1
|
Tran PNT, Limothai U, Dinhuzen J, Tachaboon S, Sukmark T, Dokpong C, Roytrakul S, Haake DA, Srisawat N. MicroRNA biomarkers and host response pathways in severe pulmonary hemorrhagic syndrome due to leptospirosis: A multi-omics study. J Infect 2025; 90:106400. [PMID: 39793739 PMCID: PMC11966573 DOI: 10.1016/j.jinf.2024.106400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/08/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Severe pulmonary hemorrhagic syndrome (SPHS) remains a fatal complication of leptospirosis with poorly understood mechanisms and an urgent need for effective biomarkers. METHODS A nested case-control analysis was conducted using blood specimens from two previous Thai leptospirosis cohorts. Candidate microRNAs were initially discovered through a global profiling of 798 serum microRNAs in five SPHS and seven non-SPHS patients, and then validated using real-time polymerase chain reactions in 168 patients. Pathways enriched from microRNA targets were compared to those from an integrated transcriptomic-proteomic analysis. Proteins pertaining to the key resulting pathway were measured to validate significance and reveal correlation with microRNA biomarkers. RESULTS Serum microRNA profiling revealed a total of 81 significantly expressed microRNAs, of which seven were selected for further validation in the whole cohort of 168 leptospirosis patients, including 28 in SPHS and 140 nonSPHS groups. Among the selected microRNAs, miR-5010-3p and miR-147b-3p had significantly higher expression in SPHS group compared to nonSPHS group, with consistently higher expression after adjusting for age, sex, days of illness, comorbidity, smoking status or recruitment site. The two had area under the curve (AUC) values of 0.76 (95% CI: 0.67-0.85) and 0.70 (95% CI: 0.56-0.81) for discriminating SPHS, respectively. These microRNAs also exhibited consistent AUC values in patients tested before chest radiograph shadows manifested. Combination of miR-5010-3p with miR-548ai and miR-224-5p, as selected by Bayesian Model Averaging algorithm, substantially boosts the AUC value to 0.86 (95% CI: 0.77-0.94). The miRNA biomarkers also enhanced the predictive values of a previously validated clinical model, increasing AUC value from 0.87 to 0.92 with a significant reclassification net index. Multi-omics pathway analysis incorporating microRNA targets and transcriptomic-proteomic data suggested TNF signaling as among the key pathways. In validation, seven out of ten pathway proteins were significantly different between groups, with principal components correlated with severity and miR-5010-3p. CONCLUSIONS MiR-5010-3p and miR-147b-3p are novel biomarkers with good predictability and potential relevance with TNF signaling pathway, an important host response mechanism in leptospirosis SPHS.
Collapse
Affiliation(s)
- Phu Nguyen Trong Tran
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Internal Medicine, Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Umaporn Limothai
- Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand
| | - Janejira Dinhuzen
- Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand
| | - Sasipha Tachaboon
- Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| | - David A Haake
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA; The David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Nattachai Srisawat
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand; Division of Nephrology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Center for Critical Care Nephrology, The CRISMA Center, Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; Academy of Science, Royal Society of Thailand, Bangkok, Thailand.
| |
Collapse
|
2
|
Bolat İ, Bolat M, Kiliçlioğlu M, Yıldırım S, Sağlam YS, Çomaklı S, Gözegir B, Özmen M, Warda M. Differential TLR2 and TLR4 mediated inflammatory and apoptotic responses in asymptomatic and symptomatic Leptospira interrogans infections in canine uterine tissue. Microb Pathog 2025; 198:107186. [PMID: 39615709 DOI: 10.1016/j.micpath.2024.107186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/05/2024] [Accepted: 11/28/2024] [Indexed: 12/15/2024]
Abstract
Leptospirosis is major zoonotic disease with global implications, affecting both domestic animals and humans. It is caused by Leptospira interrogans (L. interrogans), which can damage multiple organs, including the kidneys, liver, testes, and uterus. Despite this, L. interrogans can also persist asymptomatically in tissues, akin to nonpathogenic strains. The mechanisms driving asymptomatic infections remain poorly understood. This study investigated the role of L. interrogans in asymptomatic infection within the uterine tissue of canines, focusing on the differential expression of Toll-like receptors (TLRs)2 and 4 and their roles in inflammatory and apoptotic pathways. We hypothesized that TLR2 and TLR4 coexpression is crucial for eliciting inflammation and apoptosis, whereas TLR4 alone might be insufficient. Our findings revealed that in symptomatic infections, both TLR2 and TLR4 are coexpressed, leading to markedly elevated levels of the proinflammatory cytokines IL-10, IL-1β, TNF-α, and IL-6. This enhanced inflammatory response is further evidenced by increased CD4 expression, indicating robust T helper cell activation. In contrast, asymptomatic infections are characterized by exclusive TLR4 expression, with inflammatory markers remaining at baseline levels. Additionally, we observed that L. interrogans induces apoptosis in symptomatic animals through TLR2 and TLR4 mediated activation of Caspase 8 and Caspase 3. These findings illustrate that L. interrogans drives both inflammation and apoptosis via the combination of TLR2 and TLR4 actions. When only TLR4 is activated, the immune response is insufficient, resulting in an asymptomatic disease course. This study provides novel insights into the differential roles of TLR receptors in leptospirosis, offering potential directions for targeted therapeutic strategies.
Collapse
Affiliation(s)
- İsmail Bolat
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Merve Bolat
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Metin Kiliçlioğlu
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Yavuz Selim Sağlam
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Selim Çomaklı
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Berrah Gözegir
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Murat Özmen
- Molecular Diagnostics and Research Laboratory, Ministry of Agriculture and Forestry, Erzurum, Turkey
| | - Mohamad Warda
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey; Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Yadav S, Mehta P, Soni J, Chattopadhyay P, Devi P, Habyarimana T, Tardalkar K, Joshi M, Pandey R. Single-cell RNA-Seq reveals intracellular microbial diversity within immune cells during SARS-CoV-2 infection and recovery. iScience 2023; 26:108357. [PMID: 38026191 PMCID: PMC10663746 DOI: 10.1016/j.isci.2023.108357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Intracellular microorganisms, like viruses, bacteria, and fungi, pose challenges in detection due to their non-culturable forms. Transcriptomic analysis at cellular level enables exploration of distributions and the impact of these microorganisms on host cells, a domain that remains underexplored because of methodological limitations. Single-cell technology shows promise in addressing this by capturing polyadenine-tailed transcripts, because recent studies confirmed polyadenylation in microbial transcriptomes. We utilized single-cell RNA-seq from PBMCs to probe intracellular microbes in healthy, SARS-CoV-2-positive, and recovered individuals. Among 76 bacterial species detected, 16 showed significant abundance differences. Buchnera aphidicola, Streptomyces clavuligerus, and Ehrlichia canis emerged significantly in memory-B, Naïve-T, and Treg cells. Staphylococcus aureus, Mycoplasma mycoides, Leptospira interrogans, and others displayed elevated levels in SARS-CoV-2-positive patients, suggesting possible disease association. This highlights the strength of single-cell technology in revealing potential microorganism's cell-specific functions. Further research is essential for functional understanding of their cell-specific abundance across physiological states.
Collapse
Affiliation(s)
- Sunita Yadav
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Priyanka Mehta
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jyoti Soni
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Partha Chattopadhyay
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priti Devi
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Thierry Habyarimana
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Department of Biomedical Laboratory Sciences, INES-Ruhengeri, Ruhengeri, Rwanda
| | - Kishore Tardalkar
- Dr. D. Y. Patil Medical College, Hospital and Research Institute, Kolhapur, Maharashtra 416003, India
| | - Meghnad Joshi
- Dr. D. Y. Patil Medical College, Hospital and Research Institute, Kolhapur, Maharashtra 416003, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Krangvichian P, Techawiwattanaboon T, Palaga T, Ritprajak P, Kueanjinda P, Kaewraemruaen C, Patarakul K. Impaired functions of human monocyte-derived dendritic cells and induction of regulatory T cells by pathogenic Leptospira. PLoS Negl Trop Dis 2023; 17:e0011781. [PMID: 37983293 PMCID: PMC10695387 DOI: 10.1371/journal.pntd.0011781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/04/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023] Open
Abstract
Leptospirosis is a global zoonosis caused by pathogenic Leptospira. The disease outcome is influenced by the interplay between innate and adaptive immune responses. Dendritic cells (DCs) play a crucial role in shaping the adaptive immune response. A recent study revealed that pathogenic Leptospira limited the activation of human monocyte-derived dendritic cells (MoDCs) compared to non-pathogenic Leptospira, but their impact on T-cell responses has not been investigated. Our study is the first to explore how viable pathogenic and non-pathogenic Leptospira affect the interaction between human MoDCs and T cells. We found that MoDCs infected with pathogenic leptospires (L. interrogans serovar Pomona and a clinical isolate, MoDCs-P) exhibited lower levels of CD80 and CD83 expression, suggesting partially impaired MoDC maturation, induced regulatory T cells (Tregs) while failing to induce CD4+ T cell proliferation, compared to MoDCs infected with non-pathogenic leptospires (L. biflexa serovar Patoc and L. meyeri serovar Ranarum, MoDCs-NP). In contrast, non-pathogenic leptospires enhanced MoDC maturation and induced higher T cell proliferation including IFN-γ-producing CD4+ T cells, indicative of a Th1-type response. Furthermore, pathogenic leptospires induced higher MoDC apoptosis through a cysteine aspartic acid-specific protease-3 (caspase-3)-dependent pathway and upregulated expression of the prostaglandin-endoperoxide synthase 2 (PTGS2) gene. Notably, prostaglandin E2 (PGE2), a product of the PTGS2 pathway, was found at higher levels in the sera of patients with acute leptospirosis and in the supernatant of MoDCs-P, possibly contributing to Treg induction, compared to those of healthy donors and MoDCs-NP, respectively. In conclusion, this study reveals a novel immunosuppressive strategy employed by pathogenic Leptospira to evade host immunity by partially impairing MoDC maturation and inducing Tregs. These findings deepen our understanding of leptospirosis pathogenesis in humans and may provide a novel strategy to modulate DCs for the prevention and treatment of the disease.
Collapse
Affiliation(s)
- Pratomporn Krangvichian
- Medical Microbiology, Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Teerasit Techawiwattanaboon
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Patcharee Ritprajak
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Patipark Kueanjinda
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Chamraj Kaewraemruaen
- Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Kanitha Patarakul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Du L, Wu Y, Pan Y, Wang L, Zhang H, Li J, Liu Y, Zhang H, He P. Lipopolysaccharide and Glycolipoprotein Coordinately Triggered Necroptosis Contributes to the Pathogenesis of Leptospira Infection in Mice. J Infect Dis 2023; 228:944-956. [PMID: 37166078 DOI: 10.1093/infdis/jiad151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/08/2023] [Accepted: 05/09/2023] [Indexed: 05/12/2023] Open
Abstract
Leptospirosis is a recurring but neglected zoonotic disease caused by pathogenic Leptospira. The explicit underlying mechanism of necroptosis and its role in Leptospira infection have not yet been elucidated. Here we reported that leptospiral pathogen-associated molecular patterns, lipopolysaccharide, and glycolipoprotein activate the necroptotic RIPK1-RIPK3-MLKL cascade through the TLR4 signaling pathway in mouse macrophages. Using the murine acute leptospirosis model, we reveal that abolition of necroptosis exhibited significantly improved outcomes in acute phases, with enhanced eradication of Leptospira from liver, mild clinical symptoms, and decreased cytokine production. RIPK3 was also found to exert a necroptosis-independent function in CXCL1 production and neutrophil recruitment, with the consequence of improved Leptospira control. These findings improve our understanding of the mechanism of Leptospira-macrophage interactions, indicating potential therapeutic values by targeting necroptosis signaling pathways.
