1
|
Roka-Moiia Y, Lewis S, Cleveland E, Italiano JE, Slepian MJ. Shear Stress Promotes Remodeling of Platelet Glycosylation via Upregulation of Platelet Glycosidase Activity: One More Thing. Thromb Haemost 2025; 125:317-336. [PMID: 39168140 DOI: 10.1055/a-2398-9532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Mechanical circulatory support (MCS) is a mainstay of therapy for advanced and end-stage heart failure. Accompanied by systemic anticoagulation, contemporary MCS has become less thrombogenic, with bleeding complications emerging as a major cause of readmission and 1-year mortality. Shear-mediated platelet dysfunction and thrombocytopenia of undefined etiology are primary drivers of MCS-related bleeding. Recently, it has been demonstrated that deprivation of platelet surface glycosylation is associated with the decline of hemostatic function, microvesiculation, and premature apoptosis. We test the hypothesis that shear stress induces remodeling of platelet surface glycosylation via upregulation of glycosidase activity, thus facilitating platelet count decline and intense microvesiculation.Human gel-filtered platelets were exposed to continuous shear stress in vitro. Platelets and platelet-derived microparticles (PDMPs) were quantified via flow cytometry using size standard fluorescent nanobeads. Platelet surface glycosylation and NEU1 expression were evaluated using lectin- or immune-staining and multicolor flow cytometry; lectin blotting was utilized to verify glycosylation of individual glycoproteins. Platelet neuraminidase, galactosidase, hexosaminidase, and mannosidase activities were quantified using 4-methylumbelliferone-based fluorogenic substrates.We demonstrate that shear stress promotes selective remodeling of platelet glycosylation via downregulation of 2,6-sialylation, terminal galactose, and mannose, while 2,3-sialylation remains largely unchanged. Shear-mediated deglycosylation is partially attenuated by neuraminidase inhibitors, strongly suggesting the involvement of platelet neuraminidase in observed phenomena. Shear stress increases platelet NEU1 surface expression and potentiates generation of numerous NEU1+ PDMPs. Platelets exhibit high basal hexosaminidase and mannosidase activities; basal activities of platelet neuraminidase and galactosidase are rather low and are significantly upregulated by shear stress. Shear stress of increased magnitude and duration promotes an incremental decline of platelet count and immense microvesiculation, both being further exacerbated by neuraminidase and partially attenuated by neuraminidase inhibition.Our data indicate that shear stress accumulation, consistent with supraphysiologic conditions of device-supported circulation, promotes remodeling of platelet glycosylation via selective upregulation of platelet glycosidase activity. Shear-mediated platelet deglycosylation is associated with platelet count drop and increased microvesiculation, thus offering a direct link between deglycosylation and thrombocytopenia observed in device-supported patients. Based on our findings, we propose a panel of molecular markers to be used for reliable detection of shear-mediated platelet deglycosylation in MCS.
Collapse
Affiliation(s)
- Yana Roka-Moiia
- Department of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, Arizona, United States
- Arizona Center for Accelerated Biomedical Innovation, Tucson, Arizona, United States
| | - Sabrina Lewis
- Department of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, Arizona, United States
| | - Estevan Cleveland
- Department of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, Arizona, United States
| | - Joseph E Italiano
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Marvin J Slepian
- Department of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, Arizona, United States
- Arizona Center for Accelerated Biomedical Innovation, Tucson, Arizona, United States
| |
Collapse
|
2
|
Fritsch KJ, Krüger L, Handtke S, Kohler TP, Ozhiganova A, Jahn K, Wesche J, Greinacher A, Hammerschmidt S. Pneumococcal Neuraminidases Increase Platelet Killing by Pneumolysin. Thromb Haemost 2025; 125:243-254. [PMID: 39029905 DOI: 10.1055/a-2369-8680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
BACKGROUND Platelets prevent extravasation of capillary fluids into the pulmonary interstitial tissue by sealing gaps in inflamed endothelium. This reduces respiratory distress associated with pneumonia. Streptococcus pneumoniae is the leading cause of severe community-acquired pneumonia. Pneumococci produce pneumolysin (PLY), which forms pores in membranes of eukaryotic cells including platelets. Additionally, pneumococci express neuraminidases, which cleave sialic acid residues from eukaryotic glycoproteins. In this study, we investigated the effect of desialylation on PLY binding and pore formation on platelets. MATERIALS AND METHODS We incubated human platelets with purified neuraminidases and PLY, or nonencapsulated S. pneumoniae D39/TIGR4 and isogenic mutants deficient in PLY and/or NanA. We assessed platelet desialylation, PLY binding, and pore formation by flow cytometry. We also analyzed the inhibitory potential of therapeutic immunoglobulin G preparations (IVIG [intravenous immunoglobulin]). RESULTS Wild-type pneumococci cause desialylation of platelet glycoproteins by neuraminidases, which is reduced by 90 to 100% in NanA-deficient mutants. NanC, cleaving only α2,3-linked sialic acid, induced platelet desialylation. PLY binding to platelets then x2doubled (p = 0.0166) and pore formation tripled (p = 0.0373). A neuraminidase cleaving α2,3-, α2,6-, and α2,8-linked sialic acid like NanA was even more efficient. Addition of polyvalent IVIG (5 mg/mL) decreased platelet desialylation induced by NanC up to 90% (p = 0.263) and reduced pore formation >95% (p < 0.0001) when incubated with pneumococci. CONCLUSION Neuraminidases are key virulence factors of pneumococci and desialylate platelet glycoproteins, thereby unmasking PLY-binding sites. This enhances binding of PLY and pore formation showing that pneumococcal neuraminidases and PLY act in concert to kill platelets. However, human polyvalent immunoglobulin G preparations are promising agents for therapeutic intervention during severe pneumococcal pneumonia.
Collapse
Affiliation(s)
- Kristin J Fritsch
- Department of Transfusion Medicine, Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Laura Krüger
- Department of Transfusion Medicine, Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Stefan Handtke
- Department of Transfusion Medicine, Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
- Department of Transfusion Medicine, Institute of Transfusion Medicine, University Medicine Rostock, Rostock, Germany
| | - Thomas P Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Arina Ozhiganova
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Kristin Jahn
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Jan Wesche
- Department of Transfusion Medicine, Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Andreas Greinacher
- Department of Transfusion Medicine, Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| |
Collapse
|
3
|
Butta N, van der Wal DE. Desialylation by neuraminidases in platelets, kiss of death or bittersweet? Curr Opin Hematol 2025; 32:43-51. [PMID: 38529832 DOI: 10.1097/moh.0000000000000815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
PURPOSE OF REVIEW Loss of surface sialic acid by neuraminidases is known as 'desialylation'. Platelets are desialylated in bacterial or viral infections, during storage, senescence, various mutations, platelet auto antibodies, hemostasis and shear stress. In this review the recent literature on the different sialic acid capped glycan structures will be covered as well as platelet desialylation in inherited glycan disorders and induced by external neuraminidases. RECENT FINDINGS Neuraminidases are released from platelet intracellular stores and translocated to the platelet surface. Apart from clearance, loss of surface sialic acid by neuraminidases ('desialylation') affects platelet signaling including ligand binding and their procoagulant function. Platelets are also desialylated in infections, various mutations, presence of platelet auto antibodies. SUMMARY Since platelet desialylation occurs in various healthy and pathological conditions, measuring desialylation might be a new diagnostic tool.
