1
|
Muire PJ, Hanson LA, Petrie-Hanson L. Rapid Natural Killer Cell Gene Responses, Generated by TLR Ligand-Induced Trained Immunity, Provide Protection to Bacterial Infection in rag1-/- Mutant Zebrafish ( Danio rerio). Int J Mol Sci 2025; 26:962. [PMID: 39940731 PMCID: PMC11818001 DOI: 10.3390/ijms26030962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
T and B cell-deficient rag1-/- mutant zebrafish develop protective immunity mediated by trained immunity. In mammals, trained immune responses can be induced by Toll-like receptor (TLR) ligands. This study evaluated protective trained immunity in rag1-/- zebrafish through exposure to TLR ligands (beta glucan, R848, poly I:C), RE33® (a live-attenuated Edwardsiella ictaluri vaccine), or combinations thereof, followed by wild-type E. ictaluri challenge one month later. Survival analyses revealed that all TLR ligands and vaccine treatments provided significantly higher protection than the control, with beta glucan inducing significantly greater protection than RE33®, while R848 and poly I:C were equivalent to the vaccine. Survivals for the treatments were beta glucan 70%, beta glucan + RE33® 60%, R848 + RE33® 54%, poly I:C + RE33® 50%, R848 49%, poly I:C 32%, RE33® 24%, and control 0%. Gene expression analysis of kidney and liver tissues post challenge revealed that beta glucan training elicited early and strong increased expressions of nklb (5536 fold @ 6 hpi), nkld (147 fold @ 12 hpi), and ifng (575 fold @ 12 hpi) in the kidney, and ifng (1369 fold @ 6 hpi), nkla (250 fold @ 6 hpi), nklb (734 fold @ 6 hpi), nklc (2135 fold @ 6 hpi) and nkld (589 fold @ 6 hpi) in the liver. Principal component analysis (PCA) revealed that early kidney gene expressions at 6-12 h post secondary infection (nkla @ 12 hpi, nklb @ 6 and 12 hpi, nklc @ 6 and 12 hpi, nkld @ 6 and 12 hpi, ifng @ 6 and 12 hpi, t-bet @ 6, 12 and 48 hpi, and nitr9 @24 hpi) in the kidney and liver (nkla, nklb, nklc, nkld, ifng, t-bet and nitr9 @ 6 hpi) were associated with the highest survival. This study highlights that TLR ligand-induced trained immunity boosts innate immunity and survival, with NK cell subpopulations in kidney and liver tissues responding differently to mediate protective responses.
Collapse
Affiliation(s)
| | | | - Lora Petrie-Hanson
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, 240 Wise Center Drive, Starkville, MS 39762, USA; (P.J.M.); (L.A.H.)
| |
Collapse
|
2
|
Misner E, Zhang M, Sapi E. Establishing a Zebrafish Model for Borrelia burgdorferi Infection Using Immersion and Microinjection Methods. Methods Mol Biol 2024; 2742:131-149. [PMID: 38165621 DOI: 10.1007/978-1-0716-3561-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Borrelia burgdorferi is the spirochetal bacterium that causes Lyme disease. Even though antimicrobial sensitivity of B. burgdorferi has been widely studied, there is still a need to develop an affordable, practical, high-throughput in vivo model which can be used to find effective antibiotic therapies, especially for the recently discovered persister and biofilm forms. Here, we describe the immersion and microinjection methods to introduce B. burgdorferi spirochetes into zebrafish larvae. The B. burgdorferi-zebrafish model can be produced by immersing 5-day post-fertilization (dpf) zebrafish in a B. burgdorferi culture, or by injecting B. burgdorferi into the hindbrain of zebrafish at 28 h post-fertilization (hpf). To demonstrate that B. burgdorferi indeed infect the fish, nested polymerase chain reaction (PCR), reverse transcription PCR (RT-PCR), live fluorescence imaging, histological staining, and wholemount immunohistochemical (IHC) methods can be used on B. burgdorferi-infected zebrafish.
Collapse
Affiliation(s)
- Erica Misner
- Department of Biology and Environmental Science, Lyme Disease Research Group, University of New Haven, New Haven, CT, USA
| | - Min Zhang
- Department of Biology and Environmental Science, Lyme Disease Research Group, University of New Haven, New Haven, CT, USA
- Department of Criminal Justice, Coppin State University, Baltimore, MD, USA
| | - Eva Sapi
- Department of Biology and Environmental Science, Lyme Disease Research Group, University of New Haven, New Haven, CT, USA
| |
Collapse
|
3
|
Locascio A, Annona G, Caccavale F, D'Aniello S, Agnisola C, Palumbo A. Nitric Oxide Function and Nitric Oxide Synthase Evolution in Aquatic Chordates. Int J Mol Sci 2023; 24:11182. [PMID: 37446358 DOI: 10.3390/ijms241311182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Nitric oxide (NO) is a key signaling molecule in almost all organisms and is active in a variety of physiological and pathological processes. Our understanding of the peculiarities and functions of this simple gas has increased considerably by extending studies to non-mammal vertebrates and invertebrates. In this review, we report the nitric oxide synthase (Nos) genes so far characterized in chordates and provide an extensive, detailed, and comparative analysis of the function of NO in the aquatic chordates tunicates, cephalochordates, teleost fishes, and amphibians. This comprehensive set of data adds new elements to our understanding of Nos evolution, from the single gene commonly found in invertebrates to the three genes present in vertebrates.
