during infection. The genome of group A Streptococcus (GAS) encodes more than 30 stand-alone RRs that orchestrate the expression of virulence factors involved in infecting multiple tissues, so causing an array of potentially lethal human diseases. Here, we analysed the molecular epidemiology and biological associations in the coding sequences (CDSs) and upstream intergenic regions (IGRs) of 35 stand-alone RRs from a collection of global GAS genomes. Of the 944 genomes analysed, 97% encoded 32 or more of the 35 tested RRs. The length of RR CDSs ranged from 297 to 1587 nucleotides with an average nucleotide diversity (π) of 0.012, while the IGRs ranged from 51 to 666 nucleotides with average π of 0.017. We present new evidence of recombination in multiple RRs including mga, leading to mga-2 switching, emm-switching and emm-like gene chimerization, and the first instance of an isolate that encodes both mga-1 and mga-2. Recombination was also evident in rofA/nra and msmR loci with 15 emm-types represented in multiple FCT (fibronectin-binding, collagen-binding, T-antigen)-types, including novel emm-type/FCT-type pairings. Strong associations were observed between concatenated RR allele types, and emm-type, MLST-type, core genome phylogroup, and country of sampling. No strong associations were observed between individual loci and disease outcome. We propose that 11 RRs may form part of future refinement of GAS typing systems that reflect core genome evolutionary associations. This subgenomic analysis revealed allelic traits that were informative to the biological function, GAS strain definition, and regional outbreak detection.
Collapse
Affiliation(s)
- Sean J. Buckley
- School of Health and Sports Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- * E-mail:
| | - Mark R. Davies
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - David J. McMillan
- School of Health and Sports Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
4
|
Hu Y, Hu Q, Wei R, Li R, Zhao D, Ge M, Yao Q, Yu X. The XRE Family Transcriptional Regulator SrtR in Streptococcus suis Is Involved in Oxidant Tolerance and Virulence. Front Cell Infect Microbiol 2019; 8:452. [PMID: 30687648 PMCID: PMC6335249 DOI: 10.3389/fcimb.2018.00452] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/19/2018] [Indexed: 11/30/2022] Open
Abstract
Streptococcus suis is a zoonotic pathogen that harbors anti-oxidative stress genes, which have been reported to be associated with virulence. Serial passage has been widely used to obtain phenotypic variant strains to investigate the functions of important genes. In the present study, S. suis serotype 9 strain DN13 was serially passaged in mice 30 times. The virulence of a single colony from passage 10 (SS9-P10) was found to increase by at least 140-fold as indicated by LD50 values, and the increased virulence was stable for single colonies from passage 20 (SS0-P20) and 30 (SS0-P30). Compared to the parental strain, the mouse-adapted strains were more tolerant to oxidative and high temperature stress. Genome-wide analysis of nucleotide variations found that reverse mutations occurred in seven genes, as indicated by BLAST analysis. Three of the reverse mutation genes or their homologs in other bacteria were reported to be virulence-associated, including ideSsuis in S. suis, a homolog of malR of Streptococcus pneumoniae, and a homolog of the prepilin peptidase-encoding gene in Legionella pneumophila. However, these genes were not involved in the stress response. Another gene, srtR (stress response transcriptional regulator), encoding an XRE family transcriptional regulator, which had an internal stop in the parental strain, was functionally restored in the adapted strains. Further analysis of DN13 and SS9-P10-background srtR-knock-out and complementing strains supported the contribution of this gene to stress tolerance in vitro and virulence in mice. srtR and its homologs are widely distributed in Gram-positive bacteria including several important human pathogens such as Enterococcus faecium and Clostridioides difficile, indicating similar functions in these bacteria. Taken together, our study identified the first member of the XRE family of transcriptional regulators that is involved in stress tolerance and virulence. It also provides insight into the mechanism of enhanced virulence after serial passage in experimental animals.
