1
|
Wang J, Fu P, He X, Liu Y, Zuo Y, Wei Z, Wang Y, Yang Y, Li C, Shen X, Zhu L. Fur-regulated urease contributes to the environmental adaptation of Yersinia pseudotuberculosis. Microbiol Spectr 2025; 13:e0275624. [PMID: 39998249 PMCID: PMC11960103 DOI: 10.1128/spectrum.02756-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Urease converts urea into ammonia and carbon dioxide, providing a nitrogen and carbon source for microbial growth and serving as an important mechanism for human bacterial pathogens to survive in acidic conditions, which can be regulated by many factors. As a global regulator, the ferric uptake regulator (Fur) regulates a series of genes and pathways involved in many different cellular processes and the virulence of the enteric bacterium Yersinia pseudotuberculosis (Yptb). However, whether Fur regulates the urease activity in Yptb was still unknown. In this study, we found that urease is positively regulated by Fur in response to manganese ions (Mn2+), and this regulation by Fur is mediated by specific recognition of the promoter region of urease in Yptb. Furthermore, urease is induced by Mn2+ via Fur under low nutrient conditions. Moreover, we provided evidence that urease plays an important role in acid and osmotic stress resistance, biofilm formation, and virulence of Yptb. Our findings provide insights into understanding the regulatory mechanism and multiple functions of urease in Yptb.IMPORTANCEUrease catalyzes the breakdown of urea into ammonia and carbamate, which are widely distributed among bacterial species and play an important role as an important acid resistance system and virulence factor. In most bacterial species, urease expression is tightly regulated in response to environmental cues such as nitrogen status, pH, growth phase, substrate availability, or transcriptional regulators. In this study, we found that urease from Yptb is positively regulated by Fur in response to Mn2+ under low nutrient conditions, which functions to combat acid and osmotic stress and enhance biofilm formation, and plays a crucial role in virulence. Importantly, this is the first demonstration of a direct role for Fur and Mn2+ in regulating urease expression in Yptb. This study provides a comprehensive understanding of the regulatory mechanisms and functions of urease from Yptb.
Collapse
Affiliation(s)
- Junyang Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Peishuai Fu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinquan He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuqi Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuxin Zuo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiyan Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yantao Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Changfu Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingfang Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Bacterial Membrane Vesicles as a Novel Strategy for Extrusion of Antimicrobial Bismuth Drug in Helicobacter pylori. mBio 2022; 13:e0163322. [PMID: 36154274 PMCID: PMC9601102 DOI: 10.1128/mbio.01633-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacterial antibiotic resistance is a major threat to human health. A combination of antibiotics with metals is among the proposed alternative treatments. Only one such combination is successfully used in clinics; it associates antibiotics with the metal bismuth to treat infections by Helicobacter pylori. This bacterial pathogen colonizes the human stomach and is associated with gastric cancer, killing 800,000 individuals yearly. The effect of bismuth in H. pylori treatment is not well understood in particular for sublethal doses such as those measured in the plasma of treated patients. We addressed this question and observed that bismuth induces the formation of homogeneously sized membrane vesicles (MVs) with unique protein cargo content enriched in bismuth-binding proteins, as shown by quantitative proteomics. Purified MVs of bismuth-exposed bacteria were strongly enriched in bismuth as measured by inductively coupled plasma optical emission spectrometry (ICP-OES), unlike bacterial cells from which they originate. Thus, our results revealed a novel function of MVs in bismuth detoxification, where secreted MVs act as tool to discard bismuth from the bacteria. Bismuth also induces the formation of intracellular polyphosphate granules that are associated with changes in nucleoid structure. Nucleoid compaction in response to bismuth was established by immunogold electron microscopy and refined by the first chromosome conformation capture (Hi-C) analysis of H. pylori. Our results reveal that even low doses of bismuth induce profound changes in H. pylori physiology and highlight a novel defense mechanism that involves MV-mediated bismuth extrusion from the bacteria and a probable local DNA protective response where polyphosphate granules are associated with nucleoid compaction.
