1
|
Shen LH, Zhang Y, Shen Y, Su ZT, Yu SM, Cao SZ, Zong XL. Effect of anemoside B4 on milk whey in clinical mastitis-affected cows elucidated using tandem mass tag (TMT)-based quantitative proteomics. Sci Rep 2022; 12:18829. [PMID: 36335251 PMCID: PMC9637092 DOI: 10.1038/s41598-022-23749-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/04/2022] [Indexed: 11/08/2022] Open
Abstract
Intramuscular injection of anemoside B4 (AB4) has a superior therapeutic effect on clinical mastitis in lactating cows. Here, we explored AB4's effect on milk whey in clinical mastitis-affected cows using proteomics. Among fifty clinical mastitis cows received AB4 administration (0.05 ml/kg/day, for 7 days), twelve healed cows were selected and marked as group T. Twelve clinically heathy cows received the same dose of saline for 7 days, marked as group C. Collected milk whey of group T before and after AB4 administration marked as T1 and T2, respectively. The milk whey of group C after saline injection marked as C1. Milk whey protein changes were detected using tandem mass tag-based quantitative proteomic. We identified 872 quantifiable proteins in the samples. Among them, 511 proteins between T1 and C1, and 361 proteins between T2 and T1 were significantly altered. T1 than C1 had significantly more proteins associated with inflammatory damage and trans-endothelial migration of leukocytes, whereas these proteins were reduced in T2 treated with AB4. Compared with C, proteins associated with fibrin clot degradation and complement system activation were downregulated in T1 but upregulated in T2. In summary, AB4 can exert its therapeutic effect on clinical mastitis in cows mainly by reducing inflammatory damage, activating the complement system, inhibiting trans-endothelial migration of leukocytes, and promoting degradation of milk fibrin clots.
Collapse
Affiliation(s)
- Liu-hong Shen
- grid.80510.3c0000 0001 0185 3134The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yue Zhang
- grid.80510.3c0000 0001 0185 3134The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yu Shen
- grid.80510.3c0000 0001 0185 3134The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Zhe-tong Su
- Guangxi Innovates Medical Technology Co., Ltd., Lipu, 546600 Guangxi China
| | - Shu-min Yu
- grid.80510.3c0000 0001 0185 3134The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Sui-zhong Cao
- grid.80510.3c0000 0001 0185 3134The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Xiao-lan Zong
- grid.80510.3c0000 0001 0185 3134The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| |
Collapse
|
2
|
Kumar A, Varma VP, Faisal SM. Screening of Surface-Exposed Lipoproteins of Leptospira Involved in Modulation of Host Innate Immune Response. Front Microbiol 2022; 13:761670. [PMID: 35401498 PMCID: PMC8988195 DOI: 10.3389/fmicb.2022.761670] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Leptospira, a zoonotic pathogen, is capable of causing both chronic and acute infection in a susceptible host. Surface-exposed lipoproteins play a major role in modulating the host immune response by activating the innate cells like macrophages and dendritic cells or evading complement attack and killing by phagocytes like neutrophils to favor pathogenesis and establish infection. In this study, we screened some surface-exposed lipoproteins known to be involved in pathogenesis to assess their possible role in immune modulation (innate immune activation or evasion). Surface proteins of the Len family (LenB, LenD, and LenE), Lsa30, Loa22, and Lipl21 were purified in recombinant form and then tested for their ability to activate macrophages of the different host (mouse, human, and bovine). These proteins were tested for binding with complement regulators like Factor H (FH), C4 Binding Protein (C4BP), and host protease Plasminogen (PLG) and also as nucleases to access their possible role in innate immune evasion. Our results show that, of various proteins tested, Loa22 induced strong innate activation and Lsa30 was least stimulatory, as evident from the production of pro-inflammatory cytokines (interleukin-6 and tumor necrosis factor–α) and expression of surface markers [CD80, CD86, and major histocompatibility complex class II (MHCII)]. All the tested proteins were able to bind to FH, C4BP, and PLG; however, Loa22 showed strong binding to PLG correlating to plasmin activity. All the proteins except Loa22 showed nuclease activity, albeit with a requirement of different metal ions. The nuclease activity of these proteins correlated to in vitro degradation of neutrophil extracellular trap (NET). In conclusion, our results indicate that these surface proteins are involved in innate immune modulation and may play a critical role in assisting the bacteria in invading and colonizing the host tissue for persistent infection.