Collapse
Affiliation(s)
- Annamaria Locascio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Giovanni Annona
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
- Department of Research Infrastructure for Marine Biological Resources (RIMAR), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Filomena Caccavale
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Claudio Agnisola
- Department of Biology, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
4
|
Leet JK, Greer JB, Richter CA, Iwanowicz LR, Spinard E, McDonald J, Conway C, Gale RW, Tillitt DE, Hansen JD. Exposure to 17α-Ethinylestradiol Results in Differential Susceptibility of Largemouth Bass ( Micropterus salmoides) to Bacterial Infection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14375-14386. [PMID: 36197672 PMCID: PMC9583602 DOI: 10.1021/acs.est.2c02250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Disease outbreaks, skin lesions, mortality events, and reproductive abnormalities have been observed in wild populations of centrarchids. The presence of estrogenic endocrine disrupting compounds (EEDCs) has been implicated as a potential causal factor for these effects. The effects of prior EEDC exposure on immune response were examined in juvenile largemouth bass (Micropterus salmoides) exposed to a potent synthetic estrogen (17α-ethinylestradiol, EE2) at a low (EE2Low, 0.87 ng/L) or high (EE2High, 9.08 ng/L) dose for 4 weeks, followed by transfer to clean water and injection with an LD40 dose of the Gram-negative bacteria Edwardsiella piscicida. Unexpectedly, this prior exposure to EE2High significantly increased survivorship at 10 d post-infection compared to solvent control or EE2Low-exposed, infected fish. Both prior exposure and infection with E. piscicida led to significantly reduced hepatic glycogen levels, indicating a stress response resulting in depletion of energy stores. Additionally, pathway analysis for liver and spleen indicated differentially expressed genes associated with immunometabolic processes in the mock-injected EE2High treatment that could underlie the observed protective effect and metabolic shift in EE2High-infected fish. Our results demonstrate that exposure to a model EEDC alters metabolism and immune function in a fish species that is ecologically and economically important in North America.
Collapse
Affiliation(s)
- Jessica K. Leet
- U.S.
Geological Survey, Columbia Environmental
Research Center, 4200
New Haven Road, Columbia, Missouri 65201, United
States
| | - Justin B. Greer
- U.S.
Geological Survey, Western Fisheries Research
Center, 6505 NE 65th Street, Seattle, Washington 98115, United States
| | - Catherine A. Richter
- U.S.
Geological Survey, Columbia Environmental
Research Center, 4200
New Haven Road, Columbia, Missouri 65201, United
States
| | - Luke R. Iwanowicz
- U.S.
Geological Survey, Eastern Ecological Science
Center, 11649 Leetown
Road, Kearneysville, West
Virginia 25430, United
States
| | - Edward Spinard
- U.S.
Geological Survey, Western Fisheries Research
Center, 6505 NE 65th Street, Seattle, Washington 98115, United States
| | - Jacquelyn McDonald
- U.S.
Geological Survey, Western Fisheries Research
Center, 6505 NE 65th Street, Seattle, Washington 98115, United States
| | - Carla Conway
- U.S.
Geological Survey, Western Fisheries Research
Center, 6505 NE 65th Street, Seattle, Washington 98115, United States
| | - Robert W. Gale
- U.S.
Geological Survey, Columbia Environmental
Research Center, 4200
New Haven Road, Columbia, Missouri 65201, United
States
| | - Donald E. Tillitt
- U.S.
Geological Survey, Columbia Environmental
Research Center, 4200
New Haven Road, Columbia, Missouri 65201, United
States
| | - John D. Hansen
- U.S.
Geological Survey, Western Fisheries Research
Center, 6505 NE 65th Street, Seattle, Washington 98115, United States
| |
Collapse
|
5
|
Qiao X, Lu Y, Xu J, Deng N, Lai W, Wu Z, Lin H, Zhang Y, Lu D. Integrative analyses of mRNA and microRNA expression profiles reveal the innate immune mechanism for the resistance to Vibrio parahaemolyticus infection in Epinephelus coioides. Front Immunol 2022; 13:982973. [PMID: 36059501 PMCID: PMC9437975 DOI: 10.3389/fimmu.2022.982973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Vibrio parahaemolyticus, as one of the main pathogens of marine vibriosis, has brought huge losses to aquaculture. However, the interaction mechanism between V. parahaemolyticus and Epinephelus coioides remains unclear. Moreover, there is a lack of comprehensive multi-omics analysis of the immune response of grouper spleen to V. parahaemolyticus. Herein, E. coioides was artificially injected with V. parahaemolyticus, and it was found that the mortality was 16.7% in the early stage of infection, and accompanied by obvious histopathological lesions in the spleen. Furthermore, 1586 differentially expressed genes were screened by mRNA-seq. KEGG analysis showed that genes were significantly enriched in immune-related pathways, Acute-phase immune response, Apoptosis, Complement system and Cytokine-cytokine receptor interaction. As for miRNA-seq analysis, a total of 55 significantly different miRNAs were identified. Further functional annotation analysis indicated that the target genes of differentially expressed miRNAs were enriched in three important pathways (Phosphatidylinositol signaling system, Lysosome and Focal adhesions). Through mRNA-miRNA integrated analysis, 1427 significant miRNA–mRNA pairs were obtained and “p53 signaling pathway”, “Intestinal immune network for IgA production” were considered as two crucial pathways. Finally, miR-144-y, miR-497-x, novel-m0459-5p, miR-7133-y, miR-378-y, novel-m0440-5p and novel-m0084-3p may be as key miRNAs to regulate immune signaling pathways via the miRNA-mRNA interaction network. The above results suggest that the mRNA-miRNA integrated analysis not only sheds new light on the molecular mechanisms underlying the interaction between host and V. parahaemolyticus but also provides valuable and new insights into resistance to vibrio infection.
