1
|
Da Costa RM, Rooke JL, Wells TJ, Cunningham AF, Henderson IR. Type 5 secretion system antigens as vaccines against Gram-negative bacterial infections. NPJ Vaccines 2024; 9:159. [PMID: 39218947 PMCID: PMC11366766 DOI: 10.1038/s41541-024-00953-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Infections caused by Gram-negative bacteria are leading causes of mortality worldwide. Due to the rise in antibiotic resistant strains, there is a desperate need for alternative strategies to control infections caused by these organisms. One such approach is the prevention of infection through vaccination. While live attenuated and heat-killed bacterial vaccines are effective, they can lead to adverse reactions. Newer vaccine technologies focus on utilizing polysaccharide or protein subunits for safer and more targeted vaccination approaches. One promising avenue in this regard is the use of proteins released by the Type 5 secretion system (T5SS). This system is the most prevalent secretion system in Gram-negative bacteria. These proteins are compelling vaccine candidates due to their demonstrated protective role in current licensed vaccines. Notably, Pertactin, FHA, and NadA are integral components of licensed vaccines designed to prevent infections caused by Bordetella pertussis or Neisseria meningitidis. In this review, we delve into the significance of incorporating T5SS proteins into licensed vaccines, their contributions to virulence, conserved structural motifs, and the protective immune responses elicited by these proteins.
Collapse
Affiliation(s)
- Rochelle M Da Costa
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Jessica L Rooke
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Timothy J Wells
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
2
|
Pimenta AI, Kilcoyne M, Bernardes N, Mil-Homens D, Joshi L, Fialho AM. Burkholderia cenocepacia BCAM2418-induced antibody inhibits bacterial adhesion, confers protection to infection and enables identification of host glycans as adhesin targets. Cell Microbiol 2021; 23:e13340. [PMID: 33822465 DOI: 10.1111/cmi.13340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022]
Abstract
Trimeric Autotransporter Adhesins (TAA) found in Gram-negative bacteria play a key role in virulence. This is the case of Burkholderia cepacia complex (Bcc), a group of related bacteria able to cause infections in patients with cystic fibrosis. These bacteria use TAAs, among other virulence factors, to bind to host protein receptors and their carbohydrate ligands. Blocking such contacts is an attractive approach to inhibit Bcc infections. In this study, using an antibody produced against the TAA BCAM2418 from the epidemic strain Burkholderia cenocepacia K56-2, we were able to uncover its roles as an adhesin and the type of host glycan structures that serve as recognition targets. The neutralisation of BCAM2418 was found to cause a reduction in the adhesion of the bacteria to bronchial cells and mucins. Moreover, in vivo studies have shown that the anti-BCAM2418 antibody exerted an inhibitory effect during infection in Galleria mellonella. Finally, inferred by glycan arrays, we were able to predict for the first time, host glycan epitopes for a TAA. We show that BCAM2418 favoured binding to 3'sialyl-3-fucosyllactose, histo-blood group A, α-(1,2)-linked Fuc-containing structures, Lewis structures and GM1 gangliosides. In addition, the glycan microarrays demonstrated similar specificities of Burkholderia species for their most intensely binding carbohydrates.