Collapse
Affiliation(s)
- Nora Butta
- Group of Coagulopathies and Haemostasis Disorders, La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain
| | - Dianne E van der Wal
- Platelets and Thrombosis Research Laboratory, Anzac Research Institute, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| |
Collapse
|
4
|
Chao Y, Mørch M, Håkansson AP, Shannon O. Biofilm-dispersed pneumococci induce elevated leukocyte and platelet activation. Front Cell Infect Microbiol 2024; 14:1405333. [PMID: 39149421 PMCID: PMC11324597 DOI: 10.3389/fcimb.2024.1405333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction Streptococcus pneumoniae (the pneumococcus) effectively colonizes the human nasopharynx, but can migrate to other host sites, causing infections such as pneumonia and sepsis. Previous studies indicate that pneumococci grown as biofilms have phenotypes of bacteria associated with colonization whereas bacteria released from biofilms in response to changes in the local environment (i.e., dispersed bacteria) represent populations with phenotypes associated with disease. How these niche-adapted populations interact with immune cells upon reaching the vascular compartment has not previously been studied. Here, we investigated neutrophil, monocyte, and platelet activation using ex vivo stimulation of whole blood and platelet-rich plasma with pneumococcal populations representing distinct stages of the infectious process (biofilm bacteria and dispersed bacteria) as well as conventional broth-grown culture (planktonic bacteria). Methods Flow cytometry and ELISA were used to assess surface and soluble activation markers for neutrophil and monocyte activation, platelet-neutrophil complex and platelet-monocyte complex formation, and platelet activation and responsiveness. Results Overall, we found that biofilm-derived bacteria (biofilm bacteria and dispersed bacteria) induced significant activation of neutrophils, monocytes, and platelets. In contrast, little to no activation was induced by planktonic bacteria. Platelets remained functional after stimulation with bacterial populations and the degree of responsiveness was inversely related to initial activation. Bacterial association with immune cells followed a similar pattern as activation. Discussion Differences in activation of and association with immune cells by biofilm-derived populations could be an important consideration for other pathogens that have a biofilm state. Gaining insight into how these bacterial populations interact with the host immune response may reveal immunomodulatory targets to interfere with disease development.
Collapse
Affiliation(s)
- Yashuan Chao
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Faculty of Medicine, Lund University, Lund, Sweden
- Section for Oral Biology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Martina Mørch
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Faculty of Medicine, Lund University, Lund, Sweden
- Section for Oral Biology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Anders P Håkansson
- Division of Experimental Infection Medicine, Department of Translational Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Oonagh Shannon
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Faculty of Medicine, Lund University, Lund, Sweden
- Section for Oral Biology, Faculty of Odontology, Malmö University, Malmö, Sweden
| |
Collapse
|
5
|
An O, Deppermann C. Platelet lifespan and mechanisms for clearance. Curr Opin Hematol 2024; 31:6-15. [PMID: 37905750 DOI: 10.1097/moh.0000000000000792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
PURPOSE OF REVIEW Activated or aged platelets are removed from circulation under (patho)physiologic conditions, the exact mechanism of platelet clearance under such conditions remains unclear and are currently being investigated. This review focuses on recent findings and controversies regarding platelet clearance and the disruption of platelet life cycle. RECENT FINDINGS The platelet life span is determined by glycosylation of platelet surface receptors with sialic acid. Recently, it was shown that platelet activation and granule release leads to desialylation of glycans and accelerated clearance of platelets under pathological conditions. This phenomenon was demonstrated to be a main reason for thrombocytopenia being a complication in several infections and immune disorders. SUMMARY Although we have recently gained some insight into how aged platelets are cleared from circulation, we are still not seeing the full picture. Further investigations of the platelet clearance pathways under pathophysiologic conditions are needed as well as studies to unravel the connection between platelet clearance and platelet production.
Collapse
Affiliation(s)
- Olga An
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | | |
Collapse
|
6
|
Grabowska J, Léopold V, Olesek K, Nijen Twilhaar MK, Affandi AJ, Brouwer MC, Jongerius I, Verschoor A, van Kooten C, van Kooyk Y, Storm G, van ‘t Veer C, den Haan JMM. Platelets interact with CD169 + macrophages and cDC1 and enhance liposome-induced CD8 + T cell responses. Front Immunol 2023; 14:1290272. [PMID: 38054006 PMCID: PMC10694434 DOI: 10.3389/fimmu.2023.1290272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
Historically platelets are mostly known for their crucial contribution to hemostasis, but there is growing understanding of their role in inflammation and immunity. The immunomodulatory role of platelets entails interaction with pathogens, but also with immune cells including macrophages and dendritic cells (DCs), to activate adaptive immune responses. In our previous work, we have demonstrated that splenic CD169+ macrophages scavenge liposomes and collaborate with conventional type 1 DCs (cDC1) to induce expansion of CD8+ T cells. Here, we show that platelets associate with liposomes and bind to DNGR-1/Clec9a and CD169/Siglec-1 receptors in vitro. In addition, platelets interacted with splenic CD169+ macrophages and cDC1 and further increased liposome internalization by cDC1. Most importantly, platelet depletion prior to liposomal immunization resulted in significantly diminished antigen-specific CD8+ T cell responses, but not germinal center B cell responses. Previously, complement C3 was shown to be essential for platelet-mediated CD8+ T cell activation during bacterial infection. However, after liposomal vaccination CD8+ T cell priming was not dependent on complement C3. While DCs from platelet-deficient mice exhibited unaltered maturation status, they did express lower levels of CCR7. In addition, in the absence of platelets, CCL5 plasma levels were significantly reduced. Overall, our findings demonstrate that platelets engage in a cross-talk with CD169+ macrophages and cDC1 and emphasize the importance of platelets in induction of CD8+ T cell responses in the context of liposomal vaccination.