Collapse
Affiliation(s)
- Xifeng Qiao
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
| | - Yuyou Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Jiachang Xu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Niuniu Deng
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Wenjie Lai
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Ziyi Wu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Ocean, Haikou, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yong Zhang, ; Danqi Lu,
| | - Danqi Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yong Zhang, ; Danqi Lu,
| |
Collapse
|
6
|
Hansen JD, Ray K, Chen PJ, Yun S, Elliott DG, Conway CM, Calcutt MJ, Purcell MK, Welch TJ, Bellah JP, Davis EM, Greer JB, Soto E. Disruption of the Francisella noatunensis subsp. orientalis pdpA Gene Results in Virulence Attenuation and Protection in Zebrafish. Infect Immun 2021; 89:e0022021. [PMID: 34424748 PMCID: PMC8519269 DOI: 10.1128/iai.00220-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022] Open
Abstract
Several Francisella spp., including Francisella noatunensis, are regarded as important emerging pathogens of wild and farmed fish. However, very few studies have investigated the virulence factors that allow these bacterial species to be pathogenic in fish. The Francisella pathogenicity island (FPI) is a well-described, gene-dense region encoding major virulence factors for the genus Francisella. pdpA is a member of the pathogenicity-determining protein genes carried by the FPI that are implicated in the ability of the mammalian pathogen Francisella tularensis to escape and replicate in infected host cells. Using a sacB suicide approach, we generated pdpA knockouts to address the role of PdpA as a virulence factor for F. noatunensis. Because polarity can be an issue in gene-dense regions, we generated two different marker-based mutants in opposing polarity (the F. noatunensis subsp. orientalis ΔpdpA1 and ΔpdpA2 strains). Both mutants were attenuated (P < 0.0001) in zebrafish challenges and displayed impaired intracellular replication (P < 0.05) and cytotoxicity (P < 0.05), all of which could be restored to wild-type (WT) levels by complementation for the ΔpdpA1 mutant. Importantly, differences were found for bacterial burden and induction of acute-phase and proinflammatory genes for the F. noatunensis subsp. orientalis ΔpdpA1 and ΔpdpA2 mutants compared to the WT during acute infection. In addition, neither mutant resulted in significant histopathological changes. Finally, immunization with the F. noatunensis subsp. orientalis ΔpdpA1 mutant led to protection (P < 0.012) against an acute 40% lethal dose (LD40) challenge with WT F. noatunensis in the zebrafish model of infection. Taken together, the results from this study further demonstrate physiological similarities within the genus Francisella relative to their phylogenetic relationships and the utility of zebrafish for addressing virulence factors for the genus.
Collapse
Affiliation(s)
- John D. Hansen
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Karina Ray
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Po-Jui Chen
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Susan Yun
- Department of Medicine and Epidemiology, University of California—Davis, School of Veterinary Medicine, Davis, California, USA
| | - Diane G. Elliott
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Carla M. Conway
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Michael J. Calcutt
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Maureen K. Purcell
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Timothy J. Welch
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, West Virginia, USA
| | - John P. Bellah
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Ellie M. Davis
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Justin B. Greer
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Esteban Soto
- Department of Medicine and Epidemiology, University of California—Davis, School of Veterinary Medicine, Davis, California, USA
| |
Collapse
|
7
|
Phelps DW, Fletcher AA, Rodriguez-Nunez I, Balik-Meisner MR, Tokarz DA, Reif DM, Germolec DR, Yoder JA. In vivo assessment of respiratory burst inhibition by xenobiotic exposure using larval zebrafish. J Immunotoxicol 2021; 17:94-104. [PMID: 32407153 DOI: 10.1080/1547691x.2020.1748772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Currently, assessment of the potential immunotoxicity of a given agent involves a tiered approach for hazard identification and mechanistic studies, including observational studies, evaluation of immune function, and measurement of susceptibility to infectious and neoplastic diseases. These studies generally use costly low-throughput mammalian models. Zebrafish, however, offer an excellent alternative due to their rapid development, ease of maintenance, and homology to mammalian immune system function and development. Larval zebrafish also are a convenient model to study the innate immune system with no interference from the adaptive immune system. In this study, a respiratory burst assay (RBA) was utilized to measure reactive oxygen species (ROS) production after developmental xenobiotic exposure. Embryos were exposed to non-teratogenic doses of chemicals and at 96 h post-fertilization, the ability to produce ROS was measured. Using the RBA, 12 compounds with varying immune-suppressive properties were screened. Seven compounds neither suppressed nor enhanced the respiratory burst; five reproducibly suppressed global ROS production, but with varying potencies: benzo[a]pyrene, 17β-estradiol, lead acetate, methoxychlor, and phenanthrene. These five compounds have all previously been reported as immunosuppressive in mammalian innate immunity assays. To evaluate whether the suppression of ROS by these compounds was a result of decreased immune cell numbers, flow cytometry with transgenic zebrafish larvae was used to count the numbers of neutrophils and macrophages after chemical exposure. With this assay, benzo[a]pyrene was found to be the only chemical that induced a change in the number of immune cells by increasing macrophage but not neutrophil numbers. Taken together, this work demonstrates the utility of zebrafish larvae as a vertebrate model for identifying compounds that impact innate immune function at non-teratogenic levels and validates measuring ROS production and phagocyte numbers as metrics for monitoring how xenobiotic exposure alters the innate immune system.