Collapse
Affiliation(s)
- Lin Du
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yunqiang Wu
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqing Pan
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lingxia Wang
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haiwei Zhang
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiayin Li
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ya'nan Liu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibing Zhang
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ping He
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Ma Q, Hu L, Luo Y, Wang M, Yu S, Lu A, Zhang L, Zeng H. Identification of apoptosis-related key genes and the associated regulation mechanism in thoracic aortic aneurysm. BMC Cardiovasc Disord 2023; 23:481. [PMID: 37770840 PMCID: PMC10540322 DOI: 10.1186/s12872-023-03516-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND This study investigated the role of apoptosis-related genes in thoracic aortic aneurysms (TAA) and provided more insights into TAA's pathogenesis and molecular mechanisms. MATERIAL/METHODS Two gene expression datasets (GSE9106 and GSE26155) were retrieved from the Gene Expression Omnibus (GEO) database. Apoptosis-related genes were obtained from the KEGG apoptosis pathway (hsa04210). Differentially expressed apoptosis-related genes were identified by performing differential expression analysis using limma for TAA blood and tissue samples. GO and KEGG enrichment analysis of the differentially expressed apoptosis genes was performed using the Metascape web tool. The miRNA-mRNA regulatory network was reconstructed using the ENCORI and miRDB databases, and functional enrichment analysis was performed on the related miRNAs using the miEAA tool. The correlation between the expression levels of differentially expressed apoptosis-related genes and genes involved in immune infiltration in TAA was calculated using the CIBERSORT algorithm. The apoptosis modification patterns mediated by differentially expressed apoptosis-related genes were systematically assessed in TAA samples. RESULTS A total of 9 differentially-expressed apoptosis-related genes were identified in TAA samples compared with normal samples. 150 miRNAs and 6 mRNAs regulatory networks were reconstructed using the ENCORI and miRDB databases. Immune infiltration analysis revealed that the GZMB had the strongest positive correlation with activated NK cells and the DFFA presented the strongest positive correlation with T cells follicular helper. 3 distinct apoptosis modification patterns mediated by 9 differentially-expressed apoptosis-related genes were identified. They differ in immune characteristics and drug sensitivity, and their biological functions in these subtypes were further studied. CONCLUSIONS This study identified key apoptosis-related genes related to TAA and evaluated the modification patterns of key apoptosis genes in TAA, providing insights into potential targets and mechanisms of TAA pathogenesis and progression.
Collapse
Affiliation(s)
- Qi Ma
- Department of Anesthesiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Long Hu
- XJTLU Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yingwan Luo
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Miao Wang
- Department of Pediatrics, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100000, China
| | - Shui Yu
- Department of Pediatrics, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100000, China
| | - Aidong Lu
- Department of Pediatrics, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100000, China
| | - Leping Zhang
- Department of Pediatrics, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100000, China
| | - Huimin Zeng
- Department of Pediatrics, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100000, China.
| |
Collapse
|
7
|
Xue W, Sun R, Hao Z, Xing Z, Cheng H, Shao L. Heterophyllin B ameliorates gastric cancer tumor growth through activating ER stress. Tissue Cell 2023; 83:102129. [PMID: 37406539 DOI: 10.1016/j.tice.2023.102129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Gastric cancer (GC) is the third leading cause of cancer-related death worldwide. Heterophyllin B (HB) has been proved to be a potential drug in cancer treatment. METHODS In the current study, GC cells were treated with 0, 10, 25, or 50 μM of HB. Cell viability was determined by utilizing MTT assay. Flow cytometry was carried out for cell apoptosis and cell cycle analysis. The expression levels of IRE1, CHOP, GRP78 and Bcl-2 in cells and tumors were measured by Western blot and immunohistochemistry, respectively. RESULTS Our data uncovered that HB administration significantly suppressed GC cell viability, but facilitated GC cell apoptosis and cell cycle arrest at G0/G1 phase. The effects of HB on GC cell proliferation, apoptosis and cell cycle showed dosage-dependent manner. Furthermore, expression of ER stress-associated proteins like IRE1, CHOP and GRP78 was markedly upregulated, while anti-apoptosis protein Bcl2 expression was inhibited by HB treatment in a dosage-dependent manner. Our data indicated that HB treatment facilitated caspase-3 expression in a dose-dependent manner, but had no effect on caspase-8 expression. Importantly, the inhibition of HB to GC cell apoptosis and cell cycle process and the promotion of HB to GC cell proliferation were partly rescued by inhibition of ER stress utilizing 4-PBA. In animal experiments, HB administration suppressed GC tumor growth, boosted IRE1, CHOP and GRP78 expression and inhibited Bcl-2 expression. CONCLUSION All in all, HB treatment could effectively suppress GC cells proliferation and tumors growth and facilitate GC cells apoptosis and cell cycle arrest through activating ER stress. Our data indicated that HB may be a potential drug for GC treatment.
Collapse
Affiliation(s)
- Wanli Xue
- Department of General Surgery, Jiaozuo Hospital of Traditional Chinese Medicine, Jiaozuo 454000, China
| | - Rui Sun
- Department of Endocrinology, The People's Hospital of Jiaozuo City, Jiaozuo 454000, China.
| | - Zheng Hao
- Department of General Surgery, Jiaozuo Hospital of Traditional Chinese Medicine, Jiaozuo 454000, China
| | - Zhenzhen Xing
- Department of General Surgery, Jiaozuo Hospital of Traditional Chinese Medicine, Jiaozuo 454000, China
| | - Hongjie Cheng
- Department of General Surgery, Jiaozuo Hospital of Traditional Chinese Medicine, Jiaozuo 454000, China
| | - Lei Shao
- Department of General Surgery, Jiaozuo Hospital of Traditional Chinese Medicine, Jiaozuo 454000, China
| |
Collapse
|
8
|
Kavela S, Vyas P, CP J, Kushwaha SK, Majumdar SS, Faisal SM. Use of an Integrated Multi-Omics Approach To Identify Molecular Mechanisms and Critical Factors Involved in the Pathogenesis of Leptospira. Microbiol Spectr 2023; 11:e0313522. [PMID: 36853003 PMCID: PMC10100824 DOI: 10.1128/spectrum.03135-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023] Open
Abstract
Leptospirosis, a bacterial zoonosis caused by pathogenic Leptospira spp., is prevalent worldwide and has become a serious threat in recent years. Limited understanding of Leptospira pathogenesis and host response has hampered the development of effective vaccine and diagnostics. Although Leptospira is phagocytosed by innate immune cells, it resists its destruction, and the evading mechanism involved is unclear. In the present study, we used an integrative multi-omics approach to identify the critical molecular factors of Leptospira involved in pathogenesis during interaction with human macrophages. Transcriptomic and proteomic analyses were performed at 24 h postinfection of human macrophages (phorbol-12-myristate-13-acetate differentiated THP-1 cells) with the pathogenic Leptospira interrogans serovar Icterohaemorrhagiae strain RGA (LEPIRGA). Our results identified a total of 1,528 transcripts and 871 proteins that were significantly expressed with an adjusted P value of <0.05. The correlations between the transcriptomic and proteomic data were above average (r = 0.844), suggesting the role of the posttranscriptional processes during host interaction. The conjoint analysis revealed the expression of several virulence-associated proteins such as adhesins, invasins, and secretory and chemotaxis proteins that might be involved in various processes of attachment and invasion and as effectors during pathogenesis in the host. Further, the interaction of bacteria with the host cell (macrophages) was a major factor in the differential expression of these proteins. Finally, eight common differentially expressed RNA-protein pairs, predicted as virulent, outer membrane/extracellular proteins were validated by quantitative PCR. This is the first report using integrated multi-omics approach to identify critical factors involved in Leptospira pathogenesis. Validation of these critical factors may lead to the identification of target antigens for the development of improved diagnostics and vaccines against leptospirosis. IMPORTANCE Leptospirosis is a zoonotic disease of global importance. It is caused by a Gram-negative bacterial spirochete of the genus Leptospira. The current challenge is to detect the infection at early stage for treatment or to develop potent vaccines that can induce cross-protection against various pathogenic serovars. Understanding host-pathogen interactions is important to identify the critical factors involved in pathogenesis and host defense for developing improved vaccines and diagnostics. Utilizing an integrated multi-omics approach, our study provides important insight into the interaction of Leptospira with human macrophages and identifies a few critical factors (such as virulence-associated proteins) involved in pathogenesis. These factors can be exploited for the development of novel tools for the detection, treatment, or prevention of leptospirosis.
Collapse
Affiliation(s)
- Sridhar Kavela
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
| | - Pallavi Vyas
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Jusail CP
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sandeep K. Kushwaha
- Bioinformatics Lab, National Institute of Animal Biotechnology, Hyderabad, India
| | - Subeer S. Majumdar
- Gene and Protein Engineering Lab, National Institute of Animal Biotechnology, Hyderabad, India
| | - Syed M. Faisal
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| |
Collapse
|
9
|
Bonhomme D, Hernandez-Trejo V, Papadopoulos S, Pigache R, Fanton d'Andon M, Outlioua A, Boneca IG, Werts C. Leptospira interrogans Prevents Macrophage Cell Death and Pyroptotic IL-1β Release through Its Atypical Lipopolysaccharide. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:459-474. [PMID: 36602965 DOI: 10.4049/jimmunol.2200584] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/03/2022] [Indexed: 01/06/2023]
Abstract
Leptospira interrogans are bacteria that can infect all vertebrates and are responsible for leptospirosis, a neglected zoonosis. Some hosts, such as humans, are susceptible to the disease, whereas mice are resistant and get chronically colonized. Although leptospires escape recognition by some immune receptors, they activate the NOD-like receptor pyrin 3-inflammasome and trigger IL-1β secretion. Classically, IL-1β secretion is associated with lytic inflammatory cell death called pyroptosis, resulting from cytosolic LPS binding to inflammatory caspases, such as caspase 11. Interestingly, we showed that L. interrogans and Leptospira biflexa do not trigger cell death in either murine, human, hamster, or bovine macrophages, escaping both pyroptosis and apoptosis. We showed, in murine cells, that the mild IL-1β secretion induced by leptospires occurred through nonlytic caspase 8-dependent gasdermin D pore formation and not through activation of caspase 11/noncanonical inflammasome. Strikingly, we demonstrated a potent antagonistic effect of pathogenic L. interrogans and their atypical LPS on spontaneous and Escherichia coli LPS-induced cell death. Indeed, LPS of L. interrogans efficiently prevents caspase 11 dimerization and subsequent massive gasdermin D cleavage. Finally, we showed that pyroptosis escape by leptospires prevents massive IL-1β release, and we consistently found no major role of IL-1R in controlling experimental leptospirosis in vivo. Overall, to our knowledge, our findings described a novel mechanism by which leptospires dampen inflammation, thus potentially contributing to their stealthiness.
Collapse
Affiliation(s)
- Delphine Bonhomme
- Institut Pasteur, Université Cité Paris, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France
| | - Veronica Hernandez-Trejo
- Institut Pasteur, Université Cité Paris, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France
| | - Stylianos Papadopoulos
- Institut Pasteur, Université Cité Paris, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France
| | - Rémi Pigache
- Institut Pasteur, Université Cité Paris, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France
| | - Martine Fanton d'Andon
- Institut Pasteur, Université Cité Paris, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France
| | - Ahmed Outlioua
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France.,Université Paris-Saclay, Paris, France; and.,Health and Environment Laboratory, Aïn Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ivo G Boneca
- Institut Pasteur, Université Cité Paris, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France
| | - Catherine Werts
- Institut Pasteur, Université Cité Paris, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France
| |
Collapse
|
10
|
Yan L, Yang Y, Ma X, Wei L, Wan X, Zhang Z, Ding J, Peng J, Liu G, Gou H, Wang C, Zhang X. Effect of Two Different Drug-Resistant Staphylococcus aureus Strains on the Physiological Properties of MAC-T Cells and Their Transcriptome Analysis. Front Vet Sci 2022; 9:818928. [PMID: 35812882 PMCID: PMC9263607 DOI: 10.3389/fvets.2022.818928] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is one of the main pathogens causing mastitis in dairy cows. The current work mainly focuses on the pathway of apoptosis induction in MAC-T cells caused by S. aureus infection or other factors. However, the physiological characteristics of S. aureus infected MAC-T cells and the resulting mRNA expression profile remain unknown particularly in the case of diverse drug resistant strains. Methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) strains were used to infect MAC-T cells to investigate this issue. The adhesion, invasion and apoptosis ability of MRSA-infected group and MSSA-infected group was assessed over time (2, 4, 6, 8, and 12 h). After 8 h, the RNA sequencing was conducted on the MRSA-infected and the MSSA-infected with uninfected MAC-T cells as controls. The results showed that the adhesion and invasion ability of MRSA-infected and MSSA-infected to MAC-T cells increased and then decreased with infection time, peaking at 8 h. The adhesion and invasion rates of the MSSA-infected were substantially lower than those of the MRSA-infected, and the invasion rate of the MSSA-infected group was nearly non-existent. Then the apoptosis rate of MAC-T cells increased as the infection time increased. The transcriptome analysis revealed 549 differentially expressed mRNAs and 390 differentially expressed mRNAs in MRSA-infected and MSSA-infected MAC-T cells, respectively, compared to the uninfected MAC-T cells. According to GO analysis, these differentially expressed genes were involved in immune response, inflammation, apoptosis, and other processes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated the following pathways were linked to adhesion, invasion inflammation and apoptosis, including AMPK, FOXO, HIF-1, IL-17, JAK-STAT, MAPK, mTOR, NF-κB, p53, PI3K-Akt, TNF, Toll-like receptor, Rap1, RAS, prion disease, the bacterial invasion of epithelial cells pathway. We found 86 DEGs from 41 KEGG-enriched pathways associated with adhesion, invasion, apoptosis, and inflammation, all of which were implicated in MAC-T cells resistance to MRSA and MSSA infection. This study offers helpful data toward understanding the effect of different drug-resistant S. aureus on dairy cow mammary epithelial cells and aid in the prevention of mastitis in the dairy industry.