Collapse
Affiliation(s)
- Joanna Grabowska
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Valentine Léopold
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Anesthesiology and Critical Care, Paris University, Lariboisière Hospital, Paris, France
- Inserm UMR-S 942, Cardiovascular Markers in Stress Conditions (MASCOT), University of Paris, Paris, France
| | - Katarzyna Olesek
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Maarten K. Nijen Twilhaar
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Alsya J. Affandi
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Mieke C. Brouwer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Ilse Jongerius
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Admar Verschoor
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Department of Otorhinolaryngology, Technische Universität München and Klinikum Rechts der Isar, Munich, Germany
| | - Cees van Kooten
- Department of Medicine, Division of Nephrology and Transplant Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Cornelis van ‘t Veer
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Joke M. M. den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| |
Collapse
|
7
|
Tiemeyer KH, Kuter DJ, Cairo CW, Hollenhorst MA. New insights into the glycobiology of immune thrombocytopenia. Curr Opin Hematol 2023; 30:210-218. [PMID: 37526945 DOI: 10.1097/moh.0000000000000781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
PURPOSE OF REVIEW The platelet surface harbors a lush forest of glycans (carbohydrate polymers) attached to membrane proteins and lipids. Accumulating evidence suggests that these glycans may be relevant to the pathophysiology of immune thrombocytopenia (ITP). Here, we critically evaluate data that point to a possible role for loss of sialic acid in driving platelet clearance in ITP, comment on the potential use of neuraminidase inhibitors for treatment of ITP, and highlight open questions in this area. RECENT FINDINGS Multiple lines of evidence suggest a role for loss of platelet sialic acid in the pathophysiology of thrombocytopenia. Recent work has tested the hypothesis that neuraminidase-mediated cleavage of platelet sialic acid may trigger clearance of platelets in ITP. Some clinical evidence supports efficacy of the viral neuraminidase inhibitor oseltamivir in ITP, which is surprising given its lack of activity against human neuraminidases. SUMMARY Further study of platelet glycobiology in ITP is necessary to fill key knowledge gaps. A deeper understanding of the roles of platelet glycans in ITP pathophysiology will help to guide development of novel therapies.
Collapse
Affiliation(s)
| | - David J Kuter
- Division of Hematology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Marie A Hollenhorst
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Jeong SH, Park JY, Ryu YB, Kim WS, Lee IC, Kim JH, Kim D, Ha JH, Lee BW, Nam J, Cho KO, Kwon HJ. Myristica fragrans Extract Inhibits Platelet Desialylation and Activation to Ameliorate Sepsis-Associated Thrombocytopenia in a Murine CLP-Induced Sepsis Model. Int J Mol Sci 2023; 24:ijms24108863. [PMID: 37240208 DOI: 10.3390/ijms24108863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Sepsis, characterized by an uncontrolled host inflammatory response to infections, remains a leading cause of death in critically ill patients worldwide. Sepsis-associated thrombocytopenia (SAT), a common disease in patients with sepsis, is an indicator of disease severity. Therefore, alleviating SAT is an important aspect of sepsis treatment; however, platelet transfusion is the only available treatment strategy for SAT. The pathogenesis of SAT involves increased platelet desialylation and activation. In this study, we investigated the effects of Myristica fragrans ethanol extract (MF) on sepsis and SAT. Desialylation and activation of platelets treated with sialidase and adenosine diphosphate (platelet agonist) were assessed using flow cytometry. The extract inhibited platelet desialylation and activation via inhibiting bacterial sialidase activity in washed platelets. Moreover, MF improved survival and reduced organ damage and inflammation in a mouse model of cecal ligation and puncture (CLP)-induced sepsis. It also prevented platelet desialylation and activation via inhibiting circulating sialidase activity, while maintaining platelet count. Inhibition of platelet desialylation reduces hepatic Ashwell-Morell receptor-mediated platelet clearance, thereby reducing hepatic JAK2/STAT3 phosphorylation and thrombopoietin mRNA expression. This study lays a foundation for the development of plant-derived therapeutics for sepsis and SAT and provides insights into sialidase-inhibition-based sepsis treatment strategies.
Collapse
Affiliation(s)
- Seong-Hun Jeong
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ji-Young Park
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Korea Institute of Toxicology, Jeongeup 53212, Republic of Korea
| | - Young Bae Ryu
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Woo Sik Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - In-Chul Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Korea Institute of Toxicology, Jeongeup 53212, Republic of Korea
| | - Ju-Hong Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Dohoon Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Ji-Hye Ha
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Ba-Wool Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Jiyoung Nam
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Kyoung-Oh Cho
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyung-Jun Kwon
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Korea Institute of Toxicology, Jeongeup 53212, Republic of Korea
| |
Collapse
|
9
|
Jahn K, Kohler TP, Swiatek LS, Wiebe S, Hammerschmidt S. Platelets, Bacterial Adhesins and the Pneumococcus. Cells 2022; 11:cells11071121. [PMID: 35406684 PMCID: PMC8997422 DOI: 10.3390/cells11071121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 01/25/2023] Open
Abstract
Systemic infections with pathogenic or facultative pathogenic bacteria are associated with activation and aggregation of platelets leading to thrombocytopenia and activation of the clotting system. Bacterial proteins leading to platelet activation and aggregation have been identified, and while platelet receptors are recognized, induced signal transduction cascades are still often unknown. In addition to proteinaceous adhesins, pathogenic bacteria such as Staphylococcus aureus and Streptococcus pneumoniae also produce toxins such as pneumolysin and alpha-hemolysin. They bind to cellular receptors or form pores, which can result in disturbance of physiological functions of platelets. Here, we discuss the bacteria-platelet interplay in the context of adhesin–receptor interactions and platelet-activating bacterial proteins, with a main emphasis on S. aureus and S. pneumoniae. More importantly, we summarize recent findings of how S. aureus toxins and the pore-forming toxin pneumolysin of S. pneumoniae interfere with platelet function. Finally, the relevance of platelet dysfunction due to killing by toxins and potential treatment interventions protecting platelets against cell death are summarized.