Collapse
Affiliation(s)
- Drake W Phelps
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Ashley A Fletcher
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Ivan Rodriguez-Nunez
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | | | - Debra A Tokarz
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - David M Reif
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Dori R Germolec
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.,Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
8
|
Nakamura T, Shimizu T, Inagaki F, Okazaki S, Saha SS, Uda A, Watanabe K, Watarai M. Identification of Membrane-Bound Lytic Murein Transglycosylase A (MltA) as a Growth Factor for Francisella novicida in a Silkworm Infection Model. Front Cell Infect Microbiol 2021; 10:581864. [PMID: 33553001 PMCID: PMC7862118 DOI: 10.3389/fcimb.2020.581864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/04/2020] [Indexed: 12/22/2022] Open
Abstract
Francisella tularensis, the causative agent of tularemia, is transmitted by arthropod vectors within mammalian hosts. The detailed mechanisms contributing to growth and survival of Francisella within arthropod remain poorly understood. To identify novel factors supporting growth and survival of Francisella within arthropods, a transposon mutant library of F. tularensis subsp. novicida (F. novicida) was screened using an F. novicida-silkworm infection model. Among 750 transposon mutants screened, the mltA-encoding membrane-bound lytic murein transglycosylase A (MltA) was identified as a novel growth factor of F. novicida in silkworms. Silkworms infection with an mltA deletion mutant (ΔmltA) resulted in a reduction in the number of bacteria and prolonged survival. The ΔmltA strain exhibited limited intracellular growth and cytotoxicity in BmN4 silkworm ovary cells. Moreover, the ΔmltA strain induced higher expression of the antimicrobial peptide in silkworms compared to the wild-type strain. These results suggest that F. novicida MltA contributes to the survival of F. novicida in silkworms via immune suppression-related mechanisms. Intracellular growth of the ΔmltA strain was also reduced in human monocyte THP-1 cells. These results also suggest the contribution of MltA to pathogenicity in humans and utility of the F. novicida-silkworm infection model to explore Francisella infection.
Collapse
Affiliation(s)
- Takemasa Nakamura
- Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takashi Shimizu
- Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Fumiya Inagaki
- Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Shoma Okazaki
- Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Shib Shankar Saha
- Department of Pathology and Parasitology, Patuakhali Science and Technology University, Barisal, Bangladesh
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenta Watanabe
- Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masahisa Watarai
- Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
9
|
The Use of Extracellular Membrane Vesicles for Immunization against Francisellosis in Nile Tilapia ( Oreochromis niloticus) and Atlantic Cod ( Gadus morhua L.). Vaccines (Basel) 2021; 9:vaccines9010034. [PMID: 33435503 PMCID: PMC7827370 DOI: 10.3390/vaccines9010034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 11/17/2022] Open
Abstract
Francisellosis in fish is caused by the facultative intracellular Gram-negative bacterial pathogens Francisella noatunensis ssp. noatunensis and Francisella orientalis. The disease is affecting both farmed and wild fish worldwide and no commercial vaccines are currently available. In this study, we tested isolated membrane vesicles (MVs) as possible vaccine candidates based on previous trials in zebrafish (Danio rerio) indicating promising vaccine efficacy. Here, the MV vaccine-candidates were tested in their natural hosts, Atlantic cod (Gadus morhua L.) and Nile tilapia (Oreochromis niloticus). Injection of MVs did not display any toxicity or other negative influence on the fish and gene expression analysis indicated an influence on the host immune response. However, unlike in other tested fish species, a protective immunity following vaccine application and immunization period could not be detected in the Atlantic cod or tilapia. Further in vivo studies are required to achieve a better understanding of the development of immunological memory in different fish species.
Collapse
|
10
|
Kirsten K, Pompermaier A, Koakoski G, Mendonça-Soares S, da Costa RA, Maffi VC, Kreutz LC, Barcellos LJG. Acute and chronic stress differently alter the expression of cytokine and neuronal markers genes in zebrafish brain. Stress 2021; 24:107-112. [PMID: 32013653 DOI: 10.1080/10253890.2020.1724947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We report the effects of acute and chronic stress on the expression of selective immune-related genes and markers of neuronal function in the brain of the zebrafish (Danio rerio). Fish were distributed into three groups: the non-stressed control group; the acute stress (AS) group, submitted to a single stressing episode; and the unpredictable chronic stress (UCS) group, submitted to two daily stressing episodes of alternating times and types of stress. The stressing protocols were applied for a period of 14 days. The UCS protocol triggered the expression of the pro-inflammatory cytokine genes IL-1β and TNF-α, the anti-inflammatory cytokine IL-10 (negative feedback from the immune system), reduction in cFOS gene expression, and caused neuro-inflammation. The AS protocol had no effect on gene expression. Altered expression of cytokine genes, as observed in our study, correlates with several pathologies associated with neuro-inflammation, and the reduction of cFOS gene expression may indicate the occurrence of reduced neuronal plasticity. Our study further extends our knowledge about the interaction of the immune system and the different forms of stress.
Collapse
Affiliation(s)
- Karina Kirsten
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brasil
| | - Aline Pompermaier
- Programa de Pós-Graduação em Ciências Ambientais, Instituto de Ciências Biológicas, Universidade de Passo Fundo, (UPF), Passo Fundo, Brasil
- Programa de Pós-Graduação em Bioexperimentação, Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo (UPF), Passo Fundo, Brasil
| | - Gessi Koakoski
- Programa de Pós-Graduação em Bioexperimentação, Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo (UPF), Passo Fundo, Brasil
| | - Suelen Mendonça-Soares
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brasil
| | - Roberta Angnes da Costa
- Curso de Medicina Veterinária, Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo, (UPF), Passo Fundo, Brasil
| | - Victória Costa Maffi
- Curso de Medicina Veterinária, Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo, (UPF), Passo Fundo, Brasil
| | - Luiz Carlos Kreutz
- Programa de Pós-Graduação em Bioexperimentação, Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo (UPF), Passo Fundo, Brasil
- Curso de Medicina Veterinária, Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo, (UPF), Passo Fundo, Brasil
| | - Leonardo José Gil Barcellos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brasil
- Programa de Pós-Graduação em Ciências Ambientais, Instituto de Ciências Biológicas, Universidade de Passo Fundo, (UPF), Passo Fundo, Brasil
- Programa de Pós-Graduação em Bioexperimentação, Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo (UPF), Passo Fundo, Brasil
- Curso de Medicina Veterinária, Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo, (UPF), Passo Fundo, Brasil
| |
Collapse
|
11
|
Nystrand M, Dowling DK. Effects of immune challenge on expression of life-history and immune trait expression in sexually reproducing metazoans-a meta-analysis. BMC Biol 2020; 18:135. [PMID: 33028304 PMCID: PMC7541220 DOI: 10.1186/s12915-020-00856-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/25/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Life-history theory predicts a trade-off between investment into immune defence and other fitness-related traits. Accordingly, individuals are expected to upregulate their immune response when subjected to immune challenge. However, this is predicted to come at the expense of investment into a range of other traits that are costly to maintain, such as growth, reproduction and survival. Currently, it remains unclear whether the magnitude of such costs, and trade-offs involving immune investment and other traits, manifests consistently across species and sexes. To address this, we conducted a meta-analysis to investigate how changes in sex, ontogenetic stage and environmental factors shape phenotypic trait expression following an immune challenge. RESULTS We explored the effects of immune challenge on three types of traits across sexually reproducing metazoans: life-history, morphological and proximate immune traits (235 effect sizes, 53 studies, 37 species [21 invertebrates vs. 16 vertebrates]). We report a general negative effect of immune challenge on survival and reproduction, a positive effect on immune trait expression, but no effect on morphology or development time. The negative effects of immune challenge on reproductive traits and survival were larger in females than males. We also report a pronounced effect of the immune treatment agent used (e.g. whether the treatment involved a live pathogen or not) on the host response to immune challenge, and find an effect of mating status on the host response in invertebrates. CONCLUSION These results suggest that costs associated with immune deployment following an immune challenge are context-dependent and differ consistently in their magnitude across the sexes of diverse taxonomic lineages. We synthesise and discuss the outcomes in the context of evolutionary theory on sex differences in life-history and highlight the need for future studies to carefully consider the design of experiments aimed at disentangling the costs of immune deployment.
