1
|
Li Y, Han S, Niu W, Gao C, Wang Y, Qin M, Han J, Xia X, Wang H. Autoinducer-2 signaling promotes intestinal colonization of Aeromonas veronii and induces cell apoptosis in loach ( Misgurnus anguillicaudatus). Appl Environ Microbiol 2025; 91:e0014325. [PMID: 39945531 PMCID: PMC11921386 DOI: 10.1128/aem.00143-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 01/26/2025] [Indexed: 03/20/2025] Open
Abstract
Quorum sensing systems, particularly autoinducer-2 (AI-2) signaling, have significant effects on bacterial colonization and virulence. However, how they affect intestinal colonization by pathogens and subsequent host immune responses remains unclear. Here, we investigated the influence of AI-2 signaling on the intestinal colonization ability of Aeromonas veronii Z12 and the host's immune response. We found that AI-2 signaling promoted the colonization of A. veronii to the intestine of loach (Misgurnus anguillicaudatus) and caused severe intestinal damage, while D-ribose, an AI-2 signaling inhibitor, effectively inhibited the colonization of A. veronii. Transcriptomic sequencing elucidated the molecular mechanism of this damage, revealing upregulation of p53 pathway genes associated with apoptosis. Furthermore, intestinal microbiota dysbiosis induced by A. veronii colonization was associated with host cell apoptosis, leading to nitrite accumulation, which increased intracellular reactive oxygen species (ROS) levels, which activated the p53 pathway, and induction of cell apoptosis. These findings provide insights into the interaction among bacterial quorum sensing, intestinal microbiota, and the host immune response, which highlight potential therapeutic targets for mitigating bacterial-induced intestinal damage.IMPORTANCEThe intestinal colonization of pathogens regulated by autoinducer-2 (AI-2) signaling and its induced host response have not been fully characterized. Here, we revealed the effect of AI-2 on intestinal colonization of Aeromonas veronii and its induced cell apoptosis in loach. Our study demonstrated that the deficiency of AI-2 significantly reduced A. veronii colonization in the loach intestine and mitigated the tissue damage. Additionally, A. veronii colonization induced significant upregulation of p53 pathway genes and proteins, indicating a key role of AI-2 signaling in host responses. Understanding these mechanisms not only helps to elucidate the pathogenicity of A. veronii but also may provide broader insights into the pathogenic mechanisms of other pathogens, thus revealing general principles of pathogen-host interactions across different models. Furthermore, we found that A. veronii colonization led to intestinal microbiota dysbiosis, notably an increase in the abundance of Hypomicrobium sp., which was associated with nitrite accumulation, elevating reactive oxygen species levels, activating the p53 pathway, and inducing cell apoptosis. These findings provide important insights into the complex mechanisms of AI-2 signaling in bacterial-host interactions. Additionally, the regulatory role of AI-2 signaling may have potential clinical applications as an intervention strategy, offering new directions for developing treatments against intestinal infections.
Collapse
Affiliation(s)
- Yi Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang, China
| | - Shuo Han
- College of Life Sciences, Henan Normal University, Xinxiang, China
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang, China
| | - Wenfang Niu
- College of Life Sciences, Henan Normal University, Xinxiang, China
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang, China
| | - Chao Gao
- College of Life Sciences, Henan Normal University, Xinxiang, China
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang, China
| | - Yuqi Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang, China
| | - Mengyuan Qin
- College of Life Sciences, Henan Normal University, Xinxiang, China
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang, China
| | - Jingjing Han
- School of Medicine, Qingdao Huanghai University, Qingdao, China
| | - Xiaohua Xia
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Hailei Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang, China
| |
Collapse
|
2
|
Ruddell B, Hassall A, Sahin O, Plummer PJ, Zhang Q, Kreuder AJ. Small RNA CjNC110 regulates the activated methyl cycle to enable optimal chicken colonization by Campylobacter jejuni. mSphere 2025; 10:e0083224. [PMID: 39772717 PMCID: PMC11774046 DOI: 10.1128/msphere.00832-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025] Open
Abstract