Collapse
|
10
|
Jennings MP, Day CJ, Atack JM. How bacteria utilize sialic acid during interactions with the host: snip, snatch, dispatch, match and attach. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001157. [PMID: 35316172 PMCID: PMC9558349 DOI: 10.1099/mic.0.001157] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/08/2022] [Indexed: 12/16/2022]
Abstract
N -glycolylneuraminic acid (Neu5Gc), and its precursor N-acetylneuraminic acid (Neu5Ac), commonly referred to as sialic acids, are two of the most common glycans found in mammals. Humans carry a mutation in the enzyme that converts Neu5Ac into Neu5Gc, and as such, expression of Neu5Ac can be thought of as a 'human specific' trait. Bacteria can utilize sialic acids as a carbon and energy source and have evolved multiple ways to take up sialic acids. In order to generate free sialic acid, many bacteria produce sialidases that cleave sialic acid residues from complex glycan structures. In addition, sialidases allow escape from innate immune mechanisms, and can synergize with other virulence factors such as toxins. Human-adapted pathogens have evolved a preference for Neu5Ac, with many bacterial adhesins, and major classes of toxin, specifically recognizing Neu5Ac containing glycans as receptors. The preference of human-adapted pathogens for Neu5Ac also occurs during biosynthesis of surface structures such as lipo-oligosaccharide (LOS), lipo-polysaccharide (LPS) and polysaccharide capsules, subverting the human host immune system by mimicking the host. This review aims to provide an update on the advances made in understanding the role of sialic acid in bacteria-host interactions made in the last 5-10 years, and put these findings into context by highlighting key historical discoveries. We provide a particular focus on 'molecular mimicry' and incorporation of sialic acid onto the bacterial outer-surface, and the role of sialic acid as a receptor for bacterial adhesins and toxins.
Collapse
Affiliation(s)
- Michael P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Christopher J. Day
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - John M. Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
- School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
11
|
Bote J, Corkrey HA, Koupenova M. Human Platelets and Influenza Virus: Internalization and Platelet Activation. Platelets 2022; 33:184-191. [PMID: 34369285 PMCID: PMC8821732 DOI: 10.1080/09537104.2021.1961710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Influenza infection has long been associated with prothrombotic outcomes in patients and platelets are the blood component predominantly responsible for thrombosis. In this review, we outline what is known about influenza interaction with human platelets, virion internalization, and viral RNA sensing, and the consequent impact on platelet function. We further discuss activation of platelets by IgG-influenza complexes and touch upon mechanisms of environmental platelet activation that relate to prothrombotic outcomes in patients during infection.
Collapse
Affiliation(s)
- Josiah Bote
- University of Massachusetts Medical School, Department of Medicine, Division of Cardiovascular Medicine, Worcester, MA 01605, USA
| | - Heather A. Corkrey
- University of Massachusetts Medical School, Department of Medicine, Division of Cardiovascular Medicine, Worcester, MA 01605, USA
| | - Milka Koupenova
- University of Massachusetts Medical School, Department of Medicine, Division of Cardiovascular Medicine, Worcester, MA 01605, USA,Corresponding Author: Milka Koupenova, University of Massachusetts Medical School, Albert Sherman Center, 368 Plantation St, S7-1041, Worcester, MA 01605, Tel: (774) 455-6646,
| |
Collapse
|
12
|
Bocquet O, Wahart A, Sarazin T, Vincent E, Schneider C, Fougerat A, Gayral S, Henry A, Blaise S, Romier-Crouzet B, Boulagnon C, Jaisson S, Gillery P, Bennasroune A, Sartelet H, Laffargue M, Martiny L, Duca L, Maurice P. Adverse Effects of Oseltamivir Phosphate Therapy on the Liver of LDLR-/- Mice Without Any Benefit on Atherosclerosis and Thrombosis. J Cardiovasc Pharmacol 2021; 77:660-672. [PMID: 33760798 DOI: 10.1097/fjc.0000000000001002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
ABSTRACT Desialylation, governed by sialidases or neuraminidases, is strongly implicated in a wide range of human disorders, and accumulative data show that inhibition of neuraminidases, such as neuraminidases 1 sialidase, may be useful for managing atherosclerosis. Several studies have reported promising effects of oseltamivir phosphate, a widely used anti-influenza sialidase inhibitor, on human cancer cells, inflammation, and insulin resistance. In this study, we evaluated the effects of oseltamivir phosphate on atherosclerosis and thrombosis and potential liver toxicity in LDLR-/- mice fed with high-fat diet. Our results showed that oseltamivir phosphate significantly decreased plasma levels of LDL cholesterol and elastin fragmentation in aorta. However, no effect was observed on both atherosclerotic plaque size in aortic roots and chemically induced thrombosis in carotid arteries. Importantly, oseltamivir phosphate administration had adverse effects on the liver of mice and significantly increased messenger RNA expression levels of F4/80, interleukin-1β, transforming growth factor-β1, matrix metalloproteinase-12, and collagen. Taken together, our findings suggest that oseltamivir phosphate has limited benefits on atherosclerosis and carotid thrombosis and may lead to adverse side effects on the liver with increased inflammation and fibrosis.
Collapse
Affiliation(s)
- Olivier Bocquet
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Amandine Wahart
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Thomas Sarazin
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Elise Vincent
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Christophe Schneider
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Anne Fougerat
- INSERM UMR1048 I2MC, Université Paul Sabatier, Toulouse, France
| | | | - Aubéri Henry
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Sébastien Blaise
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Béatrice Romier-Crouzet
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Camille Boulagnon
- Laboratoire d'anatomie et de Cytologie Pathologique, Hôpital Robert Debré, CHU de Reims; and
| | - Stéphane Jaisson
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
- Department of Biochemistry-Pharmacology-Toxicology, University Hospital of Reims, Reims, France
| | - Philippe Gillery
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
- Department of Biochemistry-Pharmacology-Toxicology, University Hospital of Reims, Reims, France
| | - Amar Bennasroune
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Hervé Sartelet
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | | | - Laurent Martiny
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Pascal Maurice
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| |
Collapse
|
13
|
Rani GF, Preham O, Ashwin H, Brown N, Hitchcock IS, Kaye PM. Dissecting pathways to thrombocytopenia in a mouse model of visceral leishmaniasis. Blood Adv 2021; 5:1627-1637. [PMID: 33710338 PMCID: PMC7993103 DOI: 10.1182/bloodadvances.2020004082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
Visceral leishmaniasis is an important yet neglected parasitic disease caused by infection with Leishmania donovani or L infantum. Disease manifestations include fever, weight loss, hepatosplenomegaly, immune dysregulation, and extensive hematological complications. Thrombocytopenia is a dominant hematological feature seen in both humans and experimental models, but the mechanisms behind this infection-driven thrombocytopenia remain poorly understood. Using a murine model of experimental visceral leishmaniasis (EVL), we demonstrated a progressive decrease in platelets from day 14 after infection, culminating in severe thrombocytopenia by day 28. Plasma thrombopoietin (TPO) levels were reduced in infected mice, at least in part because of the alterations in the liver microenvironment associated with granulomatous inflammation. Bone marrow (BM) megakaryocyte cytoplasmic maturation was significantly reduced. In addition to a production deficit, we identified significant increases in platelet clearance. L donovani-infected splenectomized mice were protected from thrombocytopenia compared with sham operated infected mice and had a greater response to exogenous TPO. Furthermore, infection led to higher levels of platelet opsonization and desialylation, both associated with platelet clearance in spleen and liver, respectively. Critically, these changes could be reversed rapidly by drug treatment to reduce parasite load or by administration of TPO agonists. In summary, our findings demonstrate that the mechanisms underpinning thrombocytopenia in EVL are multifactorial and reversible, with no obvious residual damage to the BM microenvironment.