Collapse
Affiliation(s)
- Lijiao Yan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yuze Yang
- Beijing General Station of Animal Husbandry, Beijing, China
| | - Xiaojun Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | | | - Xuerui Wan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Zhao Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jucai Ding
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jie Peng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Guo Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Huitian Gou
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Chuan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Chuan Wang
| | - Xiaoli Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Xiaoli Zhang
| |
Collapse
|
11
|
Zhang B, Mao S, Liu X, Li S, Zhou H, Gu Y, Liu W, Fu L, Liao C, Wang P. MiR-125b inhibits cardiomyocyte apoptosis by targeting BAK1 in heart failure. Mol Med 2021; 27:72. [PMID: 34238204 PMCID: PMC8268255 DOI: 10.1186/s10020-021-00328-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 06/10/2021] [Indexed: 01/27/2023] Open
Abstract
Background Although miR-125b plays a crucial role in many human cancers. However, its function in heart failure (HF) remains unclear. Our study aimed to investigate its involvement in heart failure. Methods In this study, the mouse HF model was successfully constructed through transverse aortic constriction (TAC) operation. Changes in mRNA and protein levels in isolated myocytes and heart tissues were examined using qRT-PCR, Western blot and Immunohistochemical staining and immunofluorescent staining. Changes in cardiac functions were examined using ultrasound. Interactions between miR-125b and BAK1 was analyzed using the luciferase reporter assay. Cardiomyocyte apoptosis was evaluated using the TUNEL staining. Results We found that miR-125b expression was significantly downregulated in myocardial tissues of HF mice. Moreover, miR-125b upregulation in HF mice injected with agomir-125b efficiently ameliorated cardiac function. Further, miR-125b upregulation significantly decreased the protein levels of apoptosis-related makers c-caspase 3 and Bax, while increased Bcl-2 expression. In addition, BAK1 was identified as a direct target of miR-125b. As expected, BAK1 overexpression observably reversed the effect of agomir-125b on cardiac function and on the expression of apoptosis-related makers in the heart tissues of HF mice. Conclusions Taken together, miR-125b overexpression efficiently attenuated cardiac function injury of HF mice by targeting BAK1 through inhibiting cardiomyocyte apoptosis, suggesting that miR-125b/BAK1 axis might be a potential target for the diagnosis or treatment of HF. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00328-w.
Collapse
Affiliation(s)
- Bei Zhang
- Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang, Guizhou, 550004, People's Republic of China.,Department of Ultrasound Medicine, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, People's Republic of China
| | - Shanyong Mao
- Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang, Guizhou, 550004, People's Republic of China.,Department of Ultrasound Medicine, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, People's Republic of China
| | - Xingde Liu
- Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang, Guizhou, 550004, People's Republic of China. .,Department of Cardiology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550004, People's Republic of China.
| | - Sha Li
- Department of Ultrasound Medicine, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, People's Republic of China.
| | - Haiyan Zhou
- Departmentof Clinical Research Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, People's Republic of China
| | - Ying Gu
- Department of Ultrasound Medicine, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, People's Republic of China
| | - Wupeng Liu
- Department of Cardiology, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang City, Guizhou, 550014, People's Republic of China
| | - Lei Fu
- Department of Ultrasound Medicine, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, People's Republic of China
| | - Chunyan Liao
- Department of Ultrasound Medicine, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, People's Republic of China
| | - Pengzhen Wang
- Department of Ultrasound Medicine, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, People's Republic of China
| |
Collapse
|
12
|
Fabian E, Wenisch C, Eisner F, Muhr T, Bauer PK, Prein K, Maierhofer U, Lax SF, Krause R, Zollner G, Weihs W, Krejs GJ. Clinical-Pathological Conference Series from the Medical University of Graz : Case No 164: A 46-year-old man with abdominal pain, dyspnea and rapidly progressing multiorgan failure. Wien Klin Wochenschr 2021; 133:731-740. [PMID: 33871688 PMCID: PMC8053743 DOI: 10.1007/s00508-021-01841-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Elisabeth Fabian
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Christoph Wenisch
- 4th Department of Internal Medicine with Infectious and Tropical Medicine, State Hospital Klinik Favoriten, Vienna, Austria
| | - Florian Eisner
- Division of Emergency Medicine, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Tina Muhr
- Division of Cardiology, Department of Internal Medicine, State Hospital (LKH) Graz II, Graz, Austria
| | - Philipp K Bauer
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Kurt Prein
- Department of Pathology, State Hospital (LKH) Graz II, Graz, Austria
| | - Urša Maierhofer
- Department of Pathology, State Hospital (LKH) Graz II, Graz, Austria
| | - Sigurd F Lax
- Department of Pathology, State Hospital (LKH) Graz II, Graz, Austria
| | - Robert Krause
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Gernot Zollner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Wolfgang Weihs
- Division of Cardiology, Department of Internal Medicine, State Hospital (LKH) Graz II, Graz, Austria
| | - Guenter J Krejs
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
| |
Collapse
|
13
|
Ge YM, Sun AH, Ojcius DM, Li SJ, Hu WL, Lin X, Yan J. M16-Type Metallopeptidases Are Involved in Virulence for Invasiveness and Diffusion of Leptospira interrogans and Transmission of Leptospirosis. J Infect Dis 2021; 222:1008-1020. [PMID: 32274497 DOI: 10.1093/infdis/jiaa176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Leptospirosis is a global zoonotic infectious disease caused by Leptospira interrogans. The pathogen rapidly invades into hosts and diffuses from bloodstream into internal organs and excretes from urine to cause transmission of leptospirosis. However, the mechanism of leptospiral invasiveness remains poorly understood. METHODS Proteolytic activity of M16-type metallopeptidases (Lep-MP1/2/3) of L. interrogans was determined by spectrophotometry. Expression and secretion of Lep-MP1/2/3 during infection of cells were detected by quantitative reverse-transcription polymerase chain reaction, Western blot assay, and confocal microscopy. Deletion and complementation mutants of the genes encoding Lep-MP1/2/3 were generated to determine the roles of Lep-MP1/2/3 in invasiveness using transwell assay and virulence in hamsters. RESULTS Leptospira interrogans but not saprophytic Leptospira biflexa strains were detectable for Lep-MP-1/2/3-encoding genes. rLep-MP1/2/3 hydrolyzed extracellular matrix proteins, but rLep-MP1/3 displayed stronger proteolysis than rLep-MP2, with 123.179/340.136 μmol/L Km and 0.154/0.159 s-1 Kcat values. Expression, secretion and translocation of Lep-MP1/2/3 during infection of cells were increased. ΔMP1/3 but not ΔMP2 mutant presented attenuated transmigration through cell monolayers, decreased leptospiral loading in the blood, lungs, liver, kidneys, and urine, and 10/13-fold decreased 50% lethal dose and milder histopathologic injury in hamsters. CONCLUSIONS Lep-MP1 and 3 are involved in virulence of L. interrogans in invasion into hosts and diffusion in vivo, and transmission of leptospirosis.
Collapse
Affiliation(s)
- Yu-Mei Ge
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Ai-Hua Sun
- Faculty of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China
| | - David M Ojcius
- Department of Biomedical Sciences, School of Dentistry, University of the Pacific, San Francisco, California, USA.,Université de Paris, Paris, France
| | - Shi-Jun Li
- Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, Guizhou, People's Republic of China
| | - Wei-Lin Hu
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Xu'ai Lin
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Jie Yan
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
14
|
Santecchia I, Ferrer MF, Vieira ML, Gómez RM, Werts C. Phagocyte Escape of Leptospira: The Role of TLRs and NLRs. Front Immunol 2020; 11:571816. [PMID: 33123147 PMCID: PMC7573490 DOI: 10.3389/fimmu.2020.571816] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
The spirochetal bacteria Leptospira spp. are causative agents of leptospirosis, a globally neglected and reemerging zoonotic disease. Infection with these pathogens may lead to an acute and potentially fatal disease but also to chronic asymptomatic renal colonization. Both forms of disease demonstrate the ability of leptospires to evade the immune response of their hosts. In this review, we aim first to recapitulate the knowledge and explore the controversial data about the opsonization, recognition, intracellular survival, and killing of leptospires by scavenger cells, including platelets, neutrophils, macrophages, and dendritic cells. Second, we will summarize the known specificities of the recognition or escape of leptospire components (the so-called microbial-associated molecular patterns; MAMPs) by the pattern recognition receptors (PRRs) of the Toll-like and NOD-like families. These PRRs are expressed by phagocytes, and their stimulation by MAMPs triggers pro-inflammatory cytokine and chemokine production and bactericidal responses, such as antimicrobial peptide secretion and reactive oxygen species production. Finally, we will highlight recent studies suggesting that boosting or restoring phagocytic functions by treatments using agonists of the Toll-like or NOD receptors represents a novel prophylactic strategy and describe other potential therapeutic or vaccine strategies to combat leptospirosis.
Collapse
Affiliation(s)
- Ignacio Santecchia
- Institut Pasteur, Microbiology Department, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- CNRS, UMR 2001 Microbiologie intégrative et Moléculaire, Paris, France
- INSERM, Equipe Avenir, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - María Florencia Ferrer
- Laboratorio de Virus Animales, Instituto de Biotecnología y Biología Molecular, CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Monica Larucci Vieira
- Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ricardo Martín Gómez
- Laboratorio de Virus Animales, Instituto de Biotecnología y Biología Molecular, CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Catherine Werts
- Institut Pasteur, Microbiology Department, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- CNRS, UMR 2001 Microbiologie intégrative et Moléculaire, Paris, France
| |
Collapse
|
15
|
Saez A, Herrero-Fernandez B, Gomez-Bris R, Somovilla-Crespo B, Rius C, Gonzalez-Granado JM. Lamin A/C and the Immune System: One Intermediate Filament, Many Faces. Int J Mol Sci 2020; 21:E6109. [PMID: 32854281 PMCID: PMC7504305 DOI: 10.3390/ijms21176109] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022] Open
Abstract
Nuclear envelope lamin A/C proteins are a major component of the mammalian nuclear lamina, a dense fibrous protein meshwork located in the nuclear interior. Lamin A/C proteins regulate nuclear mechanics and structure and control cellular signaling, gene transcription, epigenetic regulation, cell cycle progression, cell differentiation, and cell migration. The immune system is composed of the innate and adaptive branches. Innate immunity is mediated by myeloid cells such as neutrophils, macrophages, and dendritic cells. These cells produce a rapid and nonspecific response through phagocytosis, cytokine production, and complement activation, as well as activating adaptive immunity. Specific adaptive immunity is activated by antigen presentation by antigen presenting cells (APCs) and the cytokine microenvironment, and is mainly mediated by the cellular functions of T cells and the production of antibodies by B cells. Unlike most cell types, immune cells regulate their lamin A/C protein expression relatively rapidly to exert their functions, with expression increasing in macrophages, reducing in neutrophils, and increasing transiently in T cells. In this review, we discuss and summarize studies that have addressed the role played by lamin A/C in the functions of innate and adaptive immune cells in the context of human inflammatory and autoimmune diseases, pathogen infections, and cancer.