Collapse
Affiliation(s)
- M. Nystrand
- School of Biological Sciences, Monash University, Clayton, Victoria 3800 Australia
| | - D. K. Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria 3800 Australia
| |
Collapse
|
12
|
Poudyal S, Pulpipat T, Wang PC, Chen SC. Comparison of the pathogenicity of Francisella orientalis in Nile tilapia (Oreochromis niloticus), Asian seabass (Lates calcarifer) and largemouth bass (Micropterus salmoides) through experimental intraperitoneal infection. JOURNAL OF FISH DISEASES 2020; 43:1097-1106. [PMID: 32700447 DOI: 10.1111/jfd.13217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Francisella orientalis is a highly virulent, emerging bacterium that causes mass mortalities in tilapia. This pathogen also affects numerous other warm-water fish species, including three-line grunt, hybrid striped bass and various ornamental fish. This study sheds light on two new species of fish that are susceptible to F. orientalis. Asian seabass and largemouth bass showed variable levels of susceptibility in a bacterial challenge experiment. After intraperitoneally injected with a dose of 106 CFU/fish, a total of 64.28% and 21.42% mortalities were obtained in Asian seabass and largemouth bass, respectively. Meanwhile, Nile tilapia showed acute mortality of 100%. All fish showed typical lesions of francisellosis, including multifocal granulomas in the spleen and head kidney. Immunohistochemical analysis revealed strong positive signals inside the granulomas of all fish. The bacterial recovery in solid media from infected fish was highest in Nile tilapia (85.71%), followed by Asian seabass (35.71%) and largemouth bass (21.42%). PCR results tested 100% positive for Nile tilapia, and 78.57% and 21.42% for Asian seabass and largemouth bass, respectively. In conclusion, Asian seabass and largemouth bass are susceptible to this pathogen, which warrants new management strategies when employing predation polyculture systems of these species with tilapia.
Collapse
Affiliation(s)
- Sayuj Poudyal
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Theeraporn Pulpipat
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
13
|
Larva of greater wax moth Galleria mellonella is a suitable alternative host for the fish pathogen Francisella noatunensis subsp. orientalis. BMC Microbiol 2020; 20:8. [PMID: 31918661 PMCID: PMC6953311 DOI: 10.1186/s12866-020-1695-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/31/2019] [Indexed: 12/26/2022] Open
Abstract
Background Francisella noatunensis subsp. orientalis (Fno) is the etiological agent of francisellosis in cultured warm water fish, such as tilapia. Antibiotics are administered to treat the disease but a better understanding of Fno infection biology will inform improved treatment and prevention measures. However, studies with native hosts are costly and considerable benefits would derive from access to a practical alternative host. Here, larvae of Galleria mellonella were assessed for suitability to study Fno virulence. Results Larvae were killed by Fno in a dose-dependent manner but the insects could be rescued from lethal doses of bacteria by antibiotic therapy. Infection progression was assessed by histopathology (haematoxylin and eosin staining, Gram Twort and immunohistochemistry) and enumeration of bacteria recovered from the larval haemolymph on selective agar. Fno was phagocytosed and could survive intracellularly, which is consistent with observations in fish. Virulence of five Fno isolates showed strong agreement between G. mellonella and red Nile tilapia hosts. Conclusions This study shows that an alternative host, G. mellonella, can be applied to understand Fno infections, which will assist efforts to identify solutions to piscine francisellosis thus securing the livelihoods of tilapia farmers worldwide and ensuring the production of this important food source.