Collapse
Affiliation(s)
- Ajay Kumar
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India.,Regional Center for Biotechnology, Faridabad, India
| | - Vivek P Varma
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Syed M Faisal
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India.,Regional Center for Biotechnology, Faridabad, India
| |
Collapse
|
3
|
Kumar A, Varma VP, Sridhar K, Abdullah M, Vyas P, Ashiq Thalappil M, Chang YF, Faisal SM. Deciphering the Role of Leptospira Surface Protein LigA in Modulating the Host Innate Immune Response. Front Immunol 2022; 12:807775. [PMID: 34975922 PMCID: PMC8716722 DOI: 10.3389/fimmu.2021.807775] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023] Open
Abstract
Leptospira, a zoonotic pathogen, is known to infect various hosts and can establish persistent infection. This remarkable ability of bacteria is attributed to its potential to modulate (activate or evade) the host immune response by exploiting its surface proteins. We have identified and characterized the domain of the variable region of Leptospira immunoglobulin-like protein A (LAV) involved in immune modulation. The 11th domain (A11) of the variable region of LigA (LAV) induces a strong TLR4 dependent innate response leading to subsequent induction of humoral and cellular immune responses in mice. A11 is also involved in acquiring complement regulator FH and binds to host protease Plasminogen (PLG), there by mediating functional activity to escape from complement-mediated killing. The deletion of A11 domain significantly impaired TLR4 signaling and subsequent reduction in the innate and adaptive immune response. It also inhibited the binding of FH and PLG thereby mediating killing of bacteria. Our study discovered an unprecedented role of LAV as a nuclease capable of degrading Neutrophil Extracellular Traps (NETs). This nuclease activity was primarily mediated by A11. These results highlighted the moonlighting function of LigA and demonstrated that a single domain of a surface protein is involved in modulating the host innate immune defenses, which might allow the persistence of Leptospira in different hosts for a long term without clearance.
Collapse
Affiliation(s)
- Ajay Kumar
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
| | - Vivek P Varma
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Kavela Sridhar
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
| | - Mohd Abdullah
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India.,Department of Biosciences, Integral University, Lucknow, India
| | - Pallavi Vyas
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
| | | | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Syed M Faisal
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
| |
Collapse
|
4
|
Categorizing sequences of concern by function to better assess mechanisms of microbial pathogenesis. Infect Immun 2021; 90:e0033421. [PMID: 34780277 PMCID: PMC9119117 DOI: 10.1128/iai.00334-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To identify sequences with a role in microbial pathogenesis, we assessed the adequacy of their annotation by existing controlled vocabularies and sequence databases. Our goal was to regularize descriptions of microbial pathogenesis for improved integration with bioinformatic applications. Here, we review the challenges of annotating sequences for pathogenic activity. We relate the categorization of more than 2,750 sequences of pathogenic microbes through a controlled vocabulary called Functions of Sequences of Concern (FunSoCs). These allow for an ease of description by both humans and machines. We provide a subset of 220 fully annotated sequences in the supplemental material as examples. The use of this compact (∼30 terms), controlled vocabulary has potential benefits for research in microbial genomics, public health, biosecurity, biosurveillance, and the characterization of new and emerging pathogens.
Collapse
|
5
|
Kumar S, Sunagar R, Gosselin E. Bacterial Protein Toll-Like-Receptor Agonists: A Novel Perspective on Vaccine Adjuvants. Front Immunol 2019; 10:1144. [PMID: 31191528 PMCID: PMC6549121 DOI: 10.3389/fimmu.2019.01144] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Adjuvants have been used in vaccines for over a century, however, the search for safe and effective vaccine adjuvants continues. In recent decades toll-like-receptor (TLR) agonists have been investigated as potential vaccine adjuvants. In this regard, the majority of the currently investigated TLR agonists are non-protein microbial components such as lipopolysaccharides, oligonucleotides, and lipopeptides. On the other hand, a growing number of studies reveal that TLR signaling and immune responses can be activated by numerous bacterial proteins. However, their potential roles as adjuvants have been somewhat overlooked. Herein, we discuss several such bacterial proteins which exhibit adjuvant properties, including the activation of TLR signaling, antigen presenting cell maturation, pro-inflammatory cytokine production and adaptive immune response. The protein nature of these TLR agonists presents several unique features not shared by non-protein TLR agonists. These properties include the amenability for modifying the structure and function as necessary for optimal immunogenicity and minimal toxicity. Protein adjuvants can be genetically fused to protein antigens which ensure the co-delivery of adjuvant-antigen not only into the same cell but also in the same endocytic cargo, leading to more effective activation of innate and adaptive immune response.