Collapse
Affiliation(s)
- Angela Saez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (B.H.-F.); (R.G.-B.); (B.S.-C.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (B.H.-F.); (R.G.-B.); (B.S.-C.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Beatriz Somovilla-Crespo
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (B.H.-F.); (R.G.-B.); (B.S.-C.)
| | - Cristina Rius
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid (UEM), Villaviciosa de Odón, 28670 Madrid, Spain;
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (B.H.-F.); (R.G.-B.); (B.S.-C.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| |
Collapse
|
16
|
Murillo A, Goris M, Ahmed A, Cuenca R, Pastor J. Leptospirosis in cats: Current literature review to guide diagnosis and management. J Feline Med Surg 2020; 22:216-228. [PMID: 32093581 PMCID: PMC11132596 DOI: 10.1177/1098612x20903601] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
GLOBAL IMPORTANCE Leptospirosis is the most widespread zoonosis worldwide. Mammals (eg, rats, horses, cows, pigs, dogs, cats and aquatic species, such as sea lions and northern elephant seals) can all be infected by leptospires. Infection in animals occurs through contact with urine or water contaminated with the bacteria. In people, the disease is acquired mainly from animal sources or through recreational activities in contaminated water. PRACTICAL RELEVANCE Literature on the clinical presentation of leptospirosis in cats is scarce, although it has been demonstrated that cats are susceptible to infection and are capable of developing antibodies. The prevalence of antileptospiral antibodies in cats varies from 4% to 33.3% depending on the geographical location. Urinary shedding of leptospires in naturally infected cats has been reported, with a prevalence of up to 68%. Infection in cats has been associated with the consumption of infected prey, especially rodents. Thus, outdoor cats have a higher risk of becoming infected. CLINICAL CHALLENGES Clinical presentation of this disease in cats is rare and it is not known what role cats have in the transmission of leptospirosis. Ongoing work is needed to characterise feline leptospirosis. AUDIENCE This review is aimed at all veterinarians, both general practitioners who deal with cats on a daily basis in private practice, as well as feline practitioners, since both groups face the challenge of diagnosing and treating infectious and zoonotic diseases. EVIDENCE BASE The current literature on leptospirosis in cats is reviewed. To date, few case reports have been published in the field, and information has mostly been extrapolated from infections in people and dogs. This review is expected to serve as a guide for the diagnosis and management of the disease in cats.
Collapse
Affiliation(s)
- Andrea Murillo
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Marga Goris
- OIE and National Collaborating Centre for Reference and Research on Leptospirosis (NRL), Amsterdam UMC, University of Amsterdam, Medical Microbiology, Meibergdreef 39, 1105 AZ, Amsterdam, Netherlands
| | - Ahmed Ahmed
- OIE and National Collaborating Centre for Reference and Research on Leptospirosis (NRL), Amsterdam UMC, University of Amsterdam, Medical Microbiology, Meibergdreef 39, 1105 AZ, Amsterdam, Netherlands
| | - Rafaela Cuenca
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Josep Pastor
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
17
|
Sun AH, Liu XX, Yan J. Leptospirosis is an invasive infectious and systemic inflammatory disease. Biomed J 2020; 43:24-31. [PMID: 32200953 PMCID: PMC7090314 DOI: 10.1016/j.bj.2019.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Pathogenic Leptospira species are the causative agents of leptospirosis, a world-spreading zoonotic infectious disease. The pathogens possess a powerful invasiveness by invading human body through mucosal/skin barriers, rapid entry into bloodstream to cause septicemia, diffusion from bloodstream into internal organs and tissues to cause aggravation of disease, and discharge from urine through renal tubules to form natural infectious sources. Leptospirosis patients present severe inflammatory symptoms such as high fever, myalgia and lymphadenectasis. Hemorrhage and jaundice are the pathological features of this disease. Previous studies revealed that some outer membrane proteins of Leptospira interrogans, the most important pathogenic Leptospira species, acted as adherence factors to binding to receptor molecules (fibronectin, laminin and collagens) in extracellular matrix of host cells. Collagenase, metallopeptidases and endoflagellum contributed to the invasiveness of L. interrogans. Except for lipopolysaccharide, multiple hemolysins of L. interrogans displayed a powerful ability to induce pro-inflammatory cytokines and hepatocyte apoptosis. vWA and platelet activating factor acetylhydrolase-like proteins from L. interrogans could induce severe pulmonary hemorrhage in mice. L. interrogans utilized cellular endocytic recycling and vesicular transport systems for intracellular migration and transcellular transport. All the research achievements are helpful for further understanding the virulence of pathogenic Leptospira species and pathogenesis of leptospirosis.
Collapse
Affiliation(s)
- Ai-Hua Sun
- Faculty of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| | - Xiao-Xiang Liu
- Faculty of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| | - Jie Yan
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
18
|
Soo ZMP, Khan NA, Siddiqui R. Leptospirosis: Increasing importance in developing countries. Acta Trop 2020; 201:105183. [PMID: 31542372 DOI: 10.1016/j.actatropica.2019.105183] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/30/2019] [Accepted: 09/18/2019] [Indexed: 12/18/2022]
Abstract
Leptospirosis is a zoonotic disease caused by the pathogenic helical spirochetes, Leptospira. Symptoms include sudden-onset fever, severe headaches, muscle pain, nausea and chills. Leptospirosis is endemic in developing countries such as Malaysia, India, Sri Lanka, and Brazil where thousands of cases are reported annually. The disease risk factors include the high population of reservoirs, environmental factors, recreational factors, and occupational factors. To end the endemicity of leptospirosis, these factors need to be tackled. The management of leptospirosis needs to be refined. Early diagnosis remains a challenge due to a lack of clinical suspicion among physicians, its non-specific symptoms and a limited availability of rapid point-of-care diagnostic tests. The purpose of this review is to provide insight into the status of leptospirosis in developing countries focusing on the risk factors and to propose methods for the improved management of the disease.
Collapse
Affiliation(s)
- Zoey May Pheng Soo
- Department of Biological Sciences, School of Science and Technology, Sunway University, Selangor, Malaysia
| | - Naveed Ahmed Khan
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates.
| | - Ruqaiyyah Siddiqui
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| |
Collapse
|
19
|
Kalindamar S, Kordon AO, Abdelhamed H, Tan W, Pinchuk LM, Karsi A. Edwardsiella ictaluri evpP is required for colonisation of channel catfish ovary cells and necrosis in anterior kidney macrophages. Cell Microbiol 2019; 22:e13135. [PMID: 31742869 DOI: 10.1111/cmi.13135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/10/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022]
Abstract
Edwardsiella ictaluri is a Gram-negative facultative anaerobe that can survive inside channel catfish phagocytes. E. ictaluri can orchestrate Type VI Secretion System (T6SS) for survival in catfish macrophages. evpP encodes one of the T6SS translocated effector proteins. However, the role of evpP in E. ictaluri is still unexplored. In this work, we constructed an E. ictaluri evpP mutant (EiΔevpP) and assessed its survival under complement and oxidative stress. Persistence of EiΔevpP in catfish as well as attachment and invasion in catfish macrophage and ovary cells were determined. Further, virulence of EiΔevpP in catfish and apoptosis it caused in macrophages were explored. EiΔevpP behaved same as wild type (EiWT) under complement and oxidative stress in complex media, whereas oxidative stress affected mutant's survival significantly in minimal media (p < .05). Persistence of EiΔevpP in live catfish and uptake and survival inside peritoneal macrophages were similar. The attachment and invasion capabilities of EiΔevpP in catfish ovary cells were significantly less than that of EiWT (p < .05). Although EiΔevpP showed reduced attenuation in catfish, causing decreased catfish mortality compared with EiWT (44.73% vs. 67.53%), this difference was not significant. The apoptosis assay using anterior kidney macrophages indicated that the number of live macrophages exposed to EiΔevpP was significantly higher compared with EiWT exposed macrophages at 24-hr post-treatment (p < .05). However, there were no significant differences in the early and late apoptosis. Remarkably, necrosis in EiΔevpP exposed macrophages was significantly less than that of EiWT exposed macrophages at 24 hr (p < .05). Our results demonstrated that evpP is required for colonisation of catfish ovary cells and increased apoptosis and necrosis in anterior kidney macrophages.
Collapse
Affiliation(s)
- Safak Kalindamar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Ordu University, Ordu, Turkey
| | - Adef O Kordon
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi
| | - Hossam Abdelhamed
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi
| | - Wei Tan
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi
| | - Lesya M Pinchuk
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi
| |
Collapse
|
20
|
de Araújo Junior EC, Garcia LE, Araújo MJ, Oliveira-Junior IS, Arnold DR, Lopes FL, Marinho M. Gene expression is associated with virulence in murine macrophages infected with Leptospira spp. PLoS One 2019; 14:e0225272. [PMID: 31800570 PMCID: PMC6892507 DOI: 10.1371/journal.pone.0225272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/31/2019] [Indexed: 11/25/2022] Open
Abstract
Leptospira genus contains species that affect human health with varying degrees of pathogenicity. In this context, we aimed to evaluate the differences in the modulation of host gene expression by strains of Leptospira varying in virulence. Our data showed a high number of differentially expressed transcripts in murine macrophages following 6h of infection. Leptospira infection modulated a set of genes independently of their degree of virulence. However, pathway analysis indicated that Apoptosis, ATM Signaling, and Cell Cycle: G2/M DNA Damage Checkpoint Regulation were exclusively regulated following infection with the virulent strain. Taken together, results demonstrated that species and virulence play a role during host response to Leptospira spp in murine macrophages, which could contribute to understanding the pathogenesis of leptospirosis.
Collapse
Affiliation(s)
- Erivelto Corrêa de Araújo Junior
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, SP, Brazil
| | - Leandro Encarnação Garcia
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, SP, Brazil
| | - Matheus Janeck Araújo
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, SP, Brazil
| | - Itamar Souza Oliveira-Junior
- Department of Surgery, Discipline of Anesthesia, Pain and Intensive Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Daniel Robert Arnold
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, SP, Brazil
| | - Flavia Lombardi Lopes
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, SP, Brazil
| | - Márcia Marinho
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, SP, Brazil
- * E-mail:
| |
Collapse
|
21
|
Lu Z, Zhou H, Zhang S, Dai W, Zhang Y, Hong L, Chen F, Cao J. Activation of reactive oxygen species-mediated mitogen-activated protein kinases pathway regulates both extrinsic and intrinsic apoptosis induced by arctigenin in Hep G2. J Pharm Pharmacol 2019; 72:29-43. [PMID: 31617221 DOI: 10.1111/jphp.13180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/14/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Arctigenin (ARG) has been proved to inhibit the viability of hepatocellular carcinoma (HCC) via inducing apoptosis. However, the precise mechanism remains unknown. The present study was aimed to further investigate the mechanism of ARG against HCC in vitro and in vivo. METHODS Arctigenin was applied in vitro and in vivo. Western blotting, immunohistochemistry, etc., were used to investigate the mechanisms. KEY FINDINGS The time-dependent enhancement of Bax/Bcl-2 ratio, cytochrome c release, Fas and FasL levels, caspase cascade activation and the loss in the mitochondrial out membrane potential indicated that both intrinsic and extrinsic apoptotic pathways were triggered by ARG. Moreover, Jun NH2-terminal kinase (JNK) and p38 phosphorylated time-dependently. And inhibition of the phosphorylation of either p38 or JNK led to a significant reduction in HepG2 apoptosis, owing to the crucial roles of p38 and JNK played in regulating the apoptosis pathways. In addition, ARG increased the generation of reactive oxygen species (ROS) in HepG2 cells, while the antioxidant N-acetyl cysteine almost reversed ARG-induced JNK and p38 activation, and dramatically decreased cell apoptosis. In vivo, ARG increased the cell apoptosis in tumour tissues, and p-p38, p-JNK and Bax were significantly upregulated. CONCLUSIONS Our findings demonstrated that ARG induced apoptosis in HCC via ROS-mediated mitogen-activated protein kinases apoptosis pathway.
Collapse
Affiliation(s)
- Zheng Lu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Hongbo Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shishuo Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wei Dai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yan Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liping Hong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Fanjie Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiyue Cao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
22
|
Werts C. Interaction of Leptospira with the Innate Immune System. Curr Top Microbiol Immunol 2019; 415:163-187. [PMID: 29038956 DOI: 10.1007/82_2017_46] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Innate immunity encompasses immediate host responses that detect and respond to microbes. Besides recognition by the complement system (see the chapter by A. Barbosa, this volume), innate immunity concerns cellular responses. These are triggered through recognition of conserved microbial components (called MAMPs) by pattern recognition receptors (PRRs), leading, through secretion of cytokines, antimicrobial peptides, and immune mediators, to cellular recruitment and phagocytosis. Leptospira spp. are successful zoonotic pathogenic bacteria that obviously overcome the immune system of their hosts. The first part of this chapter summarizes what is known about leptospires recognition and interaction with phagocytes and other innate immune cells, and the second part describes specific interactions of leptospiral MAMPs with PRRs from the TLR and NLR families. On the one hand, pathogenic leptospires appear to escape macrophage and neutrophil phagocytosis. On the other hand, studies about PRR sensing of leptospires remain very limited, but suggest that pathogenic leptospires escape some of the PRRs in a host-specific manner, due to peculiar cell wall specificities or post-translational modifications that may impair their recognition. Further studies are necessary to clarify the mechanisms and consequences of leptospiral escape on phagocytic functions and hopefully give clues to potential therapeutic strategies aimed at restoring the defective activation of PRRs by pathogenic Leptospira spp.