Collapse
Affiliation(s)
| | - Olivier Preham
- York Biomedical Research Institute, Hull York Medical School, and
| | - Helen Ashwin
- York Biomedical Research Institute, Hull York Medical School, and
| | - Najmeeyah Brown
- York Biomedical Research Institute, Hull York Medical School, and
| | - Ian S Hitchcock
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Paul M Kaye
- York Biomedical Research Institute, Hull York Medical School, and
| |
Collapse
|
14
|
Chen Y, Hu J, Chen Y. Platelet desialylation and TFH cells-the novel pathway of immune thrombocytopenia. Exp Hematol Oncol 2021; 10:21. [PMID: 33722280 PMCID: PMC7958461 DOI: 10.1186/s40164-021-00214-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/07/2021] [Indexed: 12/15/2022] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by immune-mediated destruction of one's own platelets. The progression of thrombocytopenia involves an imbalance of platelet production and clearance. B cells can induce autoantibodies, and T cells contribute to the pathological progression as well. Some patients with ITP have a poor response to common first-line therapies. Recent studies have shown that a novel Fc-independent platelet clearance pathway is associated with poor prognosis in these patients. By this pathway, desialylated platelets can be cleared by Ashwell-Morell receptor (AMR) on hepatocytes. Research has demonstrated that patients with refractory ITP usually have a high level of desialylation, indicating the important role of sialylation on platelet membrane glycoprotein (GP) in patients with primary immune thrombocytopenia, and neuraminidase 1(NEU1) translocation might be involved in this process. Patients with ITP who are positive for anti-GPIbα antibodies have a poor prognosis, which indicates that anti-GPIbα antibodies are associated with this Fc-independent platelet clearance pathway. Experiments have proven that these antibodies could lead to the desialylation of GPs on platelets. The T follicular helper (TFH) cell level is related to the expression of the anti-GPIbα antibody, which indicates its role in the progression of desialylation. This review will discuss platelet clearance and production, especially the role of the anti-GPIbα antibody and desialylation in the pathophysiology of ITP and therapy for this disease.
Collapse
Affiliation(s)
- Yuwen Chen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, No.29 Xinquan Road, 350001, Fuzhou, Fujian, China
| | - Jianda Hu
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, No.29 Xinquan Road, 350001, Fuzhou, Fujian, China
| | - Yingyu Chen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, No.29 Xinquan Road, 350001, Fuzhou, Fujian, China.
| |
Collapse
|
15
|
Dickhout A, Tullemans BME, Heemskerk JWM, Thijssen VLJL, Kuijpers MJE, Koenen RR. Galectin-1 and platelet factor 4 (CXCL4) induce complementary platelet responses in vitro. PLoS One 2021; 16:e0244736. [PMID: 33411760 PMCID: PMC7790394 DOI: 10.1371/journal.pone.0244736] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022] Open
Abstract
Galectin-1 (gal-1) is a carbohydrate-binding lectin with important functions in angiogenesis, immune response, hemostasis and inflammation. Comparable functions are exerted by platelet factor 4 (CXCL4), a chemokine stored in the α-granules of platelets. Previously, gal-1 was found to activate platelets through integrin αIIbβ3. Both gal-1 and CXCL4 have high affinities for polysaccharides, and thus may mutually influence their functions. The aim of this study was to investigate a possible synergism of gal-1 and CXCL4 in platelet activation. Platelets were treated with increasing concentrations of gal-1, CXCL4 or both, and aggregation, integrin activation, P-selectin and phosphatidyl serine (PS) exposure were determined by light transmission aggregometry and by flow cytometry. To investigate the influence of cell surface sialic acid, platelets were treated with neuraminidase prior to stimulation. Gal-1 and CXCL4 were found to colocalize on the platelet surface. Stimulation with gal-1 led to integrin αIIbβ3 activation and to robust platelet aggregation, while CXCL4 weakly triggered aggregation and primarily induced P-selectin expression. Co-incubation of gal-1 and CXCL4 potentiated platelet aggregation compared with gal-1 alone. Whereas neither gal-1 and CXCL4 induced PS-exposure on platelets, prior removal of surface sialic acid strongly potentiated PS exposure. In addition, neuraminidase treatment increased the binding of gal-1 to platelets and lowered the activation threshold for gal-1. However, CXCL4 did not affect binding of gal-1 to platelets. Taken together, stimulation of platelets with gal-1 and CXCL4 led to distinct and complementary activation profiles, with additive rather than synergistic effects.
Collapse
Affiliation(s)
- Annemiek Dickhout
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Bibian M. E. Tullemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Johan W. M. Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Victor L. J. L. Thijssen
- Amsterdam UMC, location VUmc, Medical Oncology & Radiation Oncology, Amsterdam, The Netherlands
- * E-mail: (RRK); (VLJLT)
| | - Marijke J. E. Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Rory R. Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- * E-mail: (RRK); (VLJLT)
| |
Collapse
|
16
|
Lauková L, Weiss R, Semak V, Weber V. Desialylation of platelet surface glycans enhances platelet adhesion to adsorbent polymers for lipoprotein apheresis. Int J Artif Organs 2020; 44:378-384. [PMID: 33143534 PMCID: PMC8524686 DOI: 10.1177/0391398820968849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: Lipoprotein apheresis is an important therapeutic option in
homozygous familial hypercholesterolemia, progressive
atherosclerosis, or when depletion of lipoprotein(a) is
indicated. It is generally regarded as safe, but drops in
platelet counts as well as sporadic episodes of thrombocytopenia
have been reported. We assessed the influence of platelet
desialylation, which may be induced by endogenous or
pathogen-derived neuraminidases, on platelet adhesion to
polyacrylate-based adsorbents for whole blood lipoprotein
apheresis. Methods: Medical grade platelet concentrates were incubated with
neuraminidase in vitro and were circulated over adsorbent
columns downscaled from clinical application. Results: Cleavage of terminal sialic residues resulted in platelet
activation with significantly elevated expression of platelet
factor 4 (PF4) and in enhanced platelet adhesion to the
adsorbent, accompanied by a pronounced drop in platelet counts
in the column flow-through. Conclusion: Alterations in endogenous neuraminidase activity or exogenous
(pathogen-derived) neuraminidase may trigger enhanced platelet
adhesion in whole blood lipoprotein apheresis.