Collapse
|
14
|
Zhang X, Zhao Y, Wu Q, Lin J, Fang R, Bi W, Dong G, Li J, Zhang Y, Cao J, Zhou T. Zebrafish and Galleria mellonella: Models to Identify the Subsequent Infection and Evaluate the Immunological Differences in Different Klebsiella pneumoniae Intestinal Colonization Strains. Front Microbiol 2019; 10:2750. [PMID: 31849893 PMCID: PMC6900958 DOI: 10.3389/fmicb.2019.02750] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/12/2019] [Indexed: 11/13/2022] Open
Abstract
The intestine is the main reservoir of bacterial pathogens in most organisms. Klebsiella pneumoniae is an important opportunistic pathogen associated with nosocomial bacterial infections. Intestinal colonization with K. pneumoniae has been shown to be associated with an increased risk of subsequent infections. However, not all K. pneumoniae strains in the intestine cause further infection, and the distinction of the difference among strains that cause infection after colonization and the ones causing only asymptomatic colonization is unclear. In this study, we report a case of a hospitalized patient from the ICU. We screened out two intestine colonization strains (FK4111, FK4758) to analyze the subsequent infection conditions. We set up infection models of zebrafish and Galleria mellonella to establish the differences in the potential for causing subsequent infection and the immunological specificities after K. pneumoniae intestine colonization. Sudan Black B and neutral red staining results indicated that FK4758 was more responsive to neutrophil recruitment and phagocytosis of macrophages than FK4111. The results of the assessment of the organ bacterial load revealed that FK4111 and FK4758 both had the highest bacterial loads in the zebrafish intestine compared to those in other organs. However, in the zebrafish spleen, liver, and heart, the FK4758 load was significantly higher than that of FK4111. The ST37 strain FK4111, which does not produce carbapenemase, did not cause infection after colonization, whereas the ST11 strain FK4758, which produces carbapenemase, caused infection after intestinal colonization. Our finding demonstrated that not all intestinal colonization of K. pneumoniae subsequently caused infections, and the infections of K. pneumoniae after colonization are different. Therefore, the infection models we established provided possibility for the estimation of host-microbial interactions.
Collapse
Affiliation(s)
- Xiucai Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yajie Zhao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Qing Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Renchi Fang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenzi Bi
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Guofeng Dong
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Jiahui Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yizhi Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianming Cao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
15
|
Xie L, Tao Y, Wu R, Ye Q, Xu H, Li Y. Congenital asplenia due to a tlx1 mutation reduces resistance to Aeromonas hydrophila infection in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2019; 95:538-545. [PMID: 31678534 DOI: 10.1016/j.fsi.2019.10.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
It is documented that tlx1, an orphan homeobox gene, plays critical roles in the regulation of early spleen developmental in mammalian species. However, there is no direct evidence supporting the functions of tlx1 in non-mammalian species, especially in fish. In this study, we demonstrated that tlx1 is expressed in the splenic primordia as early as 52 hours post-fertilization (hpf) in zebrafish. A tlx1-/- homozygous mutant line was generated via CRISPR/Cas9 to elucidate the roles of tlx1 in spleen development in zebrafish. In the tlx1-/- background, tlx1-/- cells persisted in the splenic primordia until 52 hpf but were no longer detectable after 53 hpf, suggesting perturbation of early spleen development. The zebrafish also exhibited congenital asplenia caused by the tlx1 mutation. Asplenic zebrafish can survive and breed normally under standard laboratory conditions, but the survival rate of animals infected with Aeromonas hydrophila was significantly lower than that of wild-type (WT) zebrafish. In asplenic zebrafish, the mononuclear phagocyte system was partially impaired, as demonstrated by retarded b7r expression and reduced ccr2 expression after injection with an inactivated A. hydrophila vaccine. Furthermore, the expression of MHCII/IgM was significantly reduced in the congenitally asplenic fish compared with that of the WT zebrafish. Taken together, our data suggest that tlx1 is a crucial regulator of spleen development in fish, as it is in mammals. We have also provided a new perspective for studying the role of the spleen during pathogen challenge in fish.
Collapse
Affiliation(s)
- Lang Xie
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Yixi Tao
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Ronghua Wu
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Qin Ye
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Hao Xu
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Yun Li
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
16
|
Pradhan PK, Paria A, Pande V, Verma DK, Arya P, Rathore G, Sood N. Expression of immune genes in Indian major carp, Catla catla challenged with Flavobacterium columnare. FISH & SHELLFISH IMMUNOLOGY 2019; 94:599-606. [PMID: 31542493 DOI: 10.1016/j.fsi.2019.09.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Columnaris disease, caused by Flavobacterium columnare, is one of the important bacterial diseases responsible for large-scale mortalities in numerous freshwater fishes globally. This disease can cause up to 100% mortality within 24 h of infection and is considered to be a cause of concern for aquaculture industry. Despite being a serious disease, scarce information is available regarding host-pathogen interaction, particularly the modulation of different immune genes in response to F. columnare infection. Therefore, in the present study, an attempt has been made to study expression of important immune regulatory genes, namely IL-1β, iNOS, INF-γ, IL-10, TGF-β, C3, MHC-I and MHC-II in gills and kidney of Catla catla following experimental infection with F. columnare. The expression analysis of immune genes revealed that transcript levels of IL-1β, iNOS, IL-10, TGF-β, C3 and MHC-I were significantly up-regulated (p < 0.05) in both the organs of the infected catla. IFN-γ and MHC-II were up-regulated in gills of infected catla whereas, both the genes showed down-regulation in kidney. The results indicate that important immune genes of C. catla are modulated following infection with F. columnare. The knowledge thus generated will strengthen the understanding of molecular pathogenesis of F. columnare in Indian major carp C. catla.
Collapse
Affiliation(s)
- P K Pradhan
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India.
| | - Anutosh Paria
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, 263136, Uttarakhand, India
| | - Dev K Verma
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| | - P Arya
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| | - G Rathore
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| | - N Sood
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India.
| |
Collapse
|
17
|
Ji J, Merino S, Tomás JM, Roher N. Nanoliposomes encapsulating immunostimulants modulate the innate immune system and elicit protection in zebrafish larvae. FISH & SHELLFISH IMMUNOLOGY 2019; 92:421-429. [PMID: 31195115 DOI: 10.1016/j.fsi.2019.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/20/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Here we present immunostimulant-loaded nanoliposomes (NLc) as a strategy to protect zebrafish larvae against bacterial infection. The NLc encapsulate crude lipopolysaccharide (LPS) from E. coli and polyinosinic:polycytidylic acid (Poly I:C), a synthetic analogue of viral dsRNA. Fluorescently-labeled NLc were ingested by zebrafish larvae 4 days post fertilization, when administrated by bath immersion, and accumulated in the intestine. RT-qPCR analysis showed the expression of innate immune related genes (tnfα, il1β, nos2a, irf1a and ptgs2a) was significantly upregulated at 48 h post NLc treatment. A zebrafish larvae infection model for Aeromonas hydrophila was set up by bath immersion, achieving bacterial-dose-dependent significant differences in survival at day 5 post infection in both injured and non-injured larvae. Using this model, NLc protected non-injured zebrafish larvae against an A. hydrophila lethal infection. In contrast, neither the empty nanoliposomes nor the mixture of immunostimulants could protect larvae against lethal challenges. Our results demonstrate that nanoliposomes could be further developed as an efficient carrier, widening the scope for delivery of other immunostimulants in aquaculture.