Collapse
|
3
|
Xia X. Multiple regulatory mechanisms for pH homeostasis in the gastric pathogen, Helicobacter pylori. ADVANCES IN GENETICS 2022; 109:39-69. [PMID: 36334916 DOI: 10.1016/bs.adgen.2022.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Acid-resistance in gastric pathogen Helicobacter pylori requires the coordination of four essential processes to regulate urease activity. Firstly, urease expression above a base level needs to be finely tuned at different ambient pH. Secondly, as nickel is needed to activate urease, nickel homeostasis needs to be maintained by proteins that import and export nickel ions, and sequester, store and release nickel when needed. Thirdly, urease accessary proteins that activate urease activity by nickel insertion need to be expressed. Finally, a reliable source of urea needs to be maintained by both intrinsic and extrinsic sources of urea. Two-component systems (arsRS and flgRS), as well as a nickel response regulator (NikR), sense the change in pH and act on a variety of genes to accomplish the function of acid resistance without causing cellular overalkalization and nickel toxicity. Nickel storage proteins also feature built-in switches to store nickel at neutral pH and release nickel at low pH. This review summarizes the current status of H. pylori research and highlights a number of hypotheses that need to be tested.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, Canada; Ottawa Institute of Systems Biology, Ottawa, Canada.
| |
Collapse
|
4
|
Yang H, Huang X, Zhang X, Zhang X, Xu X, She F, Wen Y. AI-2 Induces Urease Expression Through Downregulation of Orphan Response Regulator HP1021 in Helicobacter pylori. Front Med (Lausanne) 2022; 9:790994. [PMID: 35433748 PMCID: PMC9010608 DOI: 10.3389/fmed.2022.790994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Helicobacter pylori causes gastric infections in more than half of the world's population. The bacterium's survival in the stomach is mediated by the abundant production of urease to enable acid acclimation. In this study, our transcriptomic analysis demonstrated that the expression of urease structural proteins, UreA and UreB, is induced by the autoinducer AI-2 in H. pylori. We also found that the orphan response regulator HP1021 is downregulated by AI-2, resulting in the induction of urease expression. HP1021 represses the expression of urease by directly binding to the promoter region of ureAB, ranging from −47 to +3 with respect to the transcriptional start site. The study findings suggest that quorum sensing via AI-2 enhances acid acclimation when bacterial density increases, and might enable bacterial dispersal to other sites when entering gastric acid.
Collapse
Affiliation(s)
- Huang Yang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiaoxing Huang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiaochuan Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiaoyan Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiaohong Xu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
- Fujian Medical University Union Hospital, Fuzhou, China
| | - Feifei She
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
- *Correspondence: Feifei She
| | - Yancheng Wen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
- Yancheng Wen
| |
Collapse
|
5
|
Westermann AJ. Regulatory RNAs in Virulence and Host-Microbe Interactions. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0002-2017. [PMID: 30003867 PMCID: PMC11633609 DOI: 10.1128/microbiolspec.rwr-0002-2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Bacterial regulatory RNAs are key players in adaptation to changing environmental conditions and response to diverse cellular stresses. However, while regulatory RNAs of bacterial pathogens have been intensely studied under defined conditions in vitro, characterization of their role during the infection of eukaryotic host organisms is lagging behind. This review summarizes our current understanding of the contribution of the different classes of regulatory RNAs and RNA-binding proteins to bacterial virulence and illustrates their role in infection by reviewing the mechanisms of some prominent representatives of each class. Emerging technologies are described that bear great potential for global, unbiased studies of virulence-related RNAs in bacterial model and nonmodel pathogens in the future. The review concludes by deducing common principles of RNA-mediated gene expression control of virulence programs in different pathogens, and by defining important open questions for upcoming research in the field.
