1
|
Li R, Cao X, Chen J, He T, Zhang Y, Wang W, Wang Y, Wang Y, Qiu Y, Xie M, Shi K, Xu Y, Zhang S, Liu P. Deciphering the impact of MreB on the morphology and pathogenicity of the aquatic pathogen Spiroplasma eriocheiris. Biol Direct 2024; 19:98. [PMID: 39444023 PMCID: PMC11515736 DOI: 10.1186/s13062-024-00537-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Spiroplasma eriocheiris has been proved to be a pathogen causing tremor disease of Eriocheir sinensis, it is also infectious to other aquatic crustaceans, resulting in a serious threat on the sustainable development of the aquaculture industry. S. eriocheiris is a helical-shaped microbe without a cell wall, and its motility is related to the cytoskeleton protein MreB which belongs to the actin superfamily and has five MreB homologs. RESULTS In this study, we purified MreB3, MreB4 and MreB5, and successfully prepared monoclonal antibodies. After S. eriocheiris treated with actin stabilizator Phalloidin and inhibitors A22, we found that Phalloidin and A22 affect the S. eriocheiris morphology by altering MreB expression. We confirmed that the ability of S. eriocheiris to invade E. sinensis was increased after treatment with Phalloidin, including that the morphology of E. sinensis blood lymphocytes was deteriorated, blood lymphocytes viability was decreased, peroxidase activity and cell necrosis were increased. On the contrary, the pathogenicity of S. eriocheiris decreased after treatment with A22. CONCLUSIONS Our findings suggest that the MreB protein in S. eriocheiris plays a crucial role in its morphology and pathogenicity, providing new insights into potential strategies for the prevention and control of S. eriocheiris infections.
Collapse
Affiliation(s)
- Rong Li
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Xiaohui Cao
- Jiangsu Marine Fisheries Research Institute, Nantong, Jiangsu, 226007, China
| | - Jiaxin Chen
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Tingting He
- Shaoxing Center for Disease Control and Prevention, 276 Century Street, Shaoxing, Zhejiang Province, 312000, China
| | - Yan Zhang
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Jiangsu, China
| | - Yaqi Wang
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Yifei Wang
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Yanyan Qiu
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Mengji Xie
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Kailin Shi
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Yuhua Xu
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Siyuan Zhang
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Peng Liu
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China.
| |
Collapse
|
2
|
Wang Y, Miao Y, Shen Q, Liu X, Chen M, Du J, Ning M, Bi J, Gu W, Wang L, Meng Q. Eriocheir sinensis vesicle-associated membrane protein can enhance host cell phagocytosis to resist Spiroplasma eriocheiris infection. FISH & SHELLFISH IMMUNOLOGY 2022; 128:582-591. [PMID: 35964876 DOI: 10.1016/j.fsi.2022.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/30/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Vesicle-associated membrane protein (VAMP) belongs to the receptor protein on the membrane of the secretory transport vesicle and involves in host immune function. The intracellular pathogen Spiroplasma eriocheiris could cause Eriocheir sinensis tremor disease. In a previous study, it was found E. sinensis VAMP (EsVAMP) was differently expressed in S. eriocheiris infection by proteomics analysis. This study mainly aims at the function of EsVAMP in the process of the S. eriocheiris infection. The length of EsVAMP gene was 1681 bp, which contained a 395 bp open reading frame, 90 bp 5'-non-coding region (UTR) and 1277 bp 3'-UTR. The results of qPCR showed that EsVAMP was expressed highly in hemocytes and nerves, followed by gills, intestines and hepatopancreas, and lowly expressed in heart and muscles. EsVAMP in hemocytes was up-regulated after S. eriocheiris infection. After EsVAMP over-expression and S. eriocheiris infection, the RAW264.7 cell morphology and cell viability of the experiment group were significantly better than the control group. Meanwhile, the copy number of S. eriocheiris in the experiment group was significantly lower than that in the control group. After EsVAMP and pCMV-Cre-mCherry were ligated and transfected into RAW264.7 cells, it was found that EsVAMP and lysosome co-localized. Meanwhile, the phagocytosed inactivated S. eriocheiris number and phagocytosed efficiency in RAW264.7 cells were increased significantly. The interference experiment was carried out by synthesizing EsVAMP dsRNA to verify that the EsVAMP transcriptions were successfully suppressed. The S. eriocheiris copy number and the mortality of crab increased significantly after EsVAMP RNAi and S. eriocheiris infection. Meanwhile, the phagocytosed inactivated S. eriocheiris number and phagocytosed efficiency in hemocytes decreased significantly after EsVAMP RNAi and S. eriocheiris infection. These results showed that VAMP was involved in the cell phagocytosis to resist pathogen infection.