Collapse
Affiliation(s)
- Lucia Lauková
- Department for Biomedical
Research, Center for Biomedical Technology, Danube University Krems, Krems,
Austria
| | - René Weiss
- Department for Biomedical
Research, Christian Doppler Laboratory for Innovative Therapy Approaches in
Sepsis, Danube University Krems, Krems, Austria
| | - Vladislav Semak
- Department for Biomedical
Research, Center for Biomedical Technology, Danube University Krems, Krems,
Austria
| | - Viktoria Weber
- Department for Biomedical
Research, Christian Doppler Laboratory for Innovative Therapy Approaches in
Sepsis, Danube University Krems, Krems, Austria
- Viktoria Weber, Department for
Biomedical Research, Christian Doppler Laboratory for Innovative
Therapy Approaches in Sepsis, Danube University Krems, Dr. Karl
Dorrek-Straße 30, Krems 3500, Austria.
| |
Collapse
|
17
|
Stanly TA, Suman R, Rani GF, O’Toole PJ, Kaye PM, Hitchcock IS. Quantitative Optical Diffraction Tomography Imaging of Mouse Platelets. Front Physiol 2020; 11:568087. [PMID: 33041864 PMCID: PMC7526686 DOI: 10.3389/fphys.2020.568087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/25/2020] [Indexed: 11/13/2022] Open
Abstract
Platelets are specialized anucleate cells that play a major role in hemostasis following vessel injury. More recently, platelets have also been implicated in innate immunity and inflammation by directly interacting with immune cells and releasing proinflammatory signals. It is likely therefore that in certain pathologies, such as chronic parasitic infections and myeloid malignancies, platelets can act as mediators for hemostatic and proinflammatory responses. Fortunately, murine platelet function ex vivo is highly analogous to human, providing a robust model for functional comparison. However, traditional methods of studying platelet phenotype, function and activation status often rely on using large numbers of whole isolated platelet populations, which severely limits the number and type of assays that can be performed with mouse blood. Here, using cutting edge 3D quantitative phase imaging, holotomography, that uses optical diffraction tomography (ODT), we were able to identify and quantify differences in single unlabeled, live platelets with minimal experimental interference. We analyzed platelets directly isolated from whole blood of mice with either a JAK2V617F-positive myeloproliferative neoplasm (MPN) or Leishmania donovani infection. Image analysis of the platelets indicates previously uncharacterized differences in platelet morphology, including altered cell volume and sphericity, as well as changes in biophysical parameters such as refractive index (RI) and dry mass. Together, these data indicate that, by using holotomography, we were able to identify clear disparities in activation status and potential functional ability in disease states compared to control at the level of single platelets.
Collapse
Affiliation(s)
- Tess A. Stanly
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Rakesh Suman
- Technology Facility, Department of Biology, University of York, York, United Kingdom
| | - Gulab Fatima Rani
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Peter J. O’Toole
- Technology Facility, Department of Biology, University of York, York, United Kingdom
| | - Paul M. Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Ian S. Hitchcock
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
18
|
Abstract
Platelets, small anucleate cells circulating in the blood, are critical mediators in haemostasis and thrombosis. Interestingly, recent studies demonstrated that platelets contain both pro-inflammatory and anti-inflammatory molecules, equipping platelets with immunoregulatory function in both innate and adaptive immunity. In the context of infectious diseases, platelets are involved in early detection of invading microorganisms and are actively recruited to sites of infection. Platelets exert their effects on microbial pathogens either by direct binding to eliminate or restrict dissemination, or by shaping the subsequent host immune response. Reciprocally, many invading microbial pathogens can directly or indirectly target host platelets, altering platelet count or/and function. In addition, microbial pathogens can impact the host auto- and alloimmune responses to platelet antigens in several immune-mediated diseases, such as immune thrombocytopenia, and fetal and neonatal alloimmune thrombocytopenia. In this review, we discuss the mechanisms that contribute to the bidirectional interactions between platelets and various microbial pathogens, and how these interactions hold relevant implications in the pathogenesis of many infectious diseases. The knowledge obtained from "well-studied" microbes may also help us understand the pathogenesis of emerging microbes, such as SARS-CoV-2 coronavirus.
Collapse
Affiliation(s)
- Conglei Li
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, ON, Canada
| | - June Li
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
| | - Heyu Ni
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Lee-Sundlov MM, Stowell SR, Hoffmeister KM. Multifaceted role of glycosylation in transfusion medicine, platelets, and red blood cells. J Thromb Haemost 2020; 18:1535-1547. [PMID: 32350996 PMCID: PMC7336546 DOI: 10.1111/jth.14874] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/20/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Glycosylation is highly prevalent, and also one of the most complex and varied posttranslational modifications. This large glycan diversity results in a wide range of biological functions. Functional diversity includes protein degradation, protein clearance, cell trafficking, cell signaling, host-pathogen interactions, and immune defense, including both innate and acquired immunity. Glycan-based ABO(H) antigens are critical in providing compatible products in the setting of transfusion and organ transplantation. However, evidence also suggests that ABO expression may influence cardiovascular disease, thrombosis, and hemostasis disorders, including alterations in platelet function and von Willebrand factor blood levels. Glycans also regulate immune and hemostasis function beyond ABO(H) antigens. Mutations in glycogenes (PIGA, COSMC) lead to serious blood disorders, including Tn syndrome associated with hyperagglutination, hemolysis, and thrombocytopenia. Alterations in genes responsible for sialic acids (Sia) synthesis (GNE) and UDP-galactose (GALE) and lactosamine (LacNAc) (B4GALT1) profoundly affect circulating platelet counts. Desialylation (removal of Sia) is affected by human and pathogenic neuraminidases. This review addresses the role of glycans in transfusion medicine, hemostasis and thrombosis, and red blood cell and platelet survival.