Collapse
Affiliation(s)
- Alexander J Westermann
- Institute of Molecular Infection Biology, University of Würzburg
- Helmholtz Institute for RNA-Based Infection Research, D-97080 Würzburg, Germany
| |
Collapse
|
6
|
Guo Y, Hu D, Guo J, Li X, Guo J, Wang X, Xiao Y, Jin H, Liu M, Li Z, Bi D, Zhou Z. The Role of the Regulator Fur in Gene Regulation and Virulence of Riemerella anatipestifer Assessed Using an Unmarked Gene Deletion System. Front Cell Infect Microbiol 2017; 7:382. [PMID: 28971067 PMCID: PMC5609570 DOI: 10.3389/fcimb.2017.00382] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/09/2017] [Indexed: 11/29/2022] Open
Abstract
Riemerella anatipestifer, an avian pathogen, has resulted in enormous economic losses to the duck industry globally. Notwithstanding, little is known regarding the physiological, pathogenic and virulence mechanisms of Riemerella anatipestifer (RA) infection. However, the role of Ferric uptake regulator (Fur) in the virulence of R. anatipestifer has not, to date, been demonstrated. Using a genetic approach, unmarked gene deletion system, we evaluated the function of fur gene in the virulence of R. anatipestifer. For this purpose, we constructed a suicide vector containing pheS as a counter selectable marker for unmarked deletion of fur gene to investigate its role in the virulence. After successful transformation of the newly constructed vector, a mutant strain was characterized for genes regulated by iron and Fur using RNA-sequencing and a comparison was made between wild type and mutant strains in both iron restricted and enriched conditions. RNA-seq analysis of the mutant strain in a restricted iron environment showed the downregulation and upregulation of genes which were involved in either important metabolic pathways, transport processes, growth or cell membrane synthesis. Electrophoretic mobility shift assay was performed to identify the putative sequences recognized by Fur. The putative Fur-box sequence was 5′-GATAATGATAATCATTATC-3′. Lastly, the median lethal dose and histopathological investigations of animal tissues also illustrated mild pathological lesions produced by the mutant strain as compared to the wild type RA strain, hence showing declined virulence. Conclusively, an unmarked gene deletion system was successfully developed for RA and the role of the fur gene in virulence was explored comprehensively.
Collapse
Affiliation(s)
- Yunqing Guo
- College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural UniversityWuhan, China
| | - Di Hu
- College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural UniversityWuhan, China
| | - Jie Guo
- College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural UniversityWuhan, China
| | - Xiaowen Li
- College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural UniversityWuhan, China
| | - Jinyue Guo
- College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural UniversityWuhan, China
| | - Xiliang Wang
- College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural UniversityWuhan, China
| | - Yuncai Xiao
- College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural UniversityWuhan, China
| | - Hui Jin
- College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Mei Liu
- College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural UniversityWuhan, China
| | - Zili Li
- College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural UniversityWuhan, China
| | - Dingren Bi
- College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural UniversityWuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Zutao Zhou
- College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
7
|
Segura-López FK, Güitrón-Cantú A, Torres J. Association between Helicobacter spp. infections and hepatobiliary malignancies: a review. World J Gastroenterol 2015; 21:1414-23. [PMID: 25663761 PMCID: PMC4316084 DOI: 10.3748/wjg.v21.i5.1414] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/29/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatobiliary cancers are highly lethal cancers that comprise a spectrum of invasive carcinomas originating in the liver hepatocellular carcinoma, the bile ducts intrahepatic cholangiocarcinoma and extrahepatic cholangiocarcinoma, the gallbladder and the ampulla of Vater (collectively known as biliary tract cancers). These tumors account for approximately 13% of all annual cancer-related deaths worldwide and for 10%-20% of deaths from hepatobiliary malignancies. Cholangiocarcinoma (CCA) is a devastating disease that displays a poor survival rate for which few therapeutic options are available. Population genetics, geographical and environmental factors, cholelithiasis, obesity, parity, and endemic infection with liver flukes have been identified as risk factors that influence the development of biliary tract tumors. Other important factors affecting the carcinogenesis of these tumors include chronic inflammation, obstruction of the bile ducts, and impaired bile flow. It has been suggested that CCA is caused by infection with Helicobacter species, such as Helicobacter bilis and Helicobacter hepaticus, in a manner that is similar to the reported role of Helicobacter pylori in distal gastric cancer. Due to the difficulty in culturing these Helicobacter species, molecular methods, such as polymerase chain reaction and sequencing, or immunologic assays have become the methods of choice for diagnosis. However, clinical studies of benign or malignant biliary tract diseases revealed remarkable variability in the methods and the findings, and the use of uniform and validated techniques is needed.