Collapse
Affiliation(s)
- Yuli Hu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Qian Hu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Rong Wei
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Runcheng Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Dun Zhao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Meng Ge
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Qing Yao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Xinglong Yu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
5
|
Brockmeier SL, Loving CL, Nicholson TL, Wang J, Peters SE, Weinert L, Chaudhuri R, Seilly DJ, Langford PR, Rycroft A, Wren BW, Maskell DJ, Tucker AW. Use of Proteins Identified through a Functional Genomic Screen To Develop a Protein Subunit Vaccine That Provides Significant Protection against Virulent Streptococcus suis in Pigs. Infect Immun 2018; 86:e00559-17. [PMID: 29203546 PMCID: PMC5820948 DOI: 10.1128/iai.00559-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/28/2017] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis is a bacterium that is commonly carried in the respiratory tract and that is also one of the most important invasive pathogens of swine, commonly causing meningitis, arthritis, and septicemia. Due to the existence of many serotypes and a wide range of immune evasion capabilities, efficacious vaccines are not readily available. The selection of S. suis protein candidates for inclusion in a vaccine was accomplished by identifying fitness genes through a functional genomics screen and selecting conserved predicted surface-associated proteins. Five candidate proteins were selected for evaluation in a vaccine trial and administered both intranasally and intramuscularly with one of two different adjuvant formulations. Clinical protection was evaluated by subsequent intranasal challenge with virulent S. suis While subunit vaccination with the S. suis proteins induced IgG antibodies to each individual protein and a cellular immune response to the pool of proteins and provided substantial protection from challenge with virulent S. suis, the immune response elicited and the degree of protection were dependent on the parenteral adjuvant given. Subunit vaccination induced IgG reactive against different S. suis serotypes, indicating a potential for cross protection.
Collapse
Affiliation(s)
| | | | | | - Jinhong Wang
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Sarah E Peters
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Lucy Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Roy Chaudhuri
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - David J Seilly
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paul R Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, London, United Kingdom
| | - Andrew Rycroft
- The Royal Veterinary College, Hawkshead Campus, Hatfield, Hertfordshire, United Kingdom
| | - Brendan W Wren
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Abstract
Respiratory tract infections are an important cause of morbidity and mortality worldwide. Chief among these are infections involving the lower airways. The opportunistic bacterial pathogens responsible for most cases of pneumonia can cause a range of local and invasive infections. However, bacterial colonization (or carriage) in the upper airway is the prerequisite of all these infections. Successful colonizers must attach to the epithelial lining, grow on the nutrient-limited mucosal surface, evade the host immune response, and transmit to a susceptible host. Here, we review the molecular mechanisms underlying these conserved stages of carriage. We also examine how the demands of colonization influence progression to disease. A range of bacteria can colonize the upper airway; nevertheless, we focus on strategies shared by many respiratory tract opportunistic pathogens. Understanding colonization opens a window to the evolutionary pressures these pathogens face within their animal hosts and that have selected for attributes that contribute to virulence and pathogenesis.
Collapse
|
7
|
Verhaegh SJC, Flores AR, van Belkum A, Musser JM, Hays JP. Differential virulence gene expression of group A Streptococcus serotype M3 in response to co-culture with Moraxella catarrhalis. PLoS One 2013; 8:e62549. [PMID: 23626831 PMCID: PMC3633897 DOI: 10.1371/journal.pone.0062549] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 03/22/2013] [Indexed: 01/27/2023] Open
Abstract
Streptococcus pyogenes (group A Streptococcus, GAS) and Moraxella catarrhalis are important colonizers and (opportunistic) pathogens of the human respiratory tract. However, current knowledge regarding colonization and pathogenic potential of these two pathogens is based on work involving single bacterial species, even though the interplay between respiratory bacterial species is increasingly important in niche occupation and the development of disease. Therefore, to further define and understand polymicrobial species interactions, we investigated whether gene expression (and hence virulence potential) of GAS would be affected upon co-culture with M. catarrhalis. For co-culture experiments, GAS and M. catarrhalis were cultured in Todd-Hewitt broth supplemented with 0.2% yeast extract (THY) at 37°C with 5% CO2 aeration. Each strain was grown in triplicate so that triplicate experiments could be performed. Bacterial RNA was isolated, cDNA synthesized, and microarray transcriptome expression analysis performed. We observed significantly increased (≥4-fold) expression for genes playing a role in GAS virulence such as hyaluronan synthase (hasA), streptococcal mitogenic exotoxin Z (smeZ) and IgG endopeptidase (ideS). In contrast, significantly decreased (≥4-fold) expression was observed in genes involved in energy metabolism and in 12 conserved GAS two-component regulatory systems. This study provides the first evidence that M. catarrhalis increases GAS virulence gene expression during co-culture, and again shows the importance of polymicrobial infections in directing bacterial virulence.