Collapse
Affiliation(s)
- Yaqin Wang
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Yanyang Miao
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Qingchun Shen
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Xueshi Liu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Minyi Chen
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Jie Du
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, 212400, China
| | - Mingxiao Ning
- Institution of Quality Standard and Testing Technology for Agro-product, Shandong Academy of Agricultural Science, Jinan, Shandong, 250100, China
| | - Jingxiu Bi
- Institution of Quality Standard and Testing Technology for Agro-product, Shandong Academy of Agricultural Science, Jinan, Shandong, 250100, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Li Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China.
| |
Collapse
|
3
|
Hou L, Du J, Ren Q, Zhu L, Zhao X, Kong X, Gu W, Wang L, Meng Q. Ubiquitin-modified proteome analysis of Eriocheir sinensis hemocytes during Spiroplasma eriocheiris infection. FISH & SHELLFISH IMMUNOLOGY 2022; 125:109-119. [PMID: 35500876 DOI: 10.1016/j.fsi.2022.04.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Spiroplasma eriocheiris, the pathogen of Eriocheir sinensis tremor disease (TD), has bring a huge economic loss to China aquaculture. The hemocytes of crab as the first target cells of S. eriocheiris, but the interactive relationship between the E. sinensis and this pathogen not particularly clear. The present study is the first time to analysis the role of protein ubiquitination in the process of E. sinensis hemocytes response S. eriocheiris infection. By applying label-free quantitative liquid chromatography with tandem mass spectrometry proteomics, 950 lysine ubiquitination sites and 803 ubiquitination peptides on 458 proteins were identified, of which 48 ubiquitination sites on 40 proteins were quantified as significantly changed after the S. eriocheiris infection. Bioinformatics analysis of ubiquitination different proteins suggested many biological process and pathways were participated in the interaction between S. eriocheiris and host cell, such as ubiquitin system, endocytosis, prophenoloxidase system (proPO system), cell apoptosis, glycolysis. Our study can enhance our understanding of interaction between the crab and S. eriocheiris, and also provides basis to study the role of protein ubiquitination in other crustacean innate immune system.
Collapse
Affiliation(s)
- Libo Hou
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Jie Du
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, 212400, China
| | - Qiulin Ren
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210046, China
| | - Li Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210046, China.
| |
Collapse
|
4
|
Choudhary S, Arora M, Verma H, Kumar M, Silakari O. Benzimidazole based hybrids against complex diseases: A catalogue of the SAR profile. Eur J Pharmacol 2021; 899:174027. [PMID: 33731294 DOI: 10.1016/j.ejphar.2021.174027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/21/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
The fused heterocyclic ring system has been recognized as a privileged structure that is used as a template in medicinal chemistry for drug discovery. Benzimidazole is one of the common scaffolds found in several natural products such as histidine, purines, and an integral part of vitamin B12. This hetero-aromatic bicyclic ring system acts as a pharmacophore in various drugs of therapeutic interest and has a broad spectrum of activity. Literature reports suggest that diversely substituted benzimidazoles possess distinct pharmacological profiles with multi-targeting potential, thereby, an indispensable anchor for the development of novel therapeutic agents against complex diseases such as cancer, malaria, inflammatory disorders, microbial diseases, hypertension, etc. Thus, lots of efforts have been diverted towards exploring the therapeutic potential of benzimidazoles. Despite great efforts made by the research community, still, some multi-factorial diseases continue to progress due to their complex pathophysiology. Under these sets of circumstances, there is a need to explore this nucleus for hybrid designing with multi-targeting potential against complex diseases. Benzimidazole-based hybrids have been reported to treat multifactorial diseases, making it a scaffold of interest for various pharmaceutical companies and research groups. In this write-up, we shed light on the recent pharmacological profiles, various designing strategies, and structure-activity relationships (SAR) of different benzimidazole-based hybrids.
Collapse
Affiliation(s)
- Shalki Choudhary
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Mohit Arora
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Himanshu Verma
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Manoj Kumar
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Om Silakari
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|