Collapse
|
8
|
Benoit SL, Seshadri S, Lamichhane-Khadka R, Maier RJ. Helicobacter hepaticus NikR controls urease and hydrogenase activities via the NikABDE and HH0418 putative nickel import proteins. MICROBIOLOGY-SGM 2012; 159:136-146. [PMID: 23139401 DOI: 10.1099/mic.0.062976-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Helicobacter hepaticus open reading frame HH0352 was identified as a nickel-responsive regulator NikR. The gene was disrupted by insertion of an erythromycin resistance cassette. The H. hepaticus nikR mutant had five- to sixfold higher urease activity and at least twofold greater hydrogenase activity than the wild-type strain. However, the urease apo-protein levels were similar in both the wild-type and the mutant, suggesting the increase in urease activity in the mutant was due to enhanced Ni-maturation of the urease. Compared with the wild-type strain, the nikR strain had increased cytoplasmic nickel levels. Transcription of nikABDE (putative inner membrane Ni transport system) and hh0418 (putative outer membrane Ni transporter) was nickel- and NikR-repressed. Electrophoretic mobility shift assays (EMSAs) revealed that purified HhNikR could bind to the nikABDE promoter (P(nikA)), but not to the urease or the hydrogenase promoter; NikR-P(nikA) binding was enhanced in the presence of nickel. Also, qRT-PCR and EMSAs indicated that neither nikR nor the exbB-exbD-tonB were under the control of the NikR regulator, in contrast with their Helicobacter pylori homologues. Taken together, our results suggest that HhNikR modulates urease and hydrogenase activities by repressing the nickel transport/nickel internalization systems in H. hepaticus, without direct regulation of the Ni-enzyme genes (the latter is the case for H. pylori). Finally, the nikR strain had a two- to threefold lower growth yield than the parent, suggesting that the regulatory protein might play additional roles in the mouse liver pathogen.
Collapse
Affiliation(s)
| | | | | | - Robert J Maier
- Department of Microbiology, University of Georgia, Athens, GA, USA
| |
Collapse
|
9
|
Kidd SP, Djoko KY, Ng J, Argente MP, Jennings MP, McEwan AG. A novel nickel responsive MerR-like regulator, NimR, from Haemophilus influenzae. Metallomics 2011; 3:1009-18. [PMID: 21952667 DOI: 10.1039/c1mt00127b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have identified a novel regulator from the MerR family of transcription factors in the bacterial pathogen Haemophilus influenzae (HI1623; nickel-associated merR-like Regulator--NimR). NimR regulates the expression of a Ni(2+) uptake transporter (NikKLMQO). The promoters for nimR and the nik operon are divergent and overlapping and NimR binds at a site between the promoter elements for nikKLMQO. Expression of this operon requires NimR and depends on Ni(2+). Growth rates of the H. influenzae nimR and nikQ mutants were reduced in chemically defined media compared to the wild type and the mutants were unable to grow in the presence of EDTA. The mutant strains were less tolerant of acidic pH and the wild type Rd KW20 could not tolerate low pH in the presence of fluoramide, a urease specific inhibitor, confirming that both nickel transport and urea hydrolysis are a central process in pH control. H. influenzae nimR and nikQ strains were deficient in urease activity, but this could be specifically restored by the addition of excess Ni(2+). NimR did not directly regulate the expression of urease genes but the activity of urease requires both nimR and nikQ. Purified NimR is a dimer that binds 1 Ni(2+)ion. NimR is the first example of a Ni-dependent regulator from the MerR family and targeting a metal ion uptake system; it is distinct from NikR the Ni-responsive regulators of the ribbon-helix-helix family.