Collapse
Affiliation(s)
- Suzanne J C Verhaegh
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
8
|
Protective mechanisms of respiratory tract Streptococci against Streptococcus pyogenes biofilm formation and epithelial cell infection. Appl Environ Microbiol 2012; 79:1265-76. [PMID: 23241973 DOI: 10.1128/aem.03350-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Streptococcus pyogenes (group A streptococci [GAS]) encounter many streptococcal species of the physiological microbial biome when entering the upper respiratory tract of humans, leading to the question how GAS interact with these bacteria in order to establish themselves at this anatomic site and initiate infection. Here we show that S. oralis and S. salivarius in direct contact assays inhibit growth of GAS in a strain-specific manner and that S. salivarius, most likely via bacteriocin secretion, also exerts this effect in transwell experiments. Utilizing scanning electron microscopy documentation, we identified the tested strains as potent biofilm producers except for GAS M49. In mixed-species biofilms, S. salivarius dominated the GAS strains, while S. oralis acted as initial colonizer, building the bottom layer in mixed biofilms and thereby allowing even GAS M49 to form substantial biofilms on top. With the exception of S. oralis, artificial saliva reduced single-species biofilms and allowed GAS to dominate in mixed biofilms, although the overall two-layer structure was unchanged. When covered by S. oralis and S. salivarius biofilms, epithelial cells were protected from GAS adherence, internalization, and cytotoxic effects. Apparently, these species can have probiotic effects. The use of Affymetrix array technology to assess HEp-2 cell transcription levels revealed modest changes after exposure to S. oralis and S. salivarius biofilms which could explain some of the protective effects against GAS attack. In summary, our study revealed a protection effect of respiratory tract bacteria against an important airway pathogen and allowed a first in vitro insight into local environmental processes after GAS enter the respiratory tract.
Collapse
|
9
|
Effects of the ERES pathogenicity region regulator Ralp3 on Streptococcus pyogenes serotype M49 virulence factor expression. J Bacteriol 2012; 194:3618-26. [PMID: 22544273 DOI: 10.1128/jb.00227-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Streptococcus pyogenes (group A streptococcus [GAS]) is a highly virulent Gram-positive bacterium. For successful infection, GAS expresses many virulence factors, which are clustered together with transcriptional regulators in distinct genomic regions. Ralp3 is a central regulator of the ERES region. In this study, we investigated the role of Ralp3 in GAS M49 pathogenesis. The inactivation of Ralp3 resulted in reduced attachment to and internalization into human keratinocytes. The Δralp3 mutant failed to survive in human blood and serum, and the hyaluronic acid capsule was slightly decreased. In addition, the mutant showed a lower binding capacity to human plasminogen, and the SpeB activity was significantly decreased. Complementation of the Δralp3 mutant restored the wild-type phenotype. The transcriptome and quantitative reverse transcription-PCR analysis of the serotype M49 GAS strain and its isogenic Δralp3 mutant identified 16 genes as upregulated, and 43 genes were found to be downregulated. Among the downregulated genes, there were open reading frames encoding proteins involved in metabolism (e.g., both lac operons and the fru operon), genes encoding lantibiotics (e.g., the putative salivaricin operon), and ORFs encoding virulence factors (such as the whole Mga core regulon and further genes under Mga control). In summary, the ERES region regulator Ralp3 is an important serotype-specific transcriptional regulator for virulence and metabolic control.