Collapse
Affiliation(s)
- Sudeep Kumar
- Department of Immunology and Microbial Diseases, Albany Medical College, Albany, NY, United States
| | - Raju Sunagar
- Ella Foundation, Genome Valley, Hyderabad, India
| | - Edmund Gosselin
- Department of Immunology and Microbial Diseases, Albany Medical College, Albany, NY, United States
| |
Collapse
|
6
|
The Anti-Inflammatory Effect of Fructus Kochiae on Allergic Contact Dermatitis Rats via pERK1/2/TLR4/NF- κB Pathway Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:1096920. [PMID: 29507585 PMCID: PMC5817368 DOI: 10.1155/2018/1096920] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/19/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022]
Abstract
Allergic contact dermatitis (ACD) is a common irritability skin disease, which can be cured by using the Chinese patent medicine. To explore the pharmacological effect of total flavonoids of Fructus Kochiae (FK) on ACD, we used dinitrochlorobenzene- (DNCB-) induced ACD rats. Five groups were used in our experiments. The normal group and the DNCB group were treated with 0.5% CMC-Na; the DNCB + hFK group was treated with a high dose of total flavonoids of FK (200 mg/kg); the DNCB + lFK group was treated with a low dose of FK (100 mg/kg); the DNCB + Pre group was treated with prednisolone acetate (2.5 mg/kg). The results showed that FK treatment had significantly attenuated the inflammation induced by DNCB. The increased concentration of cytokines including IL-6, IL-18, and IFN-γ in ACD rats could be reversed by the FK administration, while IL-10 expressed the opposite result; the expression level of TLR4, pERK1/2, and NF-κB could be downregulated by the treatment with FK in the ACD rat. In a word, the total flavonoids of the FK had an anti-inflammatory effect on the DNCB-induced ACD rat; this regulatory mechanism was highly possible based on the pERK1/2/TLR4-NF-κB pathway activation.
Collapse
|
7
|
Nguyen TA, Smith BRC, Tate MD, Belz GT, Barrios MH, Elgass KD, Weisman AS, Baker PJ, Preston SP, Whitehead L, Garnham A, Lundie RJ, Smyth GK, Pellegrini M, O'Keeffe M, Wicks IP, Masters SL, Hunter CP, Pang KC. SIDT2 Transports Extracellular dsRNA into the Cytoplasm for Innate Immune Recognition. Immunity 2017; 47:498-509.e6. [PMID: 28916264 DOI: 10.1016/j.immuni.2017.08.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 06/26/2017] [Accepted: 08/17/2017] [Indexed: 12/20/2022]
Abstract
Double-stranded RNA (dsRNA) is a common by-product of viral infections and acts as a potent trigger of antiviral immunity. In the nematode C. elegans, sid-1 encodes a dsRNA transporter that is highly conserved throughout animal evolution, but the physiological role of SID-1 and its orthologs remains unclear. Here, we show that the mammalian SID-1 ortholog, SIDT2, is required to transport internalized extracellular dsRNA from endocytic compartments into the cytoplasm for immune activation. Sidt2-deficient mice exposed to extracellular dsRNA, encephalomyocarditis virus (EMCV), and herpes simplex virus 1 (HSV-1) show impaired production of antiviral cytokines and-in the case of EMCV and HSV-1-reduced survival. Thus, SIDT2 has retained the dsRNA transport activity of its C. elegans ortholog, and this transport is important for antiviral immunity.
Collapse
Affiliation(s)
- Tan A Nguyen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Blake R C Smith
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Gabrielle T Belz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Marilou H Barrios
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Kirstin D Elgass
- Monash Micro Imaging, Monash University, Clayton, VIC, Australia
| | - Alexandra S Weisman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Paul J Baker
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Simon P Preston
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Alexandra Garnham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Rachel J Lundie
- Burnet Institute, Melbourne, VIC, Australia; Biomedicine Discovery Institute, Department Biochemistry & Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; School of Mathematics & Statistics, University of Melbourne, Parkville, VIC, Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Meredith O'Keeffe
- Burnet Institute, Melbourne, VIC, Australia; Biomedicine Discovery Institute, Department Biochemistry & Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Ian P Wicks
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Seth L Masters
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Craig P Hunter
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Ken C Pang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Murdoch Childrens Research Institute, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia; Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
8
|
Johswich K. Innate immune recognition and inflammation in Neisseria meningitidis infection. Pathog Dis 2017; 75:3059204. [PMID: 28334203 DOI: 10.1093/femspd/ftx022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/23/2017] [Indexed: 01/01/2023] Open
Abstract
Neisseria meningitidis (Nme) can cause meningitis and sepsis, diseases which are characterised by an overwhelming inflammatory response. Inflammation is triggered by host pattern recognition receptors (PRRs) which are activated by pathogen-associated molecular patterns (PAMPs). Nme contains multiple PAMPs including lipooligosaccharide, peptidoglycan, proteins and metabolites. Various classes of PRRs including Toll-like receptors, NOD-like receptors, C-type lectins, scavenger receptors, pentraxins and others are expressed by the host to respond to any given microbe. While Toll-like receptors and NOD-like receptors are pivotal in triggering inflammation, other PRRs act as modulators of inflammation or aid in functional antimicrobial responses such as phagocytosis or complement activation. This review aims to give an overview of the various Nme PAMPs reported to date, the PRRs they activate and their implications during the inflammatory response to infection.