Collapse
Affiliation(s)
- Stephen P Kidd
- School of Molecular and Biomedical Science, The University of Adelaide, North Terrace Campus, Adelaide, South Australia 5005, Australia
| | | | | | | | | | | |
Collapse
|
10
|
Belzer C, van Schendel BAM, Hoogenboezem T, Kusters JG, Hermans PWM, van Vliet AHM, Kuipers EJ. PerR controls peroxide- and iron-responsive expression of oxidative stress defense genes in Helicobacter hepaticus. Eur J Microbiol Immunol (Bp) 2011; 1:215-22. [PMID: 24516727 DOI: 10.1556/eujmi.1.2011.3.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 06/30/2011] [Indexed: 12/15/2022] Open
Abstract
Chronic intestinal and hepatic colonization with the microaerophilic murine pathogen Helicobacter hepaticus can lead to a range of inflammatory diseases of the lower digestive tract. Colonization is associated with an active cellular immune response and production of oxygen radicals. During colonization, H. hepaticus needs to cope with and respond to oxidative stress, and here we report on the role of the H. hepaticus PerR-regulator (HH0942) in the expression of the peroxidase-encoding katA (HH0043) and ahpC (HH1564) genes. Transcription of katA and ahpC was induced by hydrogen peroxide, and by iron restriction of growth media. This iron- and hydrogen peroxide-responsive regulation of katA and ahpC was mediated at the transcriptional level, from promoters directly upstream of the genes. Inactivation of the perR gene resulted in constitutive, iron-independent high-level expression of the katA and ahpC transcripts and corresponding proteins. Finally, inactivation of the katA gene resulted in increased sensitivity of H. hepaticus to hydrogen peroxide and reduced aerotolerance. In H. hepaticus, iron metabolism and oxidative stress defense are intimately connected via the PerR regulatory protein. This regulatory pattern resembles that observed in the enteric pathogen Campylobacter jejuni, but contrasts with the pattern observed in the closely related human gastric pathogen Helicobacter pylori.
Collapse
|
11
|
Fox JG, Ge Z, Whary MT, Erdman SE, Horwitz BH. Helicobacter hepaticus infection in mice: models for understanding lower bowel inflammation and cancer. Mucosal Immunol 2011; 4:22-30. [PMID: 20944559 PMCID: PMC3939708 DOI: 10.1038/mi.2010.61] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pioneering work in the 1990s first linked a novel microaerobic bacterium, Helicobacter hepaticus, with chronic active hepatitis and inflammatory bowel disease in several murine models. Targeted H. hepaticus infection experiments subsequently demonstrated its ability to induce colitis, colorectal cancer, and extraintestinal diseases in a number of mouse strains with defects in immune function and/or regulation. H. hepaticus is now widely utilized as a model system to dissect how intestinal microbiota interact with the host to produce both inflammatory and tolerogenic responses. This model has been used to make important advances in understanding factors that regulate both acquired and innate immune response within the intestine. Further, it has been an effective tool to help define the function of regulatory T cells, including their ability to directly inhibit the innate inflammatory response to gut microbiota. The complete genomic sequence of H. hepaticus has advanced the identification of several virulence factors and aided in the elucidation of H. hepaticus pathogenesis. Delineating targets of H. hepaticus virulence factors could facilitate novel approaches to treating microbially induced lower bowel inflammatory diseases.