Collapse
|
10
|
Inhibitor of streptokinase gene expression improves survival after group A streptococcus infection in mice. Proc Natl Acad Sci U S A 2012; 109:3469-74. [PMID: 22331877 DOI: 10.1073/pnas.1201031109] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The widespread occurrence of antibiotic resistance among human pathogens is a major public health problem. Conventional antibiotics typically target bacterial killing or growth inhibition, resulting in strong selection for the development of antibiotic resistance. Alternative therapeutic approaches targeting microbial pathogenicity without inhibiting growth might minimize selection for resistant organisms. Compounds inhibiting gene expression of streptokinase (SK), a critical group A streptococcal (GAS) virulence factor, were identified through a high-throughput, growth-based screen on a library of 55,000 small molecules. The lead compound [Center for Chemical Genomics 2979 (CCG-2979)] and an analog (CCG-102487) were confirmed to also inhibit the production of active SK protein. Microarray analysis of GAS grown in the presence of CCG-102487 showed down-regulation of a number of important virulence factors in addition to SK, suggesting disruption of a general virulence gene regulatory network. CCG-2979 and CCG-102487 both enhanced granulocyte phagocytosis and killing of GAS in an in vitro assay, and CCG-2979 also protected mice from GAS-induced mortality in vivo. These data suggest that the class of compounds represented by CCG-2979 may be of therapeutic value for the treatment of GAS and potentially other gram-positive infections in humans.
Collapse
|
11
|
Livezey J, Perez L, Suciu D, Yu X, Robinson B, Bush D, Merrill G. Analysis of group A Streptococcus gene expression in humans with pharyngitis using a microarray. J Med Microbiol 2011; 60:1725-1733. [PMID: 21799202 DOI: 10.1099/jmm.0.022939-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pharyngitis caused by group A streptococci (GAS) is one of the most common infections around the world. However, relatively little is known about which genes are expressed and which genes regulate expression during acute infection. Due to their ability to provide genome-wide views of gene expression at one time, microarrays are increasingly being incorporated in GAS research. In this study, a novel electrochemical detection-based microarray was used to identify gene expression patterns among humans with culture-confirmed GAS pharyngitis. Using 14 samples (11 GAS-positive and three GAS-negative) obtained from subjects seen at the Brooke Army Medical Center paediatric clinic, this study demonstrated two different clusters of gene expression patterns. One cluster expressed a larger number of genes related to phages, immune-system evasion and survival among competing oral flora, signifying a potentially more virulent pattern of gene expression. The other cluster showed a greater number of genes related to nutrient acquisition and protein expression. This in vivo genome-wide analysis of GAS gene expression in humans with pharyngitis evaluated global gene expression in terms of virulence factors.
Collapse
Affiliation(s)
- Jeffrey Livezey
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| | - Luis Perez
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| | - Dominic Suciu
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| | - Xin Yu
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| | - Brian Robinson
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| | - David Bush
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| | - Gerald Merrill
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| |
Collapse
|
12
|
Shelburne SA, Sahasrobhajane P, Suber B, Keith DB, Davenport MT, Horstmann N, Kumaraswami M, Olsen RJ, Brennan RG, Musser JM. Niche-specific contribution to streptococcal virulence of a MalR-regulated carbohydrate binding protein. Mol Microbiol 2011; 81:500-14. [PMID: 21645132 DOI: 10.1111/j.1365-2958.2011.07708.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Low G+C Gram-positive bacteria typically contain multiple LacI/GalR regulator family members, which often have highly similar amino-terminal DNA binding domains, suggesting significant overlap in target DNA sequences. The LacI/GalR family regulator catabolite control protein A (CcpA) is a global regulator of the Group A Streptococcus (GAS) transcriptome and contributes to GAS virulence in diverse infection sites. Herein, we studied the role of the maltose repressor (MalR), another LacI/GalR family member, in GAS global gene expression and virulence. MalR inactivation reduced GAS colonization of the mouse oropharynx but did not detrimentally affect invasive infection. The MalR transcriptome was limited to only 25 genes, and a highly conserved MalR DNA-binding sequence was identified. Variation of the MalR binding sequence significantly reduced MalR binding in vitro. In contrast, CcpA bound to the same DNA sequences as MalR but tolerated variation in the promoter sequences with minimal change in binding affinity. Inactivation of pulA, a MalR regulated gene which encodes a cell surface carbohydrate binding protein, significantly reduced GAS human epithelial cell adhesion and mouse oropharyngeal colonization but did not affect GAS invasive disease. These data delineate a molecular mechanism by which hierarchical regulation of carbon source utilization influences bacterial pathogenesis in a site-specific fashion.