Collapse
Affiliation(s)
- Jie Ji
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193, Barcelona, Spain; Department of Cell Biology, Animal Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Susana Merino
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Juan M Tomás
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Nerea Roher
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193, Barcelona, Spain; Department of Cell Biology, Animal Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain.
| |
Collapse
|
18
|
Solbakken MH, Jentoft S, Reitan T, Mikkelsen H, Gregers TF, Bakke O, Jakobsen KS, Seppola M. Disentangling the immune response and host-pathogen interactions in Francisella noatunensis infected Atlantic cod. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:333-346. [PMID: 31054474 DOI: 10.1016/j.cbd.2019.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/08/2019] [Accepted: 04/12/2019] [Indexed: 12/15/2022]
Abstract
The genetic repertoire underlying teleost immunity has been shown to be highly variable. A rare example is Atlantic cod and its relatives Gadiformes that lacks a hallmark of vertebrate immunity: Major Histocompatibility Complex class II. No immunological studies so far have fully unraveled the functionality of this particular immune system. Through global transcriptomic profiling, we investigate the immune response and host-pathogen interaction of Atlantic cod infected with the facultative intracellular bacterium Francisella noatunensis. We find that Atlantic cod displays an overall classic innate immune response with inflammation, acute-phase proteins and cell recruitment through up-regulation of e.g. IL1B, fibrinogen, cathelicidin, hepcidin and several chemotactic cytokines such as the neutrophil attractants CXCL1 and CXCL8. In terms of adaptive immunity, we observe up-regulation of interferon gamma followed by up-regulation of several MHCI transcripts and genes related to antigen transport and loading. Finally, we find up-regulation of immunoglobulins and down-regulation of T-cell and NK-like cell markers. Our analyses also uncover some contradictory transcriptional findings such as up-regulation of anti-inflammatory IL10 as well as down-regulation of the NADPH oxidase complex and myeloperoxidase. This we interpret as the result of host-pathogen interactions where F. noatunensis modulates the immune response. In summary, our results suggest that Atlantic cod mounts a classic innate immune response as well as a neutrophil-driven response. In terms of adaptive immunity, both endogenous and exogenous antigens are being presented on MHCI and antibody production is likely enabled through direct B-cell stimulation with possible neutrophil help. Collectively, we have obtained novel insight in the orchestration of the Atlantic cod immune system and determined likely targets of F. noatunensis host-pathogen interactions.
Collapse
Affiliation(s)
- Monica Hongrø Solbakken
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Sissel Jentoft
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway.
| | - Trond Reitan
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | | | - Tone F Gregers
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Kjetill S Jakobsen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Marit Seppola
- Department of Medical Biology, The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
19
|
Characterization of sickness behavior in zebrafish. Brain Behav Immun 2018; 73:596-602. [PMID: 29981831 DOI: 10.1016/j.bbi.2018.07.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/12/2018] [Accepted: 07/04/2018] [Indexed: 01/12/2023] Open
Abstract
In a previous study we showed a clear relationship between immune system and behavior in zebrafish and we hypothesized that the immune system is capable of inducing behavioral changes. To further investigate this subject and to address our main question, here we induced an inflammatory response in one group of fish by the inoculation of formalin-inactivated Aeromonoas hydrophila bacterin and compared their social and exploratory behavior with control groups. After the behavioral tests, we also analyzed the expression of cytokines genes and markers of neuronal activity in fish brain. In the bacterin-inoculated fish, the locomotor activity, social preference and exploratory behavior towards a new object were reduced compared to the control fish while the expression of proinflammatory cytokines in the brain was upregulated. With this study we demonstrated for the first time that the immune system is capable of causing behavioral changes that are consistent with the sickness behavior observed in mammals.
Collapse
|
20
|
Francisella marina sp. nov., Etiologic Agent of Systemic Disease in Cultured Spotted Rose Snapper (Lutjanus guttatus) in Central America. Appl Environ Microbiol 2018; 84:AEM.00144-18. [PMID: 29915103 DOI: 10.1128/aem.00144-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/05/2018] [Indexed: 11/20/2022] Open
Abstract
Historically, piscine francisellosis in various warm-, temperate-, and cold-water fish hosts has been attributed to Francisella noatunensis From 2015 to 2016, an undescribed Francisella sp. was recovered during mortality events in cultured spotted rose snapper (Lutjanus guttatus) off the Pacific coast of Central America. Despite high mortality and emaciation, limited gross findings were observed in affected fish. Histological examination revealed multifocal granulomatous lesions, with the presence of numerous small, pleomorphic coccobacilli, predominantly in the peritoneum, spleen, kidneys, liver, pancreas, heart, and intestine. Sequencing of an ∼1,400-bp fragment of the 16S rRNA gene demonstrated these isolates to be most similar (99.9% identity) to Francisella sp. isolate TX077308 cultured from seawater in the Gulf of Mexico, while sharing <99% similarity to other Fransicella spp. Biochemical analysis, multilocus sequence comparisons of select housekeeping genes, repetitive extragenic palindromic PCR fingerprinting, matrix-assisted laser desorption ionization-time of flight mass spectrometry, and fatty acid methyl ester analysis revealed marked differences between these isolates and other described members of the genus. Koch's postulates were fulfilled by experimental intracoelomic injection and immersion trials using Nile (Oreochromis niloticus) and blue (Oreochromis aureus) tilapia. Based on observed phenotypic and genotypic differences from recognized Francisella spp., the name Francisellamarina sp. nov. (NRRL B-65518) is proposed to accommodate these novel strains.IMPORTANCE Finfish aquaculture is the fastest growing global food production sector. Infectious disease, particularly emergent pathogens, pose a significant threat to established and nascent aquaculture industries worldwide. Herein, we characterize a novel pathogen isolated from mortality events in cultured spotted rose snapper in Central America. The bacteria recovered from these outbreaks were genetically and phenotypically dissimilar from other known Francisella spp. from fish, representing a previously unrecognized member of the genus Francisella, for which the name Francisella marina sp. nov. is proposed.