Collapse
Affiliation(s)
- JG Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA,Corresponding author. Mailing address: Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 16-825, Cambridge, MA 02139. Phone (617) 253-1735. Fax: (617) 258-5708.
| | - Z Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
| | - MT Whary
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
| | - SE Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
| | - BH Horwitz
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
12
|
Transcriptional and functional analysis of the Neisseria gonorrhoeae Fur regulon. J Bacteriol 2010; 192:77-85. [PMID: 19854902 DOI: 10.1128/jb.00741-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To ensure survival in the host, bacteria have evolved strategies to acquire the essential element iron. In Neisseria gonorrhoeae, the ferric uptake regulator Fur regulates metabolism through transcriptional control of iron-responsive genes by binding conserved Fur box (FB) sequences in promoters during iron-replete growth. Our previous studies showed that Fur also controls the transcription of secondary regulators that may, in turn, control pathways important to pathogenesis, indicating an indirect role for Fur in controlling these downstream genes. To better define the iron-regulated cascade of transcriptional control, we combined three global strategies--temporal transcriptome analysis, genomewide in silico FB prediction, and Fur titration assays (FURTA)--to detect genomic regions able to bind Fur in vivo. The majority of the 300 iron-repressed genes were predicted to be of unknown function, followed by genes involved in iron metabolism, cell communication, and intermediary metabolism. The 107 iron-induced genes encoded hypothetical proteins or energy metabolism functions. We found 28 predicted FBs in FURTA-positive clones in the promoters and within the open reading frames of iron-repressed genes. We found lower levels of conservation at critical thymidine residues involved in Fur binding in the FB sequence logos of FURTA-positive clones with intragenic FBs than in the sequence logos generated from FURTA-positive promoter regions. In electrophoretic mobility shift assay studies, intragenic FBs bound Fur with a lower affinity than intergenic FBs. Our findings further indicate that transcription under iron stress is indirectly controlled by Fur through 12 potential secondary regulators.
Collapse
|
13
|
Tu QV, Okoli AS, Kovach Z, Mendz GL. Hepatocellular carcinoma: prevalence and molecular pathogenesis of Helicobacter spp. Future Microbiol 2009; 4:1283-301. [PMID: 19995189 DOI: 10.2217/fmb.09.90] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori infection is one of the most common chronic bacterial infections in humans. The association of other Helicobacter spp. with extragastric diseases in animals is well established, and a role of these bacteria in human liver disease is becoming clearer. Several case-control studies have reported possible associations of Helicobacter spp. with various liver diseases, including hepatocellular carcinoma, which is the fifth most common type of carcinoma among men worldwide, and the eighth most common among women. Thus, it is important to understand molecular mechanisms that may lead to hepatotoxicity or hepatocellular dysfunction in which Helicobacter spp. may play a role in inducing malignant transformation of liver cells.
Collapse
Affiliation(s)
- Quoc V Tu
- School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | |
Collapse
|
14
|
Belzer C, Stoof J, Breijer S, Kusters JG, Kuipers EJ, van Vliet AHM. The Helicobacter hepaticus hefA gene is involved in resistance to amoxicillin. Helicobacter 2009; 14:72-9. [PMID: 19191900 DOI: 10.1111/j.1523-5378.2009.00661.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Gastrointestinal infections with pathogenic Helicobacter species are commonly treated with combination therapies, which often include amoxicillin. Although this treatment is effective for eradication of Helicobacter pylori, the few existing reports are less clear about antibiotic susceptibility of other Helicobacter species. In this study we have determined the susceptibility of gastric and enterohepatic Helicobacter species to amoxicillin, and have investigated the mechanism of amoxicillin resistance in Helicobacter hepaticus. MATERIALS AND METHODS The minimal inhibitory concentration (MIC) of antimicrobial compounds was determined by E-test and agar/broth dilution assays. The hefA gene of H. hepaticus was inactivated by insertion of a chloramphenicol resistance gene. Transcription was measured by quantitative real-time polymerase chain reaction. RESULTS Three gastric Helicobacter species (H. pylori, H. mustelae, and H. acinonychis) were susceptible to amoxicillin (MIC < 0.25 mg/L). In contrast, three enterohepatic Helicobacter species (H. rappini, H. bilis, and H. hepaticus) were resistant to amoxicillin (MIC of 8, 16, and 6-64 mg/L, respectively). There was no detectable beta-lactamase activity in H. hepaticus, and inhibition of beta-lactamases did not change the MIC of amoxicillin of H. hepaticus. A H. hepaticus hefA (hh0224) mutant, encoding a TolC-component of a putative efflux system, resulted in loss of amoxicillin resistance (MIC 0.25 mg/L), and also resulted in increased sensitivity to bile acids. Finally, transcription of the hefA gene was not responsive to amoxicillin, but induced by bile acids. CONCLUSIONS Rodents are frequently colonized by a variety of enterohepatic Helicobacter species, and this may affect their global health status and intestinal inflammatory responses. Animal facilities should have treatment strategies for Helicobacter infections, and hence resistance of enterohepatic Helicobacter species to amoxicillin should be considered when designing eradication programs.