Collapse
Affiliation(s)
- Samuel A Shelburne
- Department of Infectious Diseases, MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ferrando ML, Fuentes S, de Greeff A, Smith H, Wells JM. ApuA, a multifunctional α-glucan-degrading enzyme of Streptococcus suis, mediates adhesion to porcine epithelium and mucus. Microbiology (Reading) 2010; 156:2818-2828. [DOI: 10.1099/mic.0.037960-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We have identified apuA in Streptococcus suis, which encodes a bifunctional amylopullulanase with conserved α-amylase and pullulanase substrate-binding domains and catalytic motifs. ApuA exhibited properties typical of a Gram-positive surface protein, with a putative signal sequence and LPKTGE cell-wall-anchoring motif. A recombinant protein containing the predicted N-terminal α-amylase domain of ApuA was shown to have α-(1,4) glycosidic activity. Additionally, an apuA mutant of S. suis lacked the pullulanase α-(1,6) glycosidic activity detected in a cell-surface protein extract of wild-type S. suis. ApuA was required for normal growth in complex medium containing pullulan as the major carbon source, suggesting that this enzyme plays a role in nutrient acquisition in vivo via the degradation of glycogen and food-derived starch in the nasopharyngeal and oral cavities. ApuA was shown to promote adhesion to porcine epithelium and mucus in vitro, highlighting a link between carbohydrate utilization and the ability of S. suis to colonize and infect the host.
Collapse
Affiliation(s)
- Maria Laura Ferrando
- Host-Microbe Interactomics, Wageningen University and Research Centre, Marijkeweg 40, 6709 PG Wageningen, The Netherlands
| | - Susana Fuentes
- Host-Microbe Interactomics, Wageningen University and Research Centre, Marijkeweg 40, 6709 PG Wageningen, The Netherlands
| | - Astrid de Greeff
- Central Veterinary Institute of Wageningen UR, Edelhertweg 15, 8219 PH Lelystad, The Netherlands
| | - Hilde Smith
- Central Veterinary Institute of Wageningen UR, Edelhertweg 15, 8219 PH Lelystad, The Netherlands
| | - Jerry M. Wells
- Host-Microbe Interactomics, Wageningen University and Research Centre, Marijkeweg 40, 6709 PG Wageningen, The Netherlands
| |
Collapse
|
14
|
Aziz RK, Kansal R, Aronow BJ, Taylor WL, Rowe SL, Kubal M, Chhatwal GS, Walker MJ, Kotb M. Microevolution of group A streptococci in vivo: capturing regulatory networks engaged in sociomicrobiology, niche adaptation, and hypervirulence. PLoS One 2010; 5:e9798. [PMID: 20418946 PMCID: PMC2854683 DOI: 10.1371/journal.pone.0009798] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 02/16/2010] [Indexed: 11/18/2022] Open
Abstract
The onset of infection and the switch from primary to secondary niches are dramatic environmental changes that not only alter bacterial transcriptional programs, but also perturb their sociomicrobiology, often driving minor subpopulations with mutant phenotypes to prevail in specific niches. Having previously reported that M1T1 Streptococcus pyogenes become hypervirulent in mice due to selection of mutants in the covRS regulatory genes, we set out to dissect the impact of these mutations in vitro and in vivo from the impact of other adaptive events. Using a murine subcutaneous chamber model to sample the bacteria prior to selection or expansion of mutants, we compared gene expression dynamics of wild type (WT) and previously isolated animal-passaged (AP) covS mutant bacteria both in vitro and in vivo, and we found extensive transcriptional alterations of pathoadaptive and metabolic gene sets associated with invasion, immune evasion, tissue-dissemination, and metabolic reprogramming. In contrast to the virulence-associated differences between WT and AP bacteria, Phenotype Microarray analysis showed minor in vitro phenotypic differences between the two isogenic variants. Additionally, our results reflect that WT bacteria's rapid host-adaptive transcriptional reprogramming was not sufficient for their survival, and they were outnumbered by hypervirulent covS mutants with SpeB−/Sdahigh phenotype, which survived up to 14 days in mice chambers. Our findings demonstrate the engagement of unique regulatory modules in niche adaptation, implicate a critical role for bacterial genetic heterogeneity that surpasses transcriptional in vivo adaptation, and portray the dynamics underlying the selection of hypervirulent covS mutants over their parental WT cells.