Post-transcriptional gene regulation by non-coding small RNAs (sRNAs) is critical for colonization and survival of enteric pathogens, including the zoonotic pathogen Campylobacter jejuni. In this study, we utilized C. jejuni IA3902 (a representative isolate of the sheep abortion clone) and C. jejuni W7 (a highly motile variant of NCTC 11168, a human gastroenteritis strain) to further investigate regulation by sRNA CjNC110. Both motility and autoagglutination ability were confirmed to be phenotypes of conserved regulation by CjNC110. However, we demonstrated that W7∆CjNC110 does not change chicken colonization levels compared to W7 wild type, directly contrasting IA3902∆CjNC110, which had decreased colonization ability. Subsequently, we determined strain-specific phenotype variation between W7∆CjNC110 and IA3902∆CjNC110 when examining intracellular L-methionine (L-met) levels controlled by the activated methyl cycle (AMC). We hypothesized that the presence of a secondary system for L-met production conferred by MetAB in W7 but not IA3902 might explain the difference in both chicken colonization and L-met availability. Insertion of metAB within IA3902∆CjNC110 (naturally absent) restored intracellular L-met levels in IA3902∆CjNC110::metAB and overcame the colonization defect that resulted from mutagenesis of CjNC110 in IA3902. Deletion of metAB in W7∆CjNC110 (naturally present) led to a decrease in L-met in W7∆CjNC110∆metAB and a colonization defect which was otherwise masked in W7∆CjNC110. Our results indicate that regulation of the AMC leading to altered L-met availability is a conserved regulatory function of CjNC110 in C. jejuni and confirm that L-met generation via the AMC as activated by CjNC110 is critical for optimal host colonization.IMPORTANCEDuring this study, the regulatory action and conservation of function of CjNC110 between two different zoonotically important Campylobacter jejuni strains were examined. Critically, this work for the first time reveals regulation of L-methionine (L-met) production within the activated methyl cycle (AMC) by small RNA (sRNA) CjNC110 as a key factor driving C. jejuni optimal chicken colonization. As a growing body of evidence suggests that maintenance of L-met homeostasis appears to be critical for C. jejuni colonization, interventions targeting the AMC could provide a critical control point for therapeutic drug options to combat this zoonotic pathogen. Our results also indicate that even for conserved sRNAs such as CjNC110, strain-specific differences in phenotypes regulated by sRNAs may exist, independent of conserved regulatory action. Depending on the strain examined and accessory genomic content present, conserved regulatory actions might be masked, thus investigation in multiple strains may be warranted.
Collapse
Affiliation(s)
- Brandon Ruddell
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
| | - Alan Hassall
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
| | - Orhan Sahin
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Paul J. Plummer
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
| | - Amanda J. Kreuder
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
| |
Collapse
|
3
|
König F, Svensson SL, Sharma CM. Interplay of two small RNAs fine-tunes hierarchical flagella gene expression in Campylobacter jejuni. Nat Commun 2024; 15:5240. [PMID: 38897989 PMCID: PMC11187230 DOI: 10.1038/s41467-024-48986-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Like for many bacteria, flagella are crucial for Campylobacter jejuni motility and virulence. Biogenesis of the flagellar machinery requires hierarchical transcription of early, middle (RpoN-dependent), and late (FliA-dependent) genes. However, little is known about post-transcriptional regulation of flagellar biogenesis by small RNAs (sRNAs). Here, we characterized two sRNAs with opposing effects on C. jejuni filament assembly and motility. We demonstrate that CJnc230 sRNA (FlmE), encoded downstream of the flagellar hook protein, is processed from the RpoN-dependent flgE mRNA by RNase III, RNase Y, and PNPase. We identify mRNAs encoding a flagella-interaction regulator and the anti-sigma factor FlgM as direct targets of CJnc230 repression. CJnc230 overexpression upregulates late genes, including the flagellin flaA, culminating in longer flagella and increased motility. In contrast, overexpression of the FliA-dependent sRNA CJnc170 (FlmR) reduces flagellar length and motility. Overall, our study demonstrates how the interplay of two sRNAs post-transcriptionally fine-tunes flagellar biogenesis through balancing of the hierarchically-expressed components.