Collapse
|
9
|
Tavares R, Pathak SK. Helicobacter pylori Secreted Protein HP1286 Triggers Apoptosis in Macrophages via TNF-Independent and ERK MAPK-Dependent Pathways. Front Cell Infect Microbiol 2017; 7:58. [PMID: 28293545 PMCID: PMC5329642 DOI: 10.3389/fcimb.2017.00058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/13/2017] [Indexed: 01/10/2023] Open
Abstract
Macrophages constitute a powerful line of defense against H. pylori. The final disease outcome is highly dependent on the bacterial ability to modulate the effector functions of activated macrophages. Here, we report that H. pylori secreted protein HP1286 is a novel regulator of macrophage responses. Differential expression and release of HP1286 homologues were observed among H. pylori strains. Recombinant purified HP1286 (rHP1286) had the ability to bind to primary human monocyte-derived macrophages (MDM) and macrophage cell lines. Exposure to rHP1286 induced apoptosis in macrophages in a dose- and time-dependent manner. Although interaction of rHP1286 was observed for several other cell types, such as human monocytes, differentiated neutrophil-like HL60 cells, and the T lymphocyte Jurkat cell line, rHP1286 failed to induce apoptosis under similar conditions, indicating a macrophage-specific effect of the protein. A mutant strain of H. pylori lacking HP1286 protein expression was significantly impaired in its ability to induce apoptosis in macrophages. Significantly higher caspase 3 activity was detected in rHP1286-challenged macrophages. Furthermore, rHP1286-induced macrophages apoptosis was not inhibited in the presence of neutralizing antibodies against TNF. These observations indicate that rHP1286 induced a caspase-dependent and TNF-independent macrophage apoptosis. Pre-treatment of macrophages with U0126, an inhibitor of the ERK MAPK signaling pathway significantly reduced rHP1286-induced apoptosis. Furthermore, nuclear translocation of ERK and phosphorylation of c-Fos was detected in rHP1286-treated macrophages. These results provide functional insight into the potential role of HP1286 during H. pylori infection. Considering the ability of HP1286 to induce macrophage apoptosis, the protein could possibly help in the bacterial escape from the activated macrophages and persistence in the stomach.
Collapse
Affiliation(s)
- Raquel Tavares
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| | - Sushil Kumar Pathak
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| |
Collapse
|
10
|
Immune Homeostatic Macrophages Programmed by the Bacterial Surface Protein NhhA Potentiate Nasopharyngeal Carriage of Neisseria meningitidis. mBio 2016; 7:e01670-15. [PMID: 26884432 PMCID: PMC4752598 DOI: 10.1128/mbio.01670-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Neisseria meningitidis colonizes the nasopharyngeal mucosa of healthy populations asymptomatically, although the bacterial surface is rich in motifs that activate the host innate immunity. What determines the tolerant host response to this bacterium in asymptomatic carriers is poorly understood. We demonstrated that the conserved meningococcal surface protein NhhA orchestrates monocyte (Mo) differentiation specifically into macrophage-like cells with a CD200Rhi phenotype (NhhA-Mφ). In response to meningococcal stimulation, NhhA-Mφ failed to produce proinflammatory mediators. Instead, they upregulated interleukin-10 (IL-10) and Th2/regulatory T cell (Treg)-attracting chemokines, such as CCL17, CCL18, and CCL22. Moreover, NhhA-Mφ were highly efficient in eliminating bacteria. The in vivo validity of these findings was corroborated using a murine model challenged with N. meningitidis systematically or intranasally. The NhhA-modulated immune response protected mice from septic shock; Mo/Mφ depletion abolished this protective effect. Intranasal administration of NhhA induced an anti-inflammatory response, which was associated with N. meningitidis persistence at the nasopharynx. In vitro studies demonstrated that NhhA-triggered Mo differentiation occurred upon engaged Toll-like receptor 1 (TLR1)/TLR2 signaling and extracellular signal-regulated kinase (ERK) and Jun N-terminal protein kinase (JNK) activation and required endogenously produced IL-10 and tumor necrosis factor alpha (TNF-α). Our findings reveal a strategy that might be adopted by N. meningitidis to maintain asymptomatic nasopharyngeal colonization. Neisseria meningitidis is an opportunistic human-specific pathogen that colonizes the nasopharyngeal mucosa asymptomatically in approximately 10% of individuals. Very little is known about how this bacterium evades immune activation during the carriage stage. Here, we observed that N. meningitidis, via the conserved surface protein NhhA, skewed monocyte differentiation into macrophages with a CD200Rhi phenotype. Both in vivo and in vitro data demonstrated that these macrophages, upon meningococcal infection, played an important role in forming a homeostatic immune microenvironment through their capacity to eliminate invading bacteria and to generate anti-inflammatory mediators. This work provides novel insight into the mechanisms underlying the commensal persistence of N. meningitidis.