Collapse
Affiliation(s)
- Clara Belzer
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
Stoof J, Breijer S, Pot RGJ, van der Neut D, Kuipers EJ, Kusters JG, van Vliet AHM. Inverse nickel-responsive regulation of two urease enzymes in the gastric pathogen Helicobacter mustelae. Environ Microbiol 2008; 10:2586-97. [PMID: 18564183 DOI: 10.1111/j.1462-2920.2008.01681.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The acidic gastric environment of mammals can be chronically colonized by pathogenic Helicobacter species, which use the nickel-dependent urea-degrading enzyme urease to confer acid resistance. Nickel availability in the mammal host is low, being mostly restricted to vegetarian dietary sources, and thus Helicobacter species colonizing carnivores may be subjected to episodes of nickel deficiency and associated acid sensitivity. The aim of this study was to investigate how these Helicobacter species have adapted to the nickel-restricted diet of their carnivorous host. Three carnivore-colonizing Helicobacter species express a second functional urea-degrading urease enzyme (UreA2B2), which functions as adaptation to nickel deficiency. UreA2B2 was not detected in seven other Helicobacter species, and is in Helicobacter mustelae only expressed in nickel-restricted conditions, and its expression was higher in iron-rich conditions. In contrast to the standard urease UreAB, UreA2B2 does not require activation by urease or hydrogenase accessory proteins, which mediate nickel incorporation into these enzymes. Activity of either UreAB or UreA2B2 urease allowed survival of a severe acid shock in the presence of urea, demonstrating a functional role for UreA2B2 in acid resistance. Pathogens often express colonization factors which are adapted to their host. The UreA2B2 urease could represent an example of pathogen adaptation to the specifics of the diet of their carnivorous host, rather than to the host itself.
Collapse
Affiliation(s)
- Jeroen Stoof
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center, 's Gravendijkwal 230, 3015 CE Rotterdam, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
16
|
Belzer C, Stoof J, van Vliet AHM. Metal-responsive gene regulation and metal transport in Helicobacter species. Biometals 2007; 20:417-29. [PMID: 17294126 PMCID: PMC2798029 DOI: 10.1007/s10534-006-9028-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 07/20/2006] [Indexed: 12/13/2022]
Abstract
Helicobacter species are among the most successful colonizers of the mammalian gastrointestinal and hepatobiliary tract. Colonization is usually lifelong, indicating that Helicobacter species have evolved intricate mechanisms of dealing with stresses encountered during colonization of host tissues, like restriction of essential metal ions. The recent availability of genome sequences of the human gastric pathogen Helicobacter pylori, the murine enterohepatic pathogen Helicobacter hepaticus and the unannotated genome sequence of the ferret gastric pathogen Helicobacter mustelae has allowed for comparative genome analyses. In this review we present such analyses for metal transporters, metal-storage and metal-responsive regulators in these three Helicobacter species, and discuss possible contributions of the differences in metal metabolism in adaptation to the gastric or enterohepatic niches occupied by Helicobacter species.
Collapse
Affiliation(s)
- Clara Belzer
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Room L-455, ’s Gravendijkwal 230, 3015CE Rotterdam, The Netherlands
| | - Jeroen Stoof
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Room L-455, ’s Gravendijkwal 230, 3015CE Rotterdam, The Netherlands
| | - Arnoud H. M. van Vliet
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Room L-455, ’s Gravendijkwal 230, 3015CE Rotterdam, The Netherlands
| |
Collapse
|