Collapse
Affiliation(s)
- Ramy K. Aziz
- Research Services, Veterans Affairs Medical Center, Memphis, Tennessee, United States of America
- Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio, United States of America
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Computation Institute, University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (RKA); (MK)
| | - Rita Kansal
- Research Services, Veterans Affairs Medical Center, Memphis, Tennessee, United States of America
- Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio, United States of America
| | - Bruce J. Aronow
- Biomedical Informatics, Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - William L. Taylor
- Health Science Center, University of Tennessee, Memphis, Tennessee, United States of America
| | - Sarah L. Rowe
- Research Services, Veterans Affairs Medical Center, Memphis, Tennessee, United States of America
- Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio, United States of America
- Health Science Center, University of Tennessee, Memphis, Tennessee, United States of America
| | - Michael Kubal
- Computation Institute, University of Chicago, Chicago, Illinois, United States of America
| | | | - Mark J. Walker
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Malak Kotb
- Research Services, Veterans Affairs Medical Center, Memphis, Tennessee, United States of America
- Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio, United States of America
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail: (RKA); (MK)
| |
Collapse
|
15
|
Perez N, Treviño J, Liu Z, Ho SCM, Babitzke P, Sumby P. A genome-wide analysis of small regulatory RNAs in the human pathogen group A Streptococcus. PLoS One 2009; 4:e7668. [PMID: 19888332 PMCID: PMC2765633 DOI: 10.1371/journal.pone.0007668] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 10/12/2009] [Indexed: 12/25/2022] Open
Abstract
The coordinated regulation of gene expression is essential for pathogens to infect and cause disease. A recently appreciated mechanism of regulation is that afforded by small regulatory RNA (sRNA) molecules. Here, we set out to assess the prevalence of sRNAs in the human bacterial pathogen group A Streptococcus (GAS). Genome-wide identification of candidate GAS sRNAs was performed through a tiling Affymetrix microarray approach and identified 40 candidate sRNAs within the M1T1 GAS strain MGAS2221. Together with a previous bioinformatic approach this brings the number of novel candidate sRNAs in GAS to 75, a number that approximates the number of GAS transcription factors. Transcripts were confirmed by Northern blot analysis for 16 of 32 candidate sRNAs tested, and the abundance of several of these sRNAs were shown to be temporally regulated. Six sRNAs were selected for further study and the promoter, transcriptional start site, and Rho-independent terminator identified for each. Significant variation was observed between the six sRNAs with respect to their stability during growth, and with respect to their inter- and/or intra-serotype-specific levels of abundance. To start to assess the contribution of sRNAs to gene regulation in M1T1 GAS we deleted the previously described sRNA PEL from four clinical isolates. Data from genome-wide expression microarray, quantitative RT-PCR, and Western blot analyses are consistent with PEL having no regulatory function in M1T1 GAS. The finding that candidate sRNA molecules are prevalent throughout the GAS genome provides significant impetus to the study of this fundamental gene-regulatory mechanism in an important human pathogen.