Collapse
Affiliation(s)
- Catherine Werts
- Unité Biologie et Génétique de La Paroi Bactérienne, Institut Pasteur, Paris, France.
| |
Collapse
|
23
|
Li Y, Li KX, Hu WL, Ojcius DM, Fang JQ, Li SJ, Lin X, Yan J. Endocytic recycling and vesicular transport systems mediate transcytosis of Leptospira interrogans across cell monolayer. eLife 2019; 8:44594. [PMID: 31012847 PMCID: PMC6513555 DOI: 10.7554/elife.44594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/18/2019] [Indexed: 12/18/2022] Open
Abstract
Many bacterial pathogens can cause septicemia and spread from the bloodstream into internal organs. During leptospirosis, individuals are infected by contact with Leptospira-containing animal urine-contaminated water. The spirochetes invade internal organs after septicemia to cause disease aggravation, but the mechanism of leptospiral excretion and spreading remains unknown. Here, we demonstrated that Leptospira interrogans entered human/mouse endothelial and epithelial cells and fibroblasts by caveolae/integrin-β1-PI3K/FAK-mediated microfilament-dependent endocytosis to form Leptospira (Lep)-vesicles that did not fuse with lysosomes. Lep-vesicles recruited Rab5/Rab11 and Sec/Exo-SNARE proteins in endocytic recycling and vesicular transport systems for intracellular transport and release by SNARE-complex/FAK-mediated microfilament/microtubule-dependent exocytosis. Both intracellular leptospires and infected cells maintained their viability. Leptospiral propagation was only observed in mouse fibroblasts. Our study revealed that L. interrogans utilizes endocytic recycling and vesicular transport systems for transcytosis across endothelial or epithelial barrier in blood vessels or renal tubules, which contributes to spreading in vivo and transmission of leptospirosis.
Collapse
Affiliation(s)
- Yang Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai-Xuan Li
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei-Lin Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - David M Ojcius
- Department of Biomedical Sciences, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, United States
| | - Jia-Qi Fang
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shi-Jun Li
- Institute of Communicable Disease Prevention and Control, Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, China
| | - Xu'ai Lin
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Yan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
24
|
Che R, Ding S, Zhang Q, Yang W, Yan J, Lin X. Haemolysin Sph2 of Leptospira interrogans induces cell apoptosis via intracellular reactive oxygen species elevation and mitochondrial membrane injury. Cell Microbiol 2018; 21:e12959. [PMID: 30278102 DOI: 10.1111/cmi.12959] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
Leptospira interrogans causes widespread leptospirosis in humans and animals, with major symptoms of jaundice and haemorrhage. Sph2, a member of the sphingomyelinase haemolysins, is an important virulence factor for leptospire. In this study, the function and mechanism of Sph2 in the pathogenesis of leptospirosis were investigated to further understand the pathogenesis of leptospire. Real-time PCR analysis of expression levels during cell invasion showed that sph2 gene expression was transiently induced in human umbilical vein endothelial cells (HUVECs), human embryo liver cells (L02), and human epithelial lung cells (L132), with expression levels reaching a peak after 45 min of infection. Further functional analysis of recombinant Sph2 (rSph2) by LDH assays and confocal microscopy showed that rSph2 can be internalised by cells both by causing cell membrane damage and by a damage-independent clathrin-mediated endocytosis pathway. Subsequently, rSph2 is able to translocate to mitochondria, which led to an increase in the levels of reactive oxygen species (ROS) and a decrease of the mitochondrial membrane potential (ΔΨm ). Further flowcytometry analyses after rSph2 exposure showed that 28.7%, 31%, and 27.3% of the HUVEC, L02, and L132 cells, respectively, became apoptotic. Because apoptosis could be decreased with the ROS inhibitor N-acetyl cysteine, these experiments suggested that rSph2 triggers apoptosis through mitochondrial membrane damage and ROS elevation. The ability of leptospiral haemolysin rSph2 to cause apoptosis likely contributes to the pathogenesis of leptospirosis.
Collapse
Affiliation(s)
- Rongbo Che
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shibiao Ding
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Clinical Laboratory, Hospital of integrated traditional Chinese and Western, Hangzhou, China
| | - Qinchao Zhang
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiqun Yang
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Yan
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China.,Basic Medical Microbiology Division, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xu'ai Lin
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China.,Basic Medical Microbiology Division, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
A novel Fas-binding outer membrane protein and lipopolysaccharide of Leptospira interrogans induce macrophage apoptosis through the Fas/FasL-caspase-8/-3 pathway. Emerg Microbes Infect 2018; 7:135. [PMID: 30061622 PMCID: PMC6066479 DOI: 10.1038/s41426-018-0135-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/18/2018] [Accepted: 06/23/2018] [Indexed: 02/08/2023]
Abstract
Leptospira interrogans is the major causative agent of leptospirosis, an emerging, globally spreading zoonotic infectious disease. The pathogen induces macrophage apoptosis, but the molecular basis and mechanism remain unknown. In the present study, we found that L. interrogans caused apoptosis of phagocytosis-inhibited macrophages, and the product of the L. interrogans LB047 gene (Lep-OMP047) was the unique protein captured by mouse and human Fas proteins. The recombinant expressed Lep-OMP047 (rLep-OMP047) strongly bound mouse and human Fas proteins with equilibrium association constant (KD) values of 5.20 × 10−6 to 2.84 × 10−9 M according to surface plasmon resonance measurement and isothermal titration calorimetry. Flow-cytometric examination showed that 5 μg rLep-OMP047 or 1 μg lipopolysaccharide of L. interrogans (Lep-LPS) caused 43.70% or 21.90% early apoptosis in mouse J774A.1 macrophages and 28.41% or 15.80% for PMA-differentiated human THP-1 macrophages, respectively, but the apoptosis was blocked by Fas-antagonizing IgGs, Fas siRNAs, and caspase-8/-3 inhibitors. Moreover, Lep-OMP047 was significantly upregulated during infection of macrophages. Lep-LPS promoted the expression and cytomembrane translocation of Fas and FasL in macrophages. The JNK and p38 MAPK but not ERK signaling pathways, as well as the transcription factors c-Jun and ATF2 but not CHOP, mediated Lep-LPS-induced Fas/FasL expression and translocation. TLR2 but not TLR4 mediated Lep-LPS-induced JNK/p38 MAPK activation. Therefore, we demonstrated that a novel Fas-binding OMP and LPS of L. interrogans induce macrophage apoptosis through the Fas/FasL-caspase-8/-3 pathway.
Collapse
|
26
|
Characterization of the microtranscriptome of macrophages infected with virulent, attenuated and saprophyte strains of Leptospira spp. PLoS Negl Trop Dis 2018; 12:e0006621. [PMID: 29979677 PMCID: PMC6051669 DOI: 10.1371/journal.pntd.0006621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/18/2018] [Accepted: 06/19/2018] [Indexed: 01/18/2023] Open
Abstract
Leptospirosis is a bacterial zoonosis, caused by Leptospira spp., that leads to significant morbidity and mortality worldwide. Despite considerable advances, much is yet to be discovered about disease pathogenicity. The influence of epigenetic mechanisms, particularly RNA-mediated post-transcriptional regulation of host immune response has been described following a variety of bacterial infections. The current study examined the microtranscriptome of macrophages J774A.1 following an 8h infection with virulent, attenuated and saprophyte strains of Leptospira. Microarray analysis revealed that 29 miRNAs were misregulated following leptospiral infection compared to control macrophages in a strain and virulence-specific manner. Pathway analysis for targets of these differentially expressed miRNAs suggests that several processes involved in immune response could be regulated by miRNAs. Our data provides the first evidence that host miRNAs are regulated by Leptospira infection in macrophages. A number of the identified miRNA targets participate in key immune response processes. We suggest that post-transcriptional regulation by miRNAs may play a role in host response to infection in leptospirosis. Leptospirosis is a zoonotic disease, distributed worldwide, affecting millions of people each year, and leading to sixty thousand deaths per year. These bacteria are found in soil and water and are eliminated by the urine of rodents, their natural reservoir. Through skin contact, bacteria can be acquired, infecting the host. Infection process in leptospirosis is not completely understood and here we add another layer of disease regulation. Recent studies have shown that pathogens can modulate host response. Our current study examined the expression of microRNAs in murine macrophages following an 8h infection with virulent, attenuated and saprophyte strains of Leptospira. This study provides the first evidence that these post-transcriptional regulatory molecules, microRNAs, are modulated in macrophages in a species and virulence-specific manner, following infection with different strains of Leptospira spp. These microRNAs are involved in the regulation of inflammatory and antimicrobial responses in the host and could lead to the identification of biomarkers or therapeutic targets for this disease.
Collapse
|
27
|
Cagliero J, Villanueva SYAM, Matsui M. Leptospirosis Pathophysiology: Into the Storm of Cytokines. Front Cell Infect Microbiol 2018; 8:204. [PMID: 29974037 PMCID: PMC6019470 DOI: 10.3389/fcimb.2018.00204] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/31/2018] [Indexed: 12/20/2022] Open
Abstract
Leptospirosis is a neglected tropical zoonosis caused by pathogenic spirochetes of the genus Leptospira. Infected reservoir animals, typically mice and rats, are asymptomatic, carry the pathogen in their renal tubules, and shed pathogenic spirochetes in their urine, contaminating the environment. Humans are accidental hosts of pathogenic Leptospira. Most human infections are mild or asymptomatic. However, 10% of human leptospirosis cases develop into severe forms, including high leptospiremia, multi-organ injuries, and a dramatically increased mortality rate, which can relate to a sepsis-like phenotype. During infection, the triggering of the inflammatory response, especially through the production of cytokines, is essential for the early elimination of pathogens. However, uncontrolled cytokine production can result in a cytokine storm process, followed by a state of immunoparalysis, which can lead to sepsis and associated organ failures. In this review, the involvement of cytokine storm and subsequent immunoparalysis in the development of severe leptospirosis in susceptible hosts will be discussed. The potential contribution of major pro-inflammatory cytokines in the development of tissue lesions and systemic inflammatory response, as well as the role of anti-inflammatory cytokines in contributing to the onset of a deleterious immunosuppressive cascade will also be examined. Data from studies comparing susceptible and resistant mouse models will be included. Lastly, a concise discussion on the use of cytokines for therapeutic purposes or as biomarkers of leptospirosis severity will be provided.
Collapse
Affiliation(s)
- Julie Cagliero
- Group Immunity and Inflammation, Institut Pasteur International Network, Institut Pasteur in New Caledonia, Nouméa, New Caledonia
| | - Sharon Y A M Villanueva
- Department of Medical Microbiology, College of Public Health, University of the Philippines, Manila, Philippines
| | - Mariko Matsui
- Group Immunity and Inflammation, Institut Pasteur International Network, Institut Pasteur in New Caledonia, Nouméa, New Caledonia
| |
Collapse
|
28
|
de Castro ÍA, Bavia L, Fraga TR, Amano MT, Breda LCD, Granados-Martinez AP, da Silva AMG, Vasconcellos SA, Isaac L. Role of Murine Complement Component C5 in Acute in Vivo Infection by Pathogenic Leptospira interrogans. Front Cell Infect Microbiol 2018; 8:63. [PMID: 29568732 PMCID: PMC5852101 DOI: 10.3389/fcimb.2018.00063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/13/2018] [Indexed: 01/07/2023] Open
Abstract
Leptospirosis is considered one of the most important zoonosis worldwide. The activation of the Complement System is important to control dissemination of several pathogens in the host. Only a few studies have employed murine models to investigate leptospiral infection and our aim in this work was to investigate the role of murine C5 during in vivo infection, comparing wild type C57BL/6 (B6 C5+/+) and congenic C57BL/6 (B6 C5−/−, C5 deficient) mice during the first days of infection. All animals from both groups survived for at least 8 days post-infection with pathogenic Leptospira interrogans serovar Kennewicki strain Fromm (LPF). At the third day of infection, we observed greater numbers of LPF in the liver of B6 C5−/− mice when compared to B6 C5+/+ mice. Later, on the sixth day of infection, the LPF population fell to undetectable levels in the livers of both groups of mice. On the third day, the inflammatory score was higher in the liver of B6 C5+/+ mice than in B6 C5−/− mice, and returned to normal on the sixth day of infection in both groups. No significant histopathological differences were observed in the lung, kidney and spleen from both infected B6 C5+/+ than B6 C5−/− mice. Likewise, the total number of circulating leukocytes was not affected by the absence of C5. The liver levels of IL-10 on the sixth day of infection was lower in the absence of C5 when compared to wild type mice. No significant differences were observed in the levels of several inflammatory cytokines when B6 C5+/+ and B6 C5−/− were compared. In conclusion, C5 may contribute to the direct killing of LPF in the first days of infection in C57BL/6 mice. On the other hand, other effector immune mechanisms probably compensate Complement impairment since the mice survival was not affected by the absence of C5 and its activated fragments, at least in the early stage of this infection.