Collapse
Affiliation(s)
- Andreia I Pimenta
- iBB-Institute for Bioengineering and Biosciences, and Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Michelle Kilcoyne
- Carbohydrate Signalling Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Nuno Bernardes
- iBB-Institute for Bioengineering and Biosciences, and Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Dalila Mil-Homens
- iBB-Institute for Bioengineering and Biosciences, and Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Lokesh Joshi
- Glycoscience Group, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Arsenio M Fialho
- iBB-Institute for Bioengineering and Biosciences, and Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
3
|
Thibau A, Dichter AA, Vaca DJ, Linke D, Goldman A, Kempf VAJ. Immunogenicity of trimeric autotransporter adhesins and their potential as vaccine targets. Med Microbiol Immunol 2020; 209:243-263. [PMID: 31788746 PMCID: PMC7247748 DOI: 10.1007/s00430-019-00649-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022]
Abstract
The current problem of increasing antibiotic resistance and the resurgence of numerous infections indicate the need for novel vaccination strategies more than ever. In vaccine development, the search for and the selection of adequate vaccine antigens is the first important step. In recent years, bacterial outer membrane proteins have become of major interest, as they are the main proteins interacting with the extracellular environment. Trimeric autotransporter adhesins (TAAs) are important virulence factors in many Gram-negative bacteria, are localised on the bacterial surface, and mediate the first adherence to host cells in the course of infection. One example is the Neisseria adhesin A (NadA), which is currently used as a subunit in a licensed vaccine against Neisseria meningitidis. Other TAAs that seem promising vaccine candidates are the Acinetobacter trimeric autotransporter (Ata), the Haemophilus influenzae adhesin (Hia), and TAAs of the genus Bartonella. Here, we review the suitability of various TAAs as vaccine candidates.
Collapse
Affiliation(s)
- Arno Thibau
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Alexander A. Dichter
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Diana J. Vaca
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Adrian Goldman
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds, UK
- Molecular and Integrative Biosciences Program, University of Helsinki, Helsinki, Finland
| | - Volkhard A. J. Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| |
Collapse
|
4
|
Andreae CA, Sessions RB, Virji M, Hill DJ. Bioinformatic analysis of meningococcal Msf and Opc to inform vaccine antigen design. PLoS One 2018; 13:e0193940. [PMID: 29547646 PMCID: PMC5856348 DOI: 10.1371/journal.pone.0193940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/21/2018] [Indexed: 11/19/2022] Open
Abstract
Neisseria meningitidis is an antigenically and genetically variable Gram-negative bacterium and a causative agent of meningococcal meningitis and septicaemia. Meningococci encode many outer membrane proteins, including Opa, Opc, Msf, fHbp and NadA, identified as being involved in colonisation of the host and evasion of the immune response. Although vaccines are available for the prevention of some types of meningococcal disease, none currently offer universal protection. We have used sequences within the Neisseria PubMLST database to determine the variability of msf and opc in 6,500 isolates. In-silico analysis revealed that although opc is highly conserved, it is not present in all isolates, with most isolates in clonal complex ST-11 lacking a functional opc. In comparison, msf is found in all meningococcal isolates, and displays diversity in the N-terminal domain. We identified 20 distinct Msf sequence variants (Msf SV), associated with differences in number of residues within the putative Vn binding motifs. Moreover, we showed distinct correlations with certain Msf SVs and isolates associated with either hyperinvasive lineages or those clonal complexes associated with a carriage state. We have demonstrated differences in Vn binding between three Msf SVs and generated a cross reactive Msf polyclonal antibody. Our study has highlighted the importance of using large datasets to inform vaccine development and provide further information on the antigenic diversity exhibited by N. meningitidis.
Collapse
Affiliation(s)
- Clio A. Andreae
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | | | - Mumtaz Virji
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Darryl. J. Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Peterson JH, Plummer AM, Fleming KG, Bernstein HD. Selective pressure for rapid membrane integration constrains the sequence of bacterial outer membrane proteins. Mol Microbiol 2017; 106:777-792. [PMID: 28941249 DOI: 10.1111/mmi.13845] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2017] [Indexed: 12/11/2022]
Abstract
Almost all bacterial outer membrane proteins (OMPs) contain a β barrel domain that serves as a membrane anchor, but the assembly and quality control of these proteins are poorly understood. Here, we show that the introduction of a single lipid-facing arginine residue near the middle of the β barrel of the Escherichia coli OMPs OmpLA and EspP creates an energy barrier that impedes membrane insertion. Although several unintegrated OmpLA mutants remained insertion-competent, they were slowly degraded by the periplasmic protease DegP. Two EspP mutants were also gradually degraded by DegP but were toxic because they first bound to the Bam complex, an essential heteroligomer that catalyzes the membrane insertion of OMPs. Interestingly, another EspP mutant likewise formed a prolonged, deleterious interaction with the Bam complex but was protected from degradation and eventually inserted into the membrane in a native conformation. The different types of interactions between the EspP mutants and the Bam complex that we observed may correspond to distinct stages in OMP assembly. Our results show that sequences that significantly delay assembly are disfavored not only because unintegrated OMPs are subjected to degradation, but also because OMPs that assemble slowly can form dominant-negative interactions with the Bam complex.