Collapse
Affiliation(s)
- Nataly Perez
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Jeanette Treviño
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Zhuyun Liu
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Siu Chun Michael Ho
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Paul Sumby
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
16
|
Shelburne Iii SA, Keith DB, Davenport MT, Beres SB, Carroll RK, Musser JM. Contribution of AmyA, an extracellular alpha-glucan degrading enzyme, to group A streptococcal host-pathogen interaction. Mol Microbiol 2009; 74:159-174. [PMID: 19735442 DOI: 10.1111/j.1365-2958.2009.06858.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
alpha-Glucans such as starch and glycogen are abundant in the human oropharynx, the main site of group A Streptococcus (GAS) infection. However, the role in pathogenesis of GAS extracellular alpha-glucan binding and degrading enzymes is unknown. The serotype M1 GAS genome encodes two extracellular proteins putatively involved in alpha-glucan binding and degradation; pulA encodes a cell wall anchored pullulanase and amyA encodes a freely secreted putative cyclomaltodextrin alpha-glucanotransferase. Genetic inactivation of amyA, but not pulA, abolished GAS alpha-glucan degradation. The DeltaamyA strain had a slower rate of translocation across human pharyngeal epithelial cells. Consistent with this finding, the DeltaamyA strain was less virulent following mouse mucosal challenge. Recombinant AmyA degraded alpha-glucans into beta-cyclomaltodextrins that reduced pharyngeal cell transepithelial resistance, providing a physiologic explanation for the observed transepithelial migration phenotype. Higher amyA transcript levels were present in serotype M1 GAS strains causing invasive infection compared with strains causing pharyngitis. GAS proliferation in a defined alpha-glucan-containing medium was dependent on the presence of human salivary alpha-amylase. These data delineate the molecular mechanisms by which alpha-glucan degradation contributes to GAS host-pathogen interaction, including how GAS uses human salivary alpha-amylase for its own metabolic benefit.
Collapse
Affiliation(s)
- Samuel A Shelburne Iii
- Department of Infectious Diseases, MD Anderson Cancer Center, Houston, TX 77030, USA.Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, and Department of Pathology, The Methodist Hospital, Houston, TX 77030, USA
| | - David B Keith
- Department of Infectious Diseases, MD Anderson Cancer Center, Houston, TX 77030, USA.Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, and Department of Pathology, The Methodist Hospital, Houston, TX 77030, USA
| | - Michael T Davenport
- Department of Infectious Diseases, MD Anderson Cancer Center, Houston, TX 77030, USA.Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, and Department of Pathology, The Methodist Hospital, Houston, TX 77030, USA
| | - Stephen B Beres
- Department of Infectious Diseases, MD Anderson Cancer Center, Houston, TX 77030, USA.Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, and Department of Pathology, The Methodist Hospital, Houston, TX 77030, USA
| | - Ronan K Carroll
- Department of Infectious Diseases, MD Anderson Cancer Center, Houston, TX 77030, USA.Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, and Department of Pathology, The Methodist Hospital, Houston, TX 77030, USA
| | - James M Musser
- Department of Infectious Diseases, MD Anderson Cancer Center, Houston, TX 77030, USA.Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, and Department of Pathology, The Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
17
|
Mereghetti L, Sitkiewicz I, Green NM, Musser JM. Extensive adaptive changes occur in the transcriptome of Streptococcus agalactiae (group B streptococcus) in response to incubation with human blood. PLoS One 2008; 3:e3143. [PMID: 18769548 PMCID: PMC2519835 DOI: 10.1371/journal.pone.0003143] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 08/14/2008] [Indexed: 11/19/2022] Open
Abstract
To enhance understanding of how Streptococcus agalactiae (group B streptococcus, GBS) adapts during invasive infection, we performed a whole-genome transcriptome analysis after incubation with whole human blood. Global changes occurred in the GBS transcriptome rapidly in response to blood contact following shift from growth in a rich laboratory medium. Most (83%) of the significantly altered transcripts were down-regulated after 30 minutes of incubation in blood, and all functional categories of genes were abundantly represented. We observed complex dynamic changes in the expression of transcriptional regulators and stress response genes that allow GBS to rapidly adapt to blood. The transcripts of relatively few proven virulence genes were up-regulated during the first 90 minutes. However, a key discovery was that genes encoding proteins involved in interaction with the host coagulation/fibrinolysis system and bacterial-host interactions were rapidly up-regulated. Extensive transcript changes also occurred for genes involved in carbohydrate metabolism, including multi-functional proteins and regulators putatively involved in pathogenesis. Finally, we discovered that an incubation temperature closer to that occurring in patients with severe infection and high fever (40°C) induced additional differences in the GBS transcriptome relative to normal body temperature (37°C). Taken together, the data provide extensive new information about transcriptional adaptation of GBS exposed to human blood, a crucial step during GBS pathogenesis in invasive diseases, and identify many new leads for molecular pathogenesis research.