Collapse
Affiliation(s)
- Íris A de Castro
- Laboratory of Complement, Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Lorena Bavia
- Laboratory of Complement, Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Tatiana R Fraga
- Laboratory of Complement, Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Mariane T Amano
- Laboratory of Complement, Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Leandro C D Breda
- Laboratory of Complement, Department of Immunology, University of São Paulo, São Paulo, Brazil
| | | | - Ana M G da Silva
- Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Lourdes Isaac
- Laboratory of Complement, Department of Immunology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Dong SL, Hu WL, Ge YM, Ojcius DM, Lin X, Yan J. A leptospiral AAA+ chaperone-Ntn peptidase complex, HslUV, contributes to the intracellular survival of Leptospira interrogans in hosts and the transmission of leptospirosis. Emerg Microbes Infect 2017; 6:e105. [PMID: 29184154 PMCID: PMC5717094 DOI: 10.1038/emi.2017.93] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/17/2017] [Accepted: 09/24/2017] [Indexed: 12/13/2022]
Abstract
Leptospirosis caused by Leptospira is a zoonotic disease of global importance but it is considered as an emerging or re-emerging infectious disease in many areas in the world. Until now, the mechanisms about pathogenesis and transmission of Leptospira remains poorly understood. As eukaryotic and prokaryotic proteins can be denatured in adverse environments and chaperone-protease/peptidase complexes degrade these harmful proteins, we speculate that infection may also cause leptospiral protein denaturation, and the HslU and HslV proteins of L. interrogans may compose a complex to degrade denatured proteins that enhances leptospiral survival in hosts. Here we show that leptospiral HslUV is an ATP-dependent chaperone-peptidase complex containing ATPase associated with various cellular activity (AAA+) and N-terminal nucleophile (Ntn) hydrolase superfamily domains, respectively, which hydrolyzed casein and chymotrypsin-like substrates, and this hydrolysis was blocked by threonine protease inhibitors. The infection of J774A.1 macrophages caused the increase of leptospiral denatured protein aggresomes, but more aggresomes accumulated in hslUV gene-deleted mutant. The abundant denatured leptospiral proteins are involved in ribosomal structure, flagellar assembly, two-component signaling systems and transmembrane transport. Compared to the wild-type strain, infection of cells in vitro with the mutant resulted in a higher number of dead leptospires, less leptospiral colony-forming units and lower growth ability, but also displayed a lower half lethal dose, attenuated histopathological injury and decreased leptospiral loading in lungs, liver, kidneys, peripheral blood and urine in hamsters. Therefore, our findings confirmed that HslUV AAA+ chaperone-Ntn peptidase complex of L. interrogans contributes to leptospiral survival in hosts and transmission of leptospirosis.
Collapse
Affiliation(s)
- Shi-Lei Dong
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.,Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, Zhejiang 310013, China
| | - Wei-Lin Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yu-Mei Ge
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, China
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA 94103, USA
| | - Xu'ai Lin
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Jie Yan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
30
|
Hu WL, Dong HY, Li Y, Ojcius DM, Li SJ, Yan J. Bid-Induced Release of AIF/EndoG from Mitochondria Causes Apoptosis of Macrophages during Infection with Leptospira interrogans. Front Cell Infect Microbiol 2017; 7:471. [PMID: 29184851 PMCID: PMC5694448 DOI: 10.3389/fcimb.2017.00471] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/27/2017] [Indexed: 12/20/2022] Open
Abstract
Leptospirosis is a global zoonotic infectious disease caused by pathogenic Leptospira species. Leptospire-induced macrophage apoptosis through the Fas/FasL-caspase-8/3 pathway plays an important role in the survival and proliferation of the pathogen in hosts. Although, the release of mitochondrial apoptosis-inducing factor (AIF) and endonuclease G (EndoG) in leptospire-infected macrophages has been described, the mechanisms linking caspase and mitochondrion-related host-cell apoptosis has not been determined. Here, we demonstrated that leptospire-infection induced apoptosis through mitochondrial damages in macrophages. Apoptosis was caused by the mitochondrial release and nuclear translocation of AIF and/or EndoG, leading to nuclear DNA fragmentation. However, the mitochondrion-related CytC-caspase-9/3 pathway was not activated. Next, we found that the release and translocation of AIF and/or EndoG was preceded by the activation of the BH3-interacting domain death agonist (Bid). Furthermore, our data demonstrated that caspase-8 was activated during the infection and caused the activation of Bid. Meanwhile, high reactive oxygen species (ROS) trigged by the infection caused the dephosphorylation of Akt, which also activated Bid. In conclusion, Bid-mediated mitochondrial release of AIF and/or EndoG followed by nuclear translocation is a major mechanism of leptospire- induced apoptosis in macrophages, and this process is modulated by both caspase-8 and ROS-Akt signal pathways.
Collapse
Affiliation(s)
- Wei-Lin Hu
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Yan Dong
- Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Yang Li
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, United States
| | - Shi-Jun Li
- Institute of Communicable Disease Control and Prevention, Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, China
| | - Jie Yan
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
31
|
Chen X, Li SJ, Ojcius DM, Sun AH, Hu WL, Lin X, Yan J. Mononuclear-macrophages but not neutrophils act as major infiltrating anti-leptospiral phagocytes during leptospirosis. PLoS One 2017; 12:e0181014. [PMID: 28700741 PMCID: PMC5507415 DOI: 10.1371/journal.pone.0181014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/23/2017] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE To identify the major infiltrating phagocytes during leptospirosis and examine the killing mechanism used by the host to eliminate Leptospira interrogans. METHODS Major infiltrating phagocytes in Leptospira-infected C3H/HeJ mice were detected by immunohistochemistry. Chemokines and vascular endothelial cell adhesion molecules (VECAMs) of Leptospira-infected mice and leptospirosis patients were detected by microarray and immunohistochemistry. Leptospira-phagocytosing and -killing abilities of human or mouse macrophages and neutrophils, and the roles of intracellular ROS, NO and [Ca2+]i in Leptospira-killing process were evaluated by confocal microscopy and spectrofluorimetry. RESULTS Peripheral blood mononuclear-macrophages rather than neutrophils were the main infiltrating phagocytes in the lungs, liver and kidneys of infected mice. Levels of macrophage- but not neutrophil-specific chemokines and VECAMs were significantly increased in the samples from infected mice and patients. All macrophages tested had a higher ability than neutrophils to phagocytose and kill leptospires. Higher ROS and NO levels and [Ca2+]i in the macrophages were involved in killing leptospires. Human macrophages displayed more phagolysosome formation and a stronger leptospire-killing ability to than mouse macrophages. CONCLUSIONS Mononuclear-macrophages but not neutrophils represent the main infiltrating and anti-leptospiral phagocytes during leptospirosis. A lower level of phagosome-lysosome fusion may be responsible for the lower Leptospira-killing ability of human macrophages.
Collapse
Affiliation(s)
- Xu Chen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Shi-Jun Li
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, P.R. China
| | - David M. Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, California, United States of America
| | - Ai-Hua Sun
- Faculty of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Wei-Lin Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xu’ai Lin
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Jie Yan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
32
|
Li S, Li P, Zhang L, Hu W, Wang M, Liu Y, Tang G, Wang D, Zhou B, Yan J. The role of reactive oxygen intermediates in the intracellular fate of Leptospira interrogans in the macrophages of different hosts. PLoS One 2017; 12:e0178618. [PMID: 28575082 PMCID: PMC5456347 DOI: 10.1371/journal.pone.0178618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/16/2017] [Indexed: 12/20/2022] Open
Abstract
Background Pathogenic species of Leptospira cause leptospirosis, a global zoonotic disease. Our previous work showed that leptospires survive and replicate in human macrophages but are killed in murine macrophages. However, the mechanism responsible for the different intracellular fates of leptospires within the macrophages of different hosts remains unclear. Results The present study demonstrates that infection with Leptospira interrogans caused significant up-regulation of reactive oxygen species (ROS) and superoxide in J774A.1 cells but did so to a lesser extent in THP-1 cells. The up-regulation of ROS and superoxide was significantly inhibited by the NADPH oxidase inhibitor apocynin. The damaged leptospires and remnants of leptospires within membrane-bound vacuoles were significantly inhibited by apocynin in J774A.1 cells but were less inhibited in THP-1 cells. In addition, apocynin significantly prevented damage to leptospires and the co-localization of L. interrogans with lysosomes in J774A.1 cells but did so to a lesser extent in THP-1 cells. Furthermore, the relative fluorescence intensity levels of intracellular leptospires and the viability of the intracellular leptospires increased in apocynin pretreated J774A.1 and THP-1 cells after 2 h of infection. Conclusions The present study, based on our previous findings, further demonstrated that ROS contributed substantially to the bactericidal ability of mouse macrophages to kill intracellular leptospires. However, ROS did not contribute as much in human macrophages, which partially explains the different intracellular fates of L. interrogans in human and mouse macrophages.
Collapse
Affiliation(s)
- Shijun Li
- Institute of Communicable Disease Control and Prevention, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, P.R. China
| | - Peili Li
- College of Animal Science, Guizhou University, Huaxi District, Guiyang, Guizhou, P.R. China
| | - Lei Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, P.R. China
| | - Weilin Hu
- Department of Medical Microbiology and Parasitology, College of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Ming Wang
- College of Animal Science, Guizhou University, Huaxi District, Guiyang, Guizhou, P.R. China
| | - Ying Liu
- Institute of Communicable Disease Control and Prevention, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, P.R. China
| | - Guangpeng Tang
- Institute of Communicable Disease Control and Prevention, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, P.R. China
| | - Dingming Wang
- Institute of Communicable Disease Control and Prevention, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, P.R. China
| | - Bijun Zhou
- College of Animal Science, Guizhou University, Huaxi District, Guiyang, Guizhou, P.R. China
| | - Jie Yan
- Department of Medical Microbiology and Parasitology, College of Medicine, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
33
|
Leptospirosis in Tropical Regions of Southeast Mexico: A Clinical Case Series Review. CURRENT TROPICAL MEDICINE REPORTS 2017. [DOI: 10.1007/s40475-017-0104-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
|
35
|
Park CH, Lee JY, Kim MY, Shin SH, Roh SS, Choi JS, Chung HY, Song YO, Shin YS, Yokozawa T. Oligonol, a low-molecular-weight polyphenol derived from lychee fruit, protects the pancreas from apoptosis and proliferation via oxidative stress in streptozotocin-induced diabetic rats. Food Funct 2016; 7:3056-3063. [DOI: 10.1039/c6fo00088f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We have identified the pancreato-protective effects of Lychee Fruit-Derived Polyphenol Mixture, Oligonol, on diabetes.
Collapse
Affiliation(s)
- Chan Hum Park
- Department of Medicinal Crop Research
- National Institute of Horticultural and Herbal Science
- Rural Development Administration
- Eumseong 369-873
- Republic of Korea
| | - Joo Young Lee
- College of Korean Medicine
- Daegu Haany University
- Gyeongsan 712-715
- Republic of Korea
| | - Min Yeong Kim
- College of Korean Medicine
- Daegu Haany University
- Gyeongsan 712-715
- Republic of Korea
| | - Sung Ho Shin
- College of Korean Medicine
- Daegu Haany University
- Gyeongsan 712-715
- Republic of Korea
| | - Seong-Soo Roh
- College of Korean Medicine
- Daegu Haany University
- Gyeongsan 712-715
- Republic of Korea
| | - Jae Sue Choi
- Department of Food and Life Science
- Pukyong National University
- Busan 608-737
- Republic of Korea
| | - Hae Young Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA)
- College of Pharmacy
- Pusan National University
- Busan 609-735
- Republic of Korea
| | - Yeong-Ok Song
- Department of Food Science and Nutrition
- Pusan National University
- Busan 609-735
- Republic of Korea
| | - Yu Su Shin
- Department of Medicinal Crop Research
- National Institute of Horticultural and Herbal Science
- Rural Development Administration
- Eumseong 369-873
- Republic of Korea
| | - Takako Yokozawa
- Graduate School of Science and Engineering for Research
- University of Toyama
- Toyama 930-8555
- Japan
| |
Collapse
|
36
|
Rocha-Perugini V, González-Granado JM. Nuclear envelope lamin-A as a coordinator of T cell activation. Nucleus 2015; 5:396-401. [PMID: 25482193 PMCID: PMC4164483 DOI: 10.4161/nucl.36361] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nuclear lamins A/C control several critical cellular functions, e.g., chromatin organization, gene transcription, DNA replication, DNA damage responses, cell cycle progression, cell differentiation, and cell polarization during migration. However, few studies have addressed the role of lamins A/C in the control of the functions of immune cells. Recently, we have demonstrated that lamins A/C are induced in T cells upon antigen recognition. Lamins A/C enhance T cell responses by coupling the plasma membrane to the nucleus via the linker of nucleoskeleton and cytoskeleton (LINC) complex and the actin cytoskeleton. Here, we discuss the possible physiological relevance and functional context of lamin A/C in T cell activation and propose a model in which lamins A/C are key modulators of immune cell functions.