Collapse
Affiliation(s)
- Janine H Peterson
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD 20892, USA
| | - Ashlee M Plummer
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Karen G Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Tommassen J, Arenas J. Biological Functions of the Secretome of Neisseria meningitidis. Front Cell Infect Microbiol 2017; 7:256. [PMID: 28670572 PMCID: PMC5472700 DOI: 10.3389/fcimb.2017.00256] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/29/2017] [Indexed: 11/13/2022] Open
Abstract
Neisseria meningitidis is a Gram-negative bacterial pathogen that normally resides as a commensal in the human nasopharynx but occasionally causes disease with high mortality and morbidity. To interact with its environment, it transports many proteins across the outer membrane to the bacterial cell surface and into the extracellular medium for which it deploys the common and well-characterized autotransporter, two-partner and type I secretion mechanisms, as well as a recently discovered pathway for the surface exposure of lipoproteins. The surface-exposed and secreted proteins serve roles in host-pathogen interactions, including adhesion to host cells and extracellular matrix proteins, evasion of nutritional immunity imposed by iron-binding proteins of the host, prevention of complement activation, neutralization of antimicrobial peptides, degradation of immunoglobulins, and permeabilization of epithelial layers. Furthermore, they have roles in interbacterial interactions, including the formation and dispersal of biofilms and the suppression of the growth of bacteria competing for the same niche. Here, we will review the protein secretion systems of N. meningitidis and focus on the functions of the secreted proteins.
Collapse
Affiliation(s)
- Jan Tommassen
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht UniversityUtrecht, Netherlands
| | - Jesús Arenas
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|
7
|
Qin W, Wang L, Lei L. New findings on the function and potential applications of the trimeric autotransporter adhesin. Antonie van Leeuwenhoek 2015; 108:1-14. [PMID: 26014492 DOI: 10.1007/s10482-015-0477-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/08/2015] [Indexed: 11/27/2022]
Abstract
Trimeric autotransporter adhesins (TAAs) are located on the surface of many pathogenic Gram-negative bacteria. TAAs belong to the autotransporter protein family and consist of three identical monomers. These obligate homotrimeric proteins are secreted through the bacterial type Vc secretion system and share a common molecular organization that each monomer consists of a N-terminal "passenger" domain and a C-terminal translocation domain. TAAs are important virulence factors that are involved in bacterial life cycle and participate in mediating infection, invasion, dissemination and evasion of host immune responses. TAAs have also proved to be useful for many applications, such as vaccines and disease biomarkers. We here mainly focused on new findings on bio-function and application of TAAs in addition to their common structure and secretion mechanisms.