Collapse
Affiliation(s)
- Laurent Mereghetti
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology, The Methodist Hospital Research Institute, Houston, Texas, United States of America
- Université François-Rabelais, Faculté de Médecine, EA3854 “Bactéries et risque materno-foetal”, et Centre Hospitalier Universitaire, Tours, France
| | - Izabela Sitkiewicz
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Nicole M. Green
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - James M. Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology, The Methodist Hospital Research Institute, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
18
|
Shelburne SA, Keith DB, Davenport MT, Horstmann N, Brennan RG, Musser JM. Molecular characterization of group A Streptococcus maltodextrin catabolism and its role in pharyngitis. Mol Microbiol 2008; 69:436-52. [PMID: 18485073 DOI: 10.1111/j.1365-2958.2008.06290.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We previously demonstrated that the cell-surface lipoprotein MalE contributes to GAS maltose/maltodextrin utilization, but MalE inactivation does not completely abrogate GAS catabolism of maltose or maltotriose. Using a genome-wide approach, we identified the GAS phosphotransferase system (PTS) responsible for non-MalE maltose/maltotriose transport. This PTS is encoded by an open reading frame (M5005_spy1692) previously annotated as ptsG based on homology with the glucose PTS in Bacillus subtilis. Genetic inactivation of M5005_spy1692 significantly reduced transport rates of radiolabelled maltose and maltotriose, but not glucose, leading us to propose its reannotation as malT for maltose transporter. The DeltamalT, DeltamalE and DeltamalE:malT strains were significantly attenuated in their growth in human saliva and in their ability to catabolize alpha-glucans digested by purified human salivary alpha-amylase. Compared with wild-type, the three isogenic mutant strains were significantly impaired in their ability to colonize the mouse oropharynx. Finally, we discovered that the transcript levels of maltodextrin utilization genes are regulated by competitive binding of the maltose repressor MalR and catabolite control protein A. These data provide novel insights into regulation of the GAS maltodextrin genes and their role in GAS host-pathogen interaction, thereby increasing the understanding of links between nutrient acquisition and virulence in common human pathogens.
Collapse
Affiliation(s)
- Samuel A Shelburne
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
19
|
Shelburne SA, Davenport MT, Keith DB, Musser JM. The role of complex carbohydrate catabolism in the pathogenesis of invasive streptococci. Trends Microbiol 2008; 16:318-25. [PMID: 18508271 DOI: 10.1016/j.tim.2008.04.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/03/2008] [Accepted: 04/11/2008] [Indexed: 01/09/2023]
Abstract
Historically, the study of bacterial catabolism of complex carbohydrates has contributed to understanding basic bacterial physiology. Recently, however, genome-wide screens of streptococcal pathogenesis have identified genes encoding proteins involved in complex carbohydrate catabolism as participating in pathogen infectivity. Subsequent studies have focused on specific mechanisms by which carbohydrate utilization proteins might contribute to the ability of streptococci to colonize and infect the host. Moreover, transcriptome and biochemical analyses have uncovered novel regulatory pathways by which streptococci link environmental carbohydrate availability to virulence factor production. Herein we review new insights into the role of complex carbohydrates in streptococcal host-pathogen interaction.
Collapse
Affiliation(s)
- Samuel A Shelburne
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|