Collapse
Affiliation(s)
- Vera Rocha-Perugini
- a Servicio de Inmunología; Hospital Universitario de la Princesa; Instituto de Investigación Sanitaria de la Princesa; Madrid, Spain
| | | |
Collapse
|
37
|
Marinho M, Táparo CV, Oliveira-Júnior IS, Perri SHV, Cardoso TC. Tissue apoptosis in mice infected with Leptospira interrogans serovar Icterohaemorrhagiae. J Venom Anim Toxins Incl Trop Dis 2015. [PMID: 26221123 PMCID: PMC4517494 DOI: 10.1186/s40409-015-0022-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This investigation aimed to evaluate the occurrence of some apoptotic features induced by Leptospira interrogans serovar Icterohaemorrhagiae infection in young BALB/c mice during 2, 4, 7, 10, 14 and 21 days post-infection (dpi). METHODS The animals were euthanized and lung, liver and kidneys were harvested to histopathology analysis and immunohistochemistry to caspase-3 antigen detection was performed. RESULTS Chromatin condensation in kidney and liver tissues, but not in lung tissue, was observed. Caspase-3 reactive cells, mainly characterized as renal epithelial cells, were detected in the days 14 and 21 at high levels when compared to days 2, 4 and 7 (p = 0.025; p < 0.05). Lung sections revealed caspase-3 labeled alveolar cells in 10 and 14 days post-infection was higher than observed at 7 days (p = 0.0497; p < 0.05). Liver sections demonstrated reactive cells at a highest level at 14 and 21 days post-infection when comparison to 2, 4, 7 and 10 days (p = 0.0069; p < 0.05). CONCLUSIONS Our results suggest that infection of L. interrogans induce in kidney, liver and lung an activation of apoptosis mediated by caspase-3 dependent pathway in later phases of infectious process.
Collapse
Affiliation(s)
- Márcia Marinho
- Department of Support, Production and Animal Health, Veterinary Medicine School, São Paulo State University (UNESP - Univ Estadual Paulista), Araçatuba, São Paulo Brazil
| | - Cilene Vidovix Táparo
- Department of Support, Production and Animal Health, Veterinary Medicine School, São Paulo State University (UNESP - Univ Estadual Paulista), Araçatuba, São Paulo Brazil
| | - Itamar S Oliveira-Júnior
- Department of Inflammatory Mediators, Anesthesiology, Pain and Intensive Care, UNIFESP, São Paulo, São Paulo Brazil
| | - Silvia Helena Venturoli Perri
- Department of Support, Production and Animal Health, Veterinary Medicine School, São Paulo State University (UNESP - Univ Estadual Paulista), Araçatuba, São Paulo Brazil
| | - Tereza Cristina Cardoso
- Department of Support, Production and Animal Health, Veterinary Medicine School, São Paulo State University (UNESP - Univ Estadual Paulista), Araçatuba, São Paulo Brazil
| |
Collapse
|
38
|
Abstract
The mechanisms of disease pathogenesis in leptospirosis are poorly defined. Recent developments in the application of genetic tools in the study of Leptospira have advanced our understanding by allowing the assessment of mutants in animal models. As a result, a small number of essential virulence factors have been identified, though most do not have a clearly defined function. Significant advances have also been made in the in vitro characterization of leptospiral interaction with host structures, including extracellular matrix proteins (such as laminin, elastin, fibronectin, collagens), proteins related to hemostasis (fibrinogen, plasmin), and soluble mediators of complement resistance (factor H, C4b-binding protein), although none of these in vitro findings has been translated to the host animal. Binding to host structures may permit colonization of the host, prevention of blood clotting may contribute to hemorrhage, while interaction with complement resistance mediators may contribute to survival in serum. While not a classical intracellular pathogen, the interaction of leptospires and phagocytic cells appears complex, with bacteria surviving uptake and promoting apoptosis; mutants relating to these processes (such as cell invasion and oxidative stress resistance) are attenuated in vivo. Another feature of leptospiral biology is the high degree of functional redundancy and the surprising lack of attenuation of mutants in what appear to be certain virulence factors, such as LipL32 and LigB. While many advances have been made, there remains a lack of understanding of how Leptospira causes tissue pathology. It is likely that leptospires have many novel pathogenesis mechanisms that are yet to be identified.
Collapse
|
39
|
Komi KK, Ge YM, Xin XY, Ojcius DM, Sun D, Hu WL, Zhao X, Lin X, Yan J. RETRACTED: ChpK and MazF of the toxin-antitoxin modules are involved in the virulence of Leptospira interrogans during infection. Microbes Infect 2015; 17:34-47. [PMID: 25461800 DOI: 10.1016/j.micinf.2014.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/27/2014] [Accepted: 10/29/2014] [Indexed: 11/20/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the corresponding author and the editorial office of Microbes and Infection. An independent reviewer of the retraction request was also appointed given that one of the authors is the Editor-in- Chief. For figure 1C, Lanes 1 and 2 appear to share some unexpected similarities, except for the bottom band, which also appear to be the band of interest. Sections of Figure 2C appear similar to sections of Figure 5D of a paper that had already appeared in Molecular Microbiology, volume 83, issue 5 (2012) 1006-1023. https://doi.org/10.1111/j.1365-2958.2012.07985.x. In figure 3A, Flow cytograms share identical/similar patterns highlighted in various colours. Peculiarly, some of these patterns can be seen as horizontal rotations of others along the axis that separates different quadrants. (ie red green & purple). Moreover, some quadrants appear to have very high densities of events that are suprisingly limited by quadrant gates (most noticeably quadrants B2 from the second column of panels. Figure 5A-B it was found that there were duplicated bands were produced. Figures 5C and 5D, it was found that bands across each individual gel appear identical. One of the conditions of submission of a paper for publication is that authors declare explicitly that the paper has not been previously published and is not under consideration for publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a misuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process”.
Collapse
Affiliation(s)
- Komi Koukoura Komi
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China.
| | - Yu-Mei Ge
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | - Xiao-Yang Xin
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | - David M Ojcius
- Health Sciences Research Institute and Molecular Cell Biology Department, University of California, Merced, CA 95343, USA.
| | - Dexter Sun
- New York Presbyterian Hospital & Hospital for Special Surgery, Weill Medical College, Cornell University, New York, NY, USA.
| | - Wei-Lin Hu
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | - Xin Zhao
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | - Xu'ai Lin
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | - Jie Yan
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
40
|
Abstract
Pathogenic Leptospira has the capacity to infect a broad range of mammalian hosts. Leptospirosis may appear as an acute, potentially fatal infection in accidental hosts, or progress into a chronic, largely asymptomatic infection in natural maintenance hosts. The course that Leptospira infection follows is dependent upon poorly understood factors, but is heavily influenced by both the host species and bacterial serovar involved in infection. Recognition of pathogen-associated molecular patterns (PAMPs) by a variety of host pattern recognition receptors (PRRs) activates the host immune system. The outcome of this response may result in bacterial clearance, limited bacterial colonization of a few target organs, principally the kidney, or induction of sepsis as the host succumbs to infection and dies. This chapter describes current knowledge of how the host recognizes Leptospira and responds to infection using innate and acquired immune responses. Aspects of immune-mediated pathology and pathogen strategies to evade the host immune response are also addressed.
Collapse
Affiliation(s)
- Richard L Zuerner
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University for Agricultural Sciences, 75007, Uppsala, Sweden,
| |
Collapse
|
41
|
Liu Y, Zhang Y, Gu Z, Hao L, Du J, Yang Q, Li S, Wang L, Gong S. Cholecystokinin octapeptide antagonizes apoptosis in human retinal pigment epithelial cells. Neural Regen Res 2014; 9:1402-8. [PMID: 25221599 PMCID: PMC4160873 DOI: 10.4103/1673-5374.137596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2014] [Indexed: 11/13/2022] Open
Abstract
Although cholecystokinin octapeptide-8 is important for neurological function, its neuroprotective properties remain unclear. We speculated that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against oxidative injury. In this study, retinal pigment epithelial cells were treated with peroxynitrite to induce oxidative stress. Peroxynitrite triggered apoptosis in these cells, and increased the expression of Fas-associated death domain, Bax, caspa-se-8 and Bcl-2. These changes were suppressed by treatment with cholecystokinin octapeptide-8. These results suggest that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against apoptosis induced by peroxynitrite.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Ophthalmology, First Central Hospital of Baoding, Baoding, Hebei Province, China
| | - Yueling Zhang
- Department of Ophthalmology, First Central Hospital of Baoding, Baoding, Hebei Province, China
| | - Zhaohui Gu
- Department of Ophthalmology, First Central Hospital of Baoding, Baoding, Hebei Province, China
| | - Lina Hao
- Department of Ophthalmology, Hebei Province People's Hospital, Shijiazhuang, Hebei Province, China
| | - Juan Du
- Department of Ophthalmology, First Central Hospital of Baoding, Baoding, Hebei Province, China
| | - Qian Yang
- Department of Ophthalmology, First Central Hospital of Baoding, Baoding, Hebei Province, China
| | - Suping Li
- Department of Ophthalmology, First Central Hospital of Baoding, Baoding, Hebei Province, China
| | - Liying Wang
- Department of Ophthalmology, First Central Hospital of Baoding, Baoding, Hebei Province, China
| | - Shilei Gong
- Department of Endoscope Room, First Central Hospital of Baoding, Baoding, Hebei Province, China
| |
Collapse
|
42
|
Amorim AT, Marques LM, Santos AMOG, Martins HB, Barbosa MS, Rezende IS, Andrade EF, Campos GB, Lobão TN, Cortez BA, Monezi TA, Machado-Santelli GM, Timenetsky J. Apoptosis in HEp-2 cells infected with Ureaplasma diversum. Biol Res 2014; 47:38. [PMID: 25299837 PMCID: PMC4167145 DOI: 10.1186/0717-6287-47-38] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/22/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Bacterial pathogens have many strategies for infecting and persisting in host cells. Adhesion, invasion and intracellular life are important features in the biology of mollicutes. The intracellular location of Ureaplasma diversum may trigger disturbances in the host cell. This includes activation or inhibition of pro and anti-apoptotic factors, which facilitate the development of host damage. The aim of the present study was to associate U. diversum infection in HEp-2 cells and apoptosis induction. Cells were infected for 72hs with four U. diversum clinical isolates and an ATCC strain. The U. diversum invasion was analyzed by Confocal Laser Scanning Microscopy and gentamicin invasion assay. The apoptosis was evaluated using pro-apoptotic and anti-apoptotic gene expression, and FITC Annexin V/Dead Cell Apoptosis Kit. RESULTS The number of internalized ureaplasma in HEp-2 cells increased significantly throughout the infection. The flow cytometry analysis with fluorochromes to detect membrane depolarization and gene expression for caspase 2, 3 and 9 increased in infected cells after 24 hours. However, after 72 hours a considerable decrease of apoptotic cells was observed. CONCLUSIONS The data suggests that apoptosis may be initially induced by some isolates in association with HEp-2 cells, but over time, there was no evidence of apoptosis in the presence of ureaplasma and HEp-2 cells. The initial increase and then decrease in apoptosis could be related to bacterial pathogen-associated molecular pattern (PAMPS). Moreover, the isolates of U. diversum presented differences in the studied parameters for apoptosis. It was also observed that the amount of microorganisms was not proportional to the induction of apoptosis in HEp-2 cells.