Collapse
Affiliation(s)
- Wanhai Qin
- College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, China,
| | | | | |
Collapse
|
8
|
Peak IR, Srikhanta YN, Weynants VE, Feron C, Poolman JT, Jennings MP. Evaluation of truncated NhhA protein as a candidate meningococcal vaccine antigen. PLoS One 2013; 8:e72003. [PMID: 24039731 PMCID: PMC3765393 DOI: 10.1371/journal.pone.0072003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/11/2013] [Indexed: 11/19/2022] Open
Abstract
NhhA (Neisseria hia homologue) is an outer membrane protein from Neisseria meningitidis, the causative agent of meningococcal disease. The protein is surface exposed and its expression in a wide range of meningococcal strains suggests it is a promising vaccine candidate. In addition, immunization of mice with outer membrane vesicles of strains that overexpress NhhA in conjunction with one of TbpA, Omp85 or NspA results in synergistic bactericidal responses. We previously showed that the NhhA sequence is highly conserved between strains, with the majority of the differences localized to four distinct variable regions located in the amino-terminal region of the mature protein. In this study, N. meningitidis strains were constructed that over-express wild-type NhhA. Strains expressing truncated versions of NhhA, with deletions from the amino-terminal region that removed the most variable regions, were also made. These expression strains were also modified so that immunodominant, phase- and antigenically-variable outer membrane proteins were not expressed, truncated lipooligosaccharide (LOS) expression was genetically fixed (no phase variability), and capsular polysaccharide expression abolished. Outer membrane vesicles derived from these strains were used to immunize mice. As previously observed, a synergistic effect involving another antigen, TbpA, was required to demonstrate bactericidal activity. The highest bactericidal response against a heterologous strain was obtained with a truncated variant of NhhA. These results indicate that removal of (a) variable region(s) does not reduce bactericidal responses against NhhA, and that bactericidal targets exist in regions other than the variable N-teminus. This provides the basis for future examination of responses against truncated NhhA in protecting against heterologous NhhA strains, and further evaluation of truncated NhhA as a candidate for inclusion in a vaccine against all serogroups of N. meningitidis.
Collapse
Affiliation(s)
- Ian R. Peak
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Yogitha N. Srikhanta
- School of Molecular and Microbial Science, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | - Michael P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
- * E-mail:
| |
Collapse
|
9
|
El-Kirat-Chatel S, Mil-Homens D, Beaussart A, Fialho AM, Dufrêne YF. Single-molecule atomic force microscopy unravels the binding mechanism of aBurkholderia cenocepaciatrimeric autotransporter adhesin. Mol Microbiol 2013; 89:649-59. [DOI: 10.1111/mmi.12301] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Sofiane El-Kirat-Chatel
- Université catholique de Louvain; Institute of Life Sciences; Croix du Sud, 1, bte L7.04.01.; B-1348; Louvain-la-Neuve; Belgium
| | - Dalila Mil-Homens
- IBB-Institute for Biotechnology and Bioengineering; Instituto Superior Técnico; Lisbon; 1049-001; Portugal
| | - Audrey Beaussart
- Université catholique de Louvain; Institute of Life Sciences; Croix du Sud, 1, bte L7.04.01.; B-1348; Louvain-la-Neuve; Belgium
| | | | - Yves F. Dufrêne
- Université catholique de Louvain; Institute of Life Sciences; Croix du Sud, 1, bte L7.04.01.; B-1348; Louvain-la-Neuve; Belgium
| |
Collapse
|
10
|
Meningococcal outer membrane protein NhhA triggers apoptosis in macrophages. PLoS One 2012; 7:e29586. [PMID: 22238624 PMCID: PMC3251587 DOI: 10.1371/journal.pone.0029586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 12/01/2011] [Indexed: 11/19/2022] Open
Abstract
Phagocytotic cells play a fundamental role in the defense against bacterial pathogens. One mechanism whereby bacteria evade phagocytosis is to produce factors that trigger apoptosis. Here we identify for the first time a meningococcal protein capable of inducing macrophage apoptosis. The conserved meningococcal outer membrane protein NhhA (Neisseria hia/hsf homologue A, also known as Hsf) mediates bacterial adhesion and interacts with extracellular matrix components heparan sulphate and laminin. Meningococci lacking NhhA fail to colonise nasal mucosa in a mouse model of meningococcal disease. We found that exposure of macrophages to NhhA resulted in a highly increased rate of apoptosis that proceeded through caspase activation. Exposure of macrophages to NhhA also led to iNOS induction and nitric oxide production. However, neither nitric oxide production nor TNF-α signaling was found to be a prerequisite for NhhA-induced apoptosis. Macrophages exposed to wildtype NhhA-expressing meningococci were also found to undergo apoptosis whereas NhhA-deficient meningococci had a markedly decreased capacity to induce macrophage apoptosis. These data provide new insights on the role of NhhA in meningococcal disease. NhhA-induced macrophage apoptosis could be a mechanism whereby meningococci evade immunoregulatory and phagocytotic actions of macrophages.
Collapse
|