Collapse
|
11
|
Peak IR, Srikhanta YN, Weynants VE, Feron C, Poolman JT, Jennings MP. Evaluation of truncated NhhA protein as a candidate meningococcal vaccine antigen. PLoS One 2013; 8:e72003. [PMID: 24039731 PMCID: PMC3765393 DOI: 10.1371/journal.pone.0072003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/11/2013] [Indexed: 11/19/2022] Open
Abstract
NhhA (Neisseria hia homologue) is an outer membrane protein from Neisseria meningitidis, the causative agent of meningococcal disease. The protein is surface exposed and its expression in a wide range of meningococcal strains suggests it is a promising vaccine candidate. In addition, immunization of mice with outer membrane vesicles of strains that overexpress NhhA in conjunction with one of TbpA, Omp85 or NspA results in synergistic bactericidal responses. We previously showed that the NhhA sequence is highly conserved between strains, with the majority of the differences localized to four distinct variable regions located in the amino-terminal region of the mature protein. In this study, N. meningitidis strains were constructed that over-express wild-type NhhA. Strains expressing truncated versions of NhhA, with deletions from the amino-terminal region that removed the most variable regions, were also made. These expression strains were also modified so that immunodominant, phase- and antigenically-variable outer membrane proteins were not expressed, truncated lipooligosaccharide (LOS) expression was genetically fixed (no phase variability), and capsular polysaccharide expression abolished. Outer membrane vesicles derived from these strains were used to immunize mice. As previously observed, a synergistic effect involving another antigen, TbpA, was required to demonstrate bactericidal activity. The highest bactericidal response against a heterologous strain was obtained with a truncated variant of NhhA. These results indicate that removal of (a) variable region(s) does not reduce bactericidal responses against NhhA, and that bactericidal targets exist in regions other than the variable N-teminus. This provides the basis for future examination of responses against truncated NhhA in protecting against heterologous NhhA strains, and further evaluation of truncated NhhA as a candidate for inclusion in a vaccine against all serogroups of N. meningitidis.
Collapse
Affiliation(s)
- Ian R. Peak
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Yogitha N. Srikhanta
- School of Molecular and Microbial Science, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | - Michael P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
- * E-mail:
| |
Collapse
|
12
|
Hung MC, Christodoulides M. The biology of Neisseria adhesins. BIOLOGY 2013; 2:1054-109. [PMID: 24833056 PMCID: PMC3960869 DOI: 10.3390/biology2031054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 01/15/2023]
Abstract
Members of the genus Neisseria include pathogens causing important human diseases such as meningitis, septicaemia, gonorrhoea and pelvic inflammatory disease syndrome. Neisseriae are found on the exposed epithelia of the upper respiratory tract and the urogenital tract. Colonisation of these exposed epithelia is dependent on a repertoire of diverse bacterial molecules, extending not only from the surface of the bacteria but also found within the outer membrane. During invasive disease, pathogenic Neisseriae also interact with immune effector cells, vascular endothelia and the meninges. Neisseria adhesion involves the interplay of these multiple surface factors and in this review we discuss the structure and function of these important molecules and the nature of the host cell receptors and mechanisms involved in their recognition. We also describe the current status for recently identified Neisseria adhesins. Understanding the biology of Neisseria adhesins has an impact not only on the development of new vaccines but also in revealing fundamental knowledge about human biology.
Collapse
Affiliation(s)
- Miao-Chiu Hung
- Neisseria Research, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| | - Myron Christodoulides
- Neisseria Research, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|