Collapse
Affiliation(s)
- Melissa M. Lee-Sundlov
- Translational Glycomics Center, Blood Research Institute Versiti, Milwaukee, WI, United States
| | - Sean R. Stowell
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, United States
| | - Karin M. Hoffmeister
- Translational Glycomics Center, Blood Research Institute Versiti, Milwaukee, WI, United States
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee WI, United States
| |
Collapse
|
20
|
Shaim H, McCaffrey P, Trieu JA, DeAnda A, Yates SG. Evaluating the effects of oseltamivir phosphate on platelet counts: a retrospective review. Platelets 2020; 31:1080-1084. [PMID: 31931672 DOI: 10.1080/09537104.2020.1714576] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Desialylation of platelets results in platelet clearance by the Ashwell-Morrell Receptors (AMR) found on hepatocytes. Studies suggest that oseltamivir phosphate inhibits human sialidases, enzymes responsible for desialylation, extending the lifespan of circulating platelets. We thus evaluated, the effects of oseltamivir on platelet count (PC) following treatment. Of the 385 patients evaluated for influenza, 283 (73.5%) were influenza-infected. Of the 283 infected patients, 241 (85.2%) received oseltamivir (I + O+) while 42 patients did not (I + O-). One hundred two non-infected patients received oseltamivir (I-O+). The two groups receiving oseltamivir (I + O+, I-O+), demonstrated a statistically greater increase in the PC (57.53 ± 93.81, p = .013 and 50.79 ± 70.59, p = .023, respectively) relative to the group that did not (18.45 ± 89.33 × 109/L). The observed increase in PC was statistically similar (p = .61) in both groups receiving oseltamivir (I + O+, I-O+), suggesting that this effect is independent of influenza. Comparing clinical characteristics between responders and non-responders to oseltamivir treatment showed that only duration of oseltamivir treatment (AOR = 1.30, 95% CI 1.05-1.61, p = .015) was associated with a positive PC response. Our findings suggest a correlation between oseltamivir treatment and an increase in PCs. Future studies assessing the possible uses of oseltamivir in medical conditions characterized by diminished or defective thrombopoiesis are warranted.
Collapse
Affiliation(s)
- Hila Shaim
- Department of Pathology, Division of Transfusion Medicine, University of Texas Medical Branch , Galveston, TX, USA
| | - Peter McCaffrey
- Department of Pathology, Division of Transfusion Medicine, University of Texas Medical Branch , Galveston, TX, USA
| | - Judy A Trieu
- Department of Internal Medicine, University of Texas Medical Branch , Galveston, TX, USA
| | - Abe DeAnda
- Department of Surgery, Division of Cardiothoracic Surgery, University of Texas Medical Branch , Galveston, TX, USA
| | - Sean G Yates
- Department of Pathology, Division of Transfusion Medicine, University of Texas Medical Branch , Galveston, TX, USA
| |
Collapse
|
21
|
The platelet surface glycosylation caused by glycosidase has a strong impact on platelet function. Blood Coagul Fibrinolysis 2019; 30:217-223. [PMID: 31188144 DOI: 10.1097/mbc.0000000000000826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
: Platelet surface glycosylation defects has been reported to be significantly associated with many diseases. Our previous study found that platelet surface glycosylation is altered in coronary heart disease. In this study, we further investigated whether altered glycosylation affects platelet function. Platelets were obtained from ten healthy volunteers. The platelet surface terminal sialic acid was removed by neuraminidase A, and N-linked oligosaccharides was removed by PNGase F. The function of the enzyme-treated platelet was measured. The activation and platelet adhesion to von Willebrand factor (vWF) was measured by flow cytometry. Platelet aggregation induced by ADP, arachidonic acid and collagen was detected through light transmission aggregometry, and platelet-leukocyte aggregates (PLAs) was detected by flow cytometry. Neuraminidase A treatment caused sialic acid level decrease and β-galactose level increase significantly on platelet surface. Activation marker CD62P did not change. Platelet adhesion to vWF was increased significantly (P < 0.05). ADP-induced platelet aggregation was significantly reduced (P < 0.05). Platelet-granulocytes aggregates and platelet-monocytes aggregates increased (P < 0.05). Platelet surface sialic acid was increased after PNGase F treatment. Platelet aggregation by all agonists were significantly reduced (P < 0.05). There is no difference in the binding of vWF and PLAs for PNGase F treated platelet. We demonstrated that asialoglycosylation enhances platelet binding to vWF and forming PLAs, suggest that it may be associated with high platelet reactivity and the increased risk of thrombosis.
Collapse
|
22
|
Assinger A, Schrottmaier WC, Salzmann M, Rayes J. Platelets in Sepsis: An Update on Experimental Models and Clinical Data. Front Immunol 2019; 10:1687. [PMID: 31379873 PMCID: PMC6650595 DOI: 10.3389/fimmu.2019.01687] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/04/2019] [Indexed: 12/22/2022] Open
Abstract
Beyond their important role in hemostasis, platelets play a crucial role in inflammatory diseases. This becomes apparent during sepsis, where platelet count and activation correlate with disease outcome and survival. Sepsis is caused by a dysregulated host response to infection, leading to organ dysfunction, permanent disabilities, or death. During sepsis, tissue injury results from the concomitant uncontrolled activation of the complement, coagulation, and inflammatory systems as well as platelet dysfunction. The balance between the systemic inflammatory response syndrome (SIRS) and the compensatory anti-inflammatory response (CARS) regulates sepsis outcome. Persistent thrombocytopenia is considered as an independent risk factor of mortality in sepsis, although it is still unclear whether the drop in platelet count is the cause or the consequence of sepsis severity. The role of platelets in sepsis development and progression was addressed in different experimental in vivo models, particularly in mice, that represent various aspects of human sepsis. The immunomodulatory function of platelets depends on the experimental model, time, and type of infection. Understanding the molecular mechanism of platelet regulation in inflammation could bring us one step closer to understand this important aspect of primary hemostasis which drives thrombotic as well as bleeding complications in patients with sterile and infectious inflammation. In this review, we summarize the current understanding of the contribution of platelets to sepsis severity and outcome. We highlight the differences between platelet receptors in mice and humans and discuss the potential and limitations of animal models to study platelet-related functions in sepsis.