Collapse
Affiliation(s)
- Fabian König
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, 97080, Würzburg, Germany
| | - Sarah L Svensson
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, 97080, Würzburg, Germany
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cynthia M Sharma
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, 97080, Würzburg, Germany.
| |
Collapse
|
4
|
Tikhomirova A, McNabb ER, Petterlin L, Bellamy GL, Lin KH, Santoso CA, Daye ES, Alhaddad FM, Lee KP, Roujeinikova A. Campylobacter jejuni virulence factors: update on emerging issues and trends. J Biomed Sci 2024; 31:45. [PMID: 38693534 PMCID: PMC11064354 DOI: 10.1186/s12929-024-01033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
Campylobacter jejuni is a very common cause of gastroenteritis, and is frequently transmitted to humans through contaminated food products or water. Importantly, C. jejuni infections have a range of short- and long-term sequelae such as irritable bowel syndrome and Guillain Barre syndrome. C. jejuni triggers disease by employing a range of molecular strategies which enable it to colonise the gut, invade the epithelium, persist intracellularly and avoid detection by the host immune response. The objective of this review is to explore and summarise recent advances in the understanding of the C. jejuni molecular factors involved in colonisation, invasion of cells, collective quorum sensing-mediated behaviours and persistence. Understanding the mechanisms that underpin the pathogenicity of C. jejuni will enable future development of effective preventative approaches and vaccines against this pathogen.
Collapse
Affiliation(s)
- Alexandra Tikhomirova
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Emmylee R McNabb
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Luca Petterlin
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Georgia L Bellamy
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Kyaw H Lin
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Christopher A Santoso
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Ella S Daye
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Fatimah M Alhaddad
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Kah Peng Lee
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Anna Roujeinikova
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
5
|
Ruddell B, Hassall A, Moss WN, Sahin O, Plummer PJ, Zhang Q, Kreuder AJ. Direct interaction of small non-coding RNAs CjNC140 and CjNC110 optimizes expression of key pathogenic phenotypes of Campylobacter jejuni. mBio 2023; 14:e0083323. [PMID: 37409826 PMCID: PMC10470494 DOI: 10.1128/mbio.00833-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 07/07/2023] Open
Abstract
Small non-coding RNAs (sRNAs) are important players in modulating gene expression in bacterial pathogens, but their functions are largely undetermined in Campylobacter jejuni, an important cause of foodborne gastroenteritis in humans. In this study, we elucidated the functions of sRNA CjNC140 and its interaction with CjNC110, a previously characterized sRNA involved in the regulation of several virulence phenotypes of C. jejuni. Inactivation of CjNC140 increased motility, autoagglutination, L-methionine concentration, autoinducer-2 production, hydrogen peroxide resistance, and early chicken colonization, indicating a primarily inhibitory role of CjNC140 for these phenotypes. Apart from motility, all these effects directly contrasted the previously demonstrated positive regulation by CjNC110, suggesting that CjNC110 and CjNC140 operate in an opposite manner to modulate physiologic processes in C. jejuni. RNAseq and northern blotting further demonstrated that expression of CjNC140 increased in the absence of CjNC110, while expression of CjNC110 decreased in the absence of CjNC140, suggesting a possibility of their direct interaction. Indeed, electrophoretic mobility shift assay demonstrated a direct binding between the two sRNAs via GA- (CjNC110) and CU- (CjNC140) rich stem-loops. Additionally, RNAseq and follow-up experiments identified that CjNC140 positively regulates p19, which encodes a key iron uptake transporter in Campylobacter. Furthermore, computational analysis revealed both CjNC140 and CjNC110 are highly conserved in C. jejuni, and the predicted secondary structures support CjNC140 as a functional homolog of the iron regulatory sRNA, RyhB. These findings establish CjNC140 and CjNC110 as a key checks-and- balances mechanism in maintaining homeostasis of gene expression and optimizing phenotypes critical for C. jejuni pathobiology. IMPORTANCE Gene regulation is critical to all aspects of pathogenesis of bacterial disease, and small non-coding RNAs (sRNAs) represent a new frontier in gene regulation of bacteria. In Campylobacter jejuni, the role of sRNAs remains largely unexplored. Here, we investigate the role of two highly conserved sRNAs, CjNC110 and CjNC140, and demonstrate that CjNC140 displays a primarily inhibitory role in contrast to a primarily activating role for CjNC110 for several key virulence-associated phenotypes. Our results also revealed that the sRNA regulatory pathway is intertwined with the iron uptake system, another virulence mechanism critical for in vivo colonization. These findings open a new direction for understanding C. jejuni pathobiology and identify potential targets for intervention for this major foodborne pathogen.