Collapse
Affiliation(s)
- Aline Teixeira Amorim
- Instituto Multidisciplinar em Saúde, Núcleo de Tecnologia em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil.
| | - Lucas Miranda Marques
- Instituto Multidisciplinar em Saúde, Núcleo de Tecnologia em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil. .,Instituto de Ciências Biomédicas, Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil.
| | | | - Hellen Braga Martins
- Instituto Multidisciplinar em Saúde, Núcleo de Tecnologia em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil.
| | - Maysa Santos Barbosa
- Instituto Multidisciplinar em Saúde, Núcleo de Tecnologia em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil.
| | - Izadora Souza Rezende
- Instituto Multidisciplinar em Saúde, Núcleo de Tecnologia em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil.
| | - Ewerton Ferraz Andrade
- Instituto Multidisciplinar em Saúde, Núcleo de Tecnologia em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil.
| | - Guilherme Barreto Campos
- Instituto de Ciências Biomédicas, Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil.
| | - Tássia Neves Lobão
- Instituto de Ciências Biomédicas, Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil.
| | - Beatriz Araujo Cortez
- Instituto de Ciências Biomédicas, Departamento de Biologia Celular e do Desenvolvimento, Universidade de São Paulo, São Paulo, Brazil.
| | - Telma Alvez Monezi
- Instituto de Ciências Biomédicas, Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil.
| | - Glaucia Maria Machado-Santelli
- Instituto de Ciências Biomédicas, Departamento de Biologia Celular e do Desenvolvimento, Universidade de São Paulo, São Paulo, Brazil.
| | - Jorge Timenetsky
- Instituto de Ciências Biomédicas, Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
43
|
Pathogenesis of leptospirosis: Cellular and molecular aspects. Vet Microbiol 2014; 172:353-8. [DOI: 10.1016/j.vetmic.2014.06.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/09/2014] [Accepted: 06/14/2014] [Indexed: 11/23/2022]
|
44
|
Hu Q, Cui X, Tao L, Xiu L, Wang T, Wang X. Staphylococcus aureusInduces Apoptosis in Primary Bovine Mammary Epithelial Cells Through Fas-FADD Death Receptor-Linked Caspase-8 Signaling. DNA Cell Biol 2014; 33:388-97. [DOI: 10.1089/dna.2013.2195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Qingliang Hu
- College of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Xinjie Cui
- College of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Lin Tao
- College of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Lei Xiu
- College of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Ting Wang
- College of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Xiao Wang
- College of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| |
Collapse
|
45
|
Shen H, Liu J, Wang Y, Lian H, Wang J, Xing L, Yan X, Wang J, Zhang X. Aflatoxin G1-induced oxidative stress causes DNA damage and triggers apoptosis through MAPK signaling pathway in A549 cells. Food Chem Toxicol 2013; 62:661-9. [DOI: 10.1016/j.fct.2013.09.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 08/30/2013] [Accepted: 09/24/2013] [Indexed: 11/16/2022]
|
46
|
Kassegne K, Hu W, Ojcius DM, Sun D, Ge Y, Zhao J, Yang XF, Li L, Yan J. Identification of collagenase as a critical virulence factor for invasiveness and transmission of pathogenic Leptospira species. J Infect Dis 2013; 209:1105-15. [PMID: 24277745 DOI: 10.1093/infdis/jit659] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Leptospirosis is a global zoonotic disease. Transmission of Leptospira from animals to humans occurs through contact with water contaminated with leptospire-containing urine of infected animals. However, the molecular basis for the invasiveness of Leptospira and transmission of leptospirosis remains unknown. METHODS Activity of Leptospira interrogans strain Lai colA gene product (ColA) to hydrolyze different collagenic substrates was determined by spectrophotometry. Expression and secretion of ColA during infection were detected by reverse-transcription quantitative polymerase chain reaction and Western blot assay. The colA gene-deleted (ΔcolA) and colA gene-complemented (CΔcolA) mutants were generated to determine the roles of ColA in transcytosis in vitro and virulence in hamsters. RESULTS Recombinant or native ColA hydrolyzed all the tested substrates in which type III collagen was the favorite substrate with 2.16 mg/mL Km and 35.6 h(-)(1) Kcat values. Coincubation of the spirochete with HUVEC or HEK293 cells directly caused the significant elevation of ColA expression and secretion. Compared with wild-type strain, ΔcolA mutant displayed much-attenuated transcytosis through HEK293 and HUVEC monolayers, and less leptospires in blood, lung, liver, kidney and urine and 25-fold-decreased 50% lethal dose and milder histopathological injury in hamsters. CONCLUSIONS The product of colA gene is a collagenase as a crucial virulence factor in the invasiveness and transmission of L. interrogans.
Collapse
Affiliation(s)
- Kokouvi Kassegne
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Xue F, Zhao X, Yang Y, Zhao J, Yang Y, Cao Y, Hong C, Liu Y, Sun L, Huang M, Gu J. Responses of murine and human macrophages to leptospiral infection: a study using comparative array analysis. PLoS Negl Trop Dis 2013; 7:e2477. [PMID: 24130911 PMCID: PMC3794915 DOI: 10.1371/journal.pntd.0002477] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 08/30/2013] [Indexed: 12/04/2022] Open
Abstract
Leptospirosis is a re-emerging tropical infectious disease caused by pathogenic Leptospira spp. The different host innate immune responses are partially related to the different severities of leptospirosis. In this study, we employed transcriptomics and cytokine arrays to comparatively calculate the responses of murine peritoneal macrophages (MPMs) and human peripheral blood monocytes (HBMs) to leptospiral infection. We uncovered a series of different expression profiles of these two immune cells. The percentages of regulated genes in several biological processes of MPMs, such as antigen processing and presentation, membrane potential regulation, and the innate immune response, etc., were much greater than those of HBMs (>2-fold). In MPMs and HBMs, the caspase-8 and Fas-associated protein with death domain (FADD)-like apoptosis regulator genes were significantly up-regulated, which supported previous results that the caspase-8 and caspase-3 pathways play an important role in macrophage apoptosis during leptospiral infection. In addition, the key component of the complement pathway, C3, was only up-regulated in MPMs. Furthermore, several cytokines, e.g. interleukin 10 (IL-10) and tumor necrosis factor alpha (TNF-alpha), were differentially expressed at both mRNA and protein levels in MPMs and HBMs. Some of the differential expressions were proved to be pathogenic Leptospira-specific regulations at mRNA level or protein level. Though it is still unclear why some animals are resistant and others are susceptible to leptospiral infection, this comparative study based on transcriptomics and cytokine arrays partially uncovered the differences of murine resistance and human susceptibility to leptospirosis. Taken together, these findings will facilitate further molecular studies on the innate immune response to leptospiral infection. Although pathogenic Leptospira is not an obligate intracellular pathogen, recent studies have shown that phagocytosis and innate immunity play important roles in leptospirosis. The Leptospira-macrophage interaction is a common model used to elucidate the initial response in leptospiral infection. Our previous research has shown that there is little difference in the transcriptomics of pathogenic Leptospira infecting murine or human macrophage cell lines. Contrarily, in this study, we observed significant differences of murine and human primary macrophages infected by L. interrogans as shown in several processes, such as antigen processing and presentation, Toll-like receptor signaling pathway and innate immune response, complement and coagulation cascades, expression of major cytokines and chemokines, etc. These results suggested that different immune responses explain the major disparities in the murine and human Leptospira-macrophage infection models. This study added to the former leptospiral transcriptomics research on the Leptospira-macrophage interaction model and laid a foundation for further investigation in the pathogenesis of leptospirosis.
Collapse
Affiliation(s)
- Feng Xue
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Tropical Medicine Research Institute, Beijing, China
- Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
- Beijing Institute of Biotechnology, Beijing, China
- * E-mail:
| | - Xinghui Zhao
- Beijing Institute of Biotechnology, Beijing, China
| | - Yingchao Yang
- Division of Parasitic Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control, Beijing, China
| | - Jinping Zhao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yutao Yang
- Department of Neurobiology, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Major Brain Disorders, Beijing Institute of Brain Disorders, Beijing, China
| | - Yongguo Cao
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Cailing Hong
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuan Liu
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lan Sun
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Tropical Medicine Research Institute, Beijing, China
- Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| | - Minjun Huang
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Tropical Medicine Research Institute, Beijing, China
- Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| | - Junchao Gu
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Tropical Medicine Research Institute, Beijing, China
- Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| |
Collapse
|
48
|
Zhao JF, Chen HH, Ojcius DM, Zhao X, Sun D, Ge YM, Zheng LL, Lin X, Li LJ, Yan J. Identification of Leptospira interrogans phospholipase C as a novel virulence factor responsible for intracellular free calcium ion elevation during macrophage death. PLoS One 2013; 8:e75652. [PMID: 24124502 PMCID: PMC3790881 DOI: 10.1371/journal.pone.0075652] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 08/17/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Leptospira-induced macrophage death has been confirmed to play a crucial role in pathogenesis of leptospirosis, a worldwide zoonotic infectious disease. Intracellular free Ca(2+) concentration ([Ca(2+)]i) elevation induced by infection can cause cell death, but [Ca(2+)]i changes and high [Ca(2+)]i-induced death of macrophages due to infection of Leptospira have not been previously reported. METHODOLOGY/PRINCIPAL FINDINGS We first used a Ca(2+)-specific fluorescence probe to confirm that the infection of L. interrogans strain Lai triggered a significant increase of [Ca(2+)]i in mouse J774A.1 or human THP-1 macrophages. Laser confocal microscopic examination showed that the [Ca(2+)]i elevation was caused by both extracellular Ca(2+) influx through the purinergic receptor, P2X7, and Ca(2+) release from the endoplasmic reticulum, as seen by suppression of [Ca(2+)]i elevation when receptor-gated calcium channels were blocked or P2X7 was depleted. The LB361 gene product of the spirochete exhibited phosphatidylinositol phospholipase C (L-PI-PLC) activity to hydrolyze phosphatidylinositol-4,5-bisphosphate (PIP2) into inositol-1,4,5-trisphosphate (IP3), which in turn induces intracellular Ca(2+) release from endoplasmic reticulum, with the Km of 199 µM and Kcat of 8.566E-5 S(-1). Secretion of L-PI-PLC from the spirochete into supernatants of leptospire-macrophage co-cultures and cytosol of infected macrophages was also observed by Western Blot assay. Lower [Ca(2+)]i elevation was induced by infection with a LB361-deficient leptospiral mutant, whereas transfection of the LB361 gene caused a mild increase in [Ca(2+)]i. Moreover, PI-PLCs (PI-PLC-β3 and PI-PLC-γ1) of the two macrophages were activated by phosphorylation during infection. Flow cytometric detection demonstrated that high [Ca(2+)]i increases induced apoptosis and necrosis of macrophages, while mild [Ca(2+)]i elevation only caused apoptosis. CONCLUSIONS/SIGNIFICANCE This study demonstrated that L. interrogans infection induced [Ca(2+)]i elevation through extracellular Ca(2+) influx and intracellular Ca(2+) release cause macrophage apoptosis and necrosis, and the LB361 gene product was shown to be a novel PI-PLC of L. interrogans responsible for the [Ca(2+)]i elevation.
Collapse
Affiliation(s)
- Jing-Fang Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Depatment of Clinical Laboratory, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, P.R. China
| | - Hong-Hu Chen
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - David M. Ojcius
- Health Sciences Research Institute and Department Molecular Cell Biology, University of California Merced, Merced, California, United States of America
| | - Xin Zhao
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Dexter Sun
- Department of Neurology and Neuroscience, New York Presbyterian Hospital and Hospital for Special Surgery, Cornell University Weill Medical College, New York, New York, United States of America
| | - Yu-Mei Ge
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Lin-Li Zheng
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xu’ai Lin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Jie Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
49
|
Hu W, Ge Y, Ojcius DM, Sun D, Dong H, Yang XF, Yan J. p53 signalling controls cell cycle arrest and caspase-independent apoptosis in macrophages infected with pathogenic Leptospira species. Cell Microbiol 2013; 15:1642-59. [PMID: 23521874 DOI: 10.1111/cmi.12141] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 03/07/2013] [Accepted: 03/14/2013] [Indexed: 01/08/2023]
Abstract
Pathogenic Leptospira species, the causative agents of leptospirosis, have been shown to induce macrophage apoptosis through caspase-independent, mitochondrion-related apoptosis inducing factor (AIF) and endonuclease G (EndoG), but the signalling pathway leading to AIF/EndoG-based macrophage apoptosis remains unknown. Here we show that infection of Leptospira interrogans caused a rapid increase in reactive oxygen species (ROS), DNA damage, and intranuclear foci of 53BP1 and phosphorylation of H2AX (two DNAdamage indicators) in wild-type p53-containing mouse macrophages and p53-deficient human macrophages. Most leptospire-infected cells stayed at the G1 phase, whereas depletion or inhibition of p53 caused a decrease of the G1 -phase cells and the early apoptotic ratios. Infection with spirochaetes stimulated a persistent activation of p53 and an early activation of Akt through phosphorylation. The intranuclear translocation of p53, increased expression of p53-dependent p21(Cip) (1/) (WAF) (1) and pro-apoptotic Bcl-2 family proteins (Bax, Noxa and Puma), release of AIF and EndoG from mitochondria, and membrane translocation of Fas occurred during leptospire-induced macrophage apoptosis. Thus, our study demonstrated that ROS production and DNA damage-dependent p53-Bax/Noxa/Puma-AIF/EndoG signalling mediates the leptospire-induced cell cycle arrest and caspase-independent apoptosis of macrophages.
Collapse
Affiliation(s)
- Weilin Hu
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | | | | | | | | | | | | |
Collapse
|
50
|
|