Collapse
Affiliation(s)
- Alice Assinger
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Manuel Salzmann
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Julie Rayes
- Institute of Cardiovascular Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
23
|
van der Wal DE, Davis AM, Mach M, Marks DC. The role of neuraminidase 1 and 2 in glycoprotein Ibα-mediated integrin αIIbβ3 activation. Haematologica 2019; 105:1081-1094. [PMID: 31273092 PMCID: PMC7109719 DOI: 10.3324/haematol.2019.215830] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022] Open
Abstract
Upon vascular injury, platelets adhere to von Willebrand Factor (VWF) via glycoprotein Ibα (GPIbα). GPIbα contains many glycans, capped by sialic acid. Sialic acid cleavage (desialylation) triggers clearance of platelets. Neuraminidases (NEU) are responsible for desialylation and so far, NEU1-4 have been identified. However, the role of NEU in healthy platelets is currently unknown. Aim of the study was to study the role of NEU1 and NEU2 in platelet signalling. Membrane association of platelet attached glycans, NEU1 and NEU2 was measured following activation with agonists using flow cytometry. Adhesion on fibrinogen, aggregation and fibrinogen-binding were assessed with/without the NEU-inhibitor, 2-deoxy-2-3-dide-hydro-N-acetylneuraminic acid. Cellular localisation of NEU1 and NEU2 was examined by fluorescence microscopy. Desialylation occurred following GPIbα-clustering by VWF. Basal levels of membrane NEU1 were low; glycoprotein Ibα-clustering induced a four-fold increase (n=3, P<0.05). Inhibition of αIIbβ3-integrin prevented the increase in NEU1 membrane-association by ~60%. Membrane associated NEU2 increased two-fold (n=3, P<0.05) upon VWF-binding, while inhibition/removal of GPIbα reduced the majority of membrane associated NEU1 and NEU2 (n=3, P<0.05). High shear and addition of fibrinogen increased membrane NEU1 and NEU2. NEU-inhibitior prevented VWF-induced αIIbβ3-integrin activation by 50% (n=3, P<0.05), however, promoted VWF-mediated agglutination, indicating a negative feedback mechanism for NEU activity. NEU1 or NEU2 were partially co-localised with mitochondria and α-granules respectively. Neither NEU1 nor NEU2 co-localised with lysosomal-associated membrane protein 1. These findings demonstrate a previously unrecognised role for NEU1 and NEU2 in GPIbα–mediated and αIIbβ3-integrin signalling.
Collapse
Affiliation(s)
| | - April M Davis
- Australian Red Cross Lifeblood (formerly known as Blood Service)
| | - Melanie Mach
- Australian Red Cross Lifeblood (formerly known as Blood Service)
| | - Denese C Marks
- Australian Red Cross Lifeblood (formerly known as Blood Service).,Sydney Medical School, Uinversity of Sydney, Sydney, NSW, Australia
| |
Collapse
|
24
|
Syed S, Hakala P, Singh AK, Lapatto HAK, King SJ, Meri S, Jokiranta TS, Haapasalo K. Role of Pneumococcal NanA Neuraminidase Activity in Peripheral Blood. Front Cell Infect Microbiol 2019; 9:218. [PMID: 31297339 PMCID: PMC6608562 DOI: 10.3389/fcimb.2019.00218] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/06/2019] [Indexed: 12/25/2022] Open
Abstract
The most frequent form of hemolytic-uremic syndrome (HUS) is associated with infections caused by Shiga-like toxin-producing Enterohaemorrhagic Escherichia coli (STEC). In rarer cases HUS can be triggered by Streptococcus pneumoniae. While production of Shiga-like toxins explains STEC-HUS, the mechanisms of pneumococcal HUS are less well-known. S. pneumoniae produces neuraminidases with activity against cell surface sialic acids that are critical for factor H-mediated complement regulation on cells and platelets. The aim of this study was to find out whether S. pneumoniae neuraminidase NanA could trigger complement activation and hemolysis in whole blood. We studied clinical S. pneumoniae isolates and two laboratory strains, a wild-type strain expressing NanA, and a NanA deletion mutant for their ability to remove sialic acids from various human cells and platelets. Red blood cell lysis and activation of complement was measured ex vivo by incubating whole blood with bacterial culture supernatants. We show here that NanA expressing S. pneumoniae strains and isolates are able to remove sialic acids from cells, and platelets. Removal of sialic acids by NanA increased complement activity in whole blood, while absence of NanA blocked complement triggering and hemolytic activity indicating that removal of sialic acids by NanA could potentially trigger pHUS.
Collapse
Affiliation(s)
- Shahan Syed
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Pipsa Hakala
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Anirudh K Singh
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Microbiology, Medical College, All India Institute of Medical Sciences, Bhopal, India
| | - Helena A K Lapatto
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Samantha J King
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Seppo Meri
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - T Sakari Jokiranta
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland.,SYNLAB Finland, Helsinki, Finland
| | - Karita Haapasalo
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Complement depletion and Coombs positivity in pneumococcal hemolytic uremic syndrome (pnHUS). Case series and plea to revisit an old pathogenetic concept. Int J Med Microbiol 2018; 308:1096-1104. [PMID: 30177469 DOI: 10.1016/j.ijmm.2018.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/21/2018] [Accepted: 08/27/2018] [Indexed: 12/27/2022] Open
Abstract
Hemolytic uremic syndrome is a rare complication of invasive pneumococcal infection (pnHUS). Its pathogenesis is poorly understood, and treatment remains controversial. The emerging role of complement in various forms of HUS warrants a new look at this "old" disease. We performed a retrospective analysis of clinical and laboratory features of three sequential cases of pnHUS since 2008 associated with pneumonia/pleural empyema, two due to Streptococcus pneumoniae serotype 19 A. Profound depletion of complement C3 (and less of C4) was observed in two patients. One patient was Coombs test positive. Her red blood cells (RBCs) strongly agglutinated with blood group compatible donor serum at 0 °C, but not at 37 °C. All three patients were treated with hemodialysis, concentrated RBCs, and platelets. Patient 2 received frozen plasma for hepatic failure with coagulation factor depletion. Intravenous immunoglobulin infusion, intended to neutralize pneumococcal neuraminidase in patient 3, was associated with rapid normalization of platelets and cessation of hemolysis. Two patients recovered without sequelae or disease recurrence. Patient 2 died within 2½ days of admission due to complicating Pseudomonas aeruginosa sepsis and multiorgan failure. Our observations suggest that pnHUS can be associated with dramatic, transient complement consumption early in the course of the disease, probably via the alternative pathway. A critical review of the literature and the reported cases argue against the postulated pathological role of preformed antibodies against the neuraminidase-exposed Thomsen-Friedenreich neoantigen (T antigen) in pnHUS. The improved understanding of complement regulation and bacterial strategies of complement evasion allows to propose a testable, new pathogenetic model of pnHUS. This model shifts emphasis from the action of natural anti-T antibodies toward impaired Complement Factor H (CFH) binding and function on desialylated membranes. Removal of neuraminic acid residues converts (protected) self to non-self surfaces that supports membrane attack complex (MAC) assembly. Complement activation is potentially exacerbated by decreased CFH availability following tight CFH binding to pneumococcal evasion proteins and/or by the presence of genetic variants of complement regulator proteins. Detailed clinical and experimental investigations are warranted to better understand the role of unregulated complement activation in pnHUS. Instead of avoidance of plasma, a new, integrated model is evolving, which may include short-term therapeutic complement blockade, particularly where genetic or functional APC dysregulation is suspected, in addition to bacterial elimination and, potentially, neuraminidase neutralization.
Collapse
|