Collapse
Affiliation(s)
- Brandon Ruddell
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
| | - Alan Hassall
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Walter N. Moss
- The Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Orhan Sahin
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Paul J. Plummer
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
| | - Amanda J. Kreuder
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
| |
Collapse
|
6
|
Transcription of Cystathionine β-Lyase (MetC) Is Repressed by HeuR in Campylobacter jejuni, and Methionine Biosynthesis Facilitates Colonocyte Invasion. J Bacteriol 2021; 203:e0016421. [PMID: 34001558 DOI: 10.1128/jb.00164-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A previously identified transcriptional regulator in Campylobacter jejuni, termed HeuR, was found to positively regulate heme utilization. Additionally, transcriptomic work demonstrated that the putative operons CJJ81176_1390 to CJJ81176_1394 (CJJ81176_1390-1394) and CJJ81176_1214-1217 were upregulated in a HeuR mutant, suggesting that HeuR negatively regulates expression of these genes. Because genes within these clusters include a cystathionine β-lyase (metC) and a methionine synthase (metE), it appeared HeuR negatively regulates C. jejuni methionine biosynthesis. To address this, we confirmed mutation of HeuR reproducibly results in metC overexpression under nutrient-replete conditions but did not affect expression of metE, while metC expression in the wild type increased to heuR mutant levels during iron limitation. We subsequently determined that both gene clusters are operonic and demonstrated the direct interaction of HeuR with the predicted promoter regions of these operons. Using DNase footprinting assays, we were able to show that HeuR specifically binds within the predicted -35 region of the CJJ81176_1390-1394 operon. As predicted based on transcriptional results, the HeuR mutant was able to grow and remain viable in a defined medium with and without methionine, but we identified significant impacts on growth and viability in metC and metE mutants. Additionally, we observed decreased adherence, invasion, and persistence of metC and metE mutants when incubated with human colonocytes, while the heuR mutant exhibited increased invasion. Taken together, these results suggest that HeuR regulates methionine biosynthesis in an iron-responsive manner and that the ability to produce methionine is an important factor for adhering to and invading the gastrointestinal tract of a susceptible host. IMPORTANCE As the leading cause of bacterium-derived gastroenteritis worldwide, Campylobacter jejuni has a significant impact on human health. Investigating colonization factors that allow C. jejuni to successfully infect a host furthers our understanding of genes and regulatory elements necessary for virulence. In this study, we have begun to characterize the role of the transcriptional regulatory protein, HeuR, on methionine biosynthesis in C. jejuni. When the ability to synthesize methionine is impaired, detrimental impacts on growth and viability are observed during growth in limited media lacking methionine and/or iron. Additionally, mutations in the methionine biosynthetic pathway result in decreased adhesion, invasion, and intracellular survival of C. jejuni when incubated with human colonocytes, indicating the importance of regulating methionine biosynthesis.
Collapse
|
7
|
Molecular Mechanisms of Campylobacter Biofilm Formation and Quorum Sensing. Curr Top Microbiol Immunol 2021. [PMID: 33620656 DOI: 10.1007/978-3-030-65481-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Even though Campylobacter spp. are known to be fastidious organisms, they can survive within the natural environment. One mechanism to withstand unfavourable conditions is the formation of biofilms, a multicellular structure composed of different bacterial and other microbial species which are embedded in an extracellular matrix. High oxygen levels, low substrate concentrations and the presence of external DNA stimulate the biofilm formation by C. jejuni. These external factors trigger internal adaptation processes, e.g. via regulating the expression of genes encoding proteins required for surface structure formation, as well as motility, stress response and antimicrobial resistance. Known genes impacting biofilm formation will be summarized in this review. The formation of biofilms as well as the expression of virulence genes is often regulated in a cell density depending manner by quorum sensing, which is mediated via small signalling molecules termed autoinducers. Even though quorum sensing mechanisms of other bacteria are well understood, knowledge on the role of these mechanisms in C. jejuni biofilm formation is still scarce. The LuxS enzyme involved in generation of autoinducer-2 is present in C. jejuni, but autoinducer receptors have not been identified so far. Phenotypes of C. jejuni strains lacking a functional luxS like reduced growth, motility, oxygen stress tolerance, biofilm formation, adhesion, invasion and colonization are also summarized within this chapter. However, these phenotypes are highly variable in distinct C. jejuni strains and depend on the culture conditions applied.
Collapse
|