Collapse
|
21
|
Tandberg J, Lagos L, Ropstad E, Smistad G, Hiorth M, Winther-Larsen HC. The Use of Chitosan-Coated Membrane Vesicles for Immunization Against Salmonid Rickettsial Septicemia in an Adult Zebrafish Model. Zebrafish 2018; 15:372-381. [PMID: 29957152 DOI: 10.1089/zeb.2017.1556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The introduction of fish vaccination has had a tremendous impact on the aquaculture industry by providing an important measurement in regard to disease control. Infectious diseases caused by intracellular pathogens do, however, remain an unsolved problem for the industry. This is in many cases directly connected to the inability of vaccines to evoke a cellular immunity needed for long-term protection. Thus, there is a need for new and improved vaccines and adjuvants able to induce a strong humoral and cellular immune response. We have previously shown that membrane vesicles (MVs) from the intracellular fish pathogen Piscirickettsia salmonis are able to induce a protective response in adult zebrafish, but the incorporation of an adjuvant has not been evaluated. In this study, we report the use of chitosan as an adjuvant in combination with the P. salmonis-derived MVs for improved immunization against P. salmonis. Both free chitosan and chitosan-coated MVs (cMVs) were injected into adult zebrafish and their efficacy evaluated. The cMVs provided a significant protection (p < 0.05), while a small but nonsignificant reduction in mortalities was registered for fish injected with free chitosan. Both free chitosan and the cMVs were shown to induce an increased immune gene expression of CD 4, CD 8, MHC I, Mpeg1.1, TNFα, IL-1β, IL-10, and IL-6, but to a higher degree in the cMV group. Taken together, the results indicate a potential use of chitosan-coated MVs for vaccination, and that zebrafish is a promising model for aquaculture-relevant studies.
Collapse
Affiliation(s)
- Julia Tandberg
- 1 Department of Pharmaceutical Biosciences, Faculty of Mathematics and Natural Science, School of Pharmacy, University of Oslo , Oslo, Norway
| | - Leidy Lagos
- 2 Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences , Ås, Norway
| | - Erik Ropstad
- 3 Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences , Oslo, Norway
| | - Gro Smistad
- 4 Department of Pharmacy, School of Pharmacy, University of Oslo , Oslo, Norway
| | - Marianne Hiorth
- 4 Department of Pharmacy, School of Pharmacy, University of Oslo , Oslo, Norway
| | - Hanne C Winther-Larsen
- 1 Department of Pharmaceutical Biosciences, Faculty of Mathematics and Natural Science, School of Pharmacy, University of Oslo , Oslo, Norway
| |
Collapse
|
22
|
Rozas-Serri M, Peña A, Arriagada G, Enríquez R, Maldonado L. Comparison of gene expression in post-smolt Atlantic salmon challenged by LF-89-like and EM-90-like Piscirickettsia salmonis isolates reveals differences in the immune response associated with pathogenicity. JOURNAL OF FISH DISEASES 2018; 41:539-552. [PMID: 29143962 DOI: 10.1111/jfd.12756] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Piscirickettsiosis is the main bacterial disease affecting the Chilean salmon farming industry and is responsible for high economic losses. The aim of this study was to describe and comparatively quantify the immune response of post-smolt Atlantic salmon infected by cohabitation with fish bearing LF-89-like and EM-90-like Piscirickettsia salmonis. The expression of 17 genes related to the immune response was studied in head kidney from cohabitant fish by RT-qPCR. Our results at the transcriptomic level suggest that P. salmonis is able to manipulate the kinetics of cytokine production in a way that might constitute a virulence mechanism that promotes intracellular bacterial replication in cells of Atlantic salmon. This strategy involves the creation of an ideal environment for the microorganism based on induction of the inflammatory and IFN-mediated response, modulation of Th1 polarization, reduced antigen processing and presentation, modulation of the evasion of the immune response mediated by CD8+ T cells and promotion of the CD4+ T-cell response during the late stage of infection as a mechanism to escape host defences. This response was significantly exacerbated in fish infected by PS-EM-90 compared with fish infected by PS-LF-89, a finding that is probably associated with the higher pathogenicity of PS-EM-90.
Collapse
Affiliation(s)
- M Rozas-Serri
- Pathovet Laboratory Ltd., Puerto Montt, Chile
- Faculty of Veterinary Sciences, Graduate School, Austral University of Chile, Valdivia, Chile
| | - A Peña
- Pathovet Laboratory Ltd., Puerto Montt, Chile
| | - G Arriagada
- EPI-data Research & Consulting, Santiago, Chile
| | - R Enríquez
- Laboratory of Aquatic Pathology and Biotechnology, Faculty of Veterinary Sciences, Animal Pathology Institute, Universidad Austral de Chile, Valdivia, Chile
| | - L Maldonado
- Pathovet Laboratory Ltd., Puerto Montt, Chile
| |
Collapse
|
23
|
Johnston HJ, Verdon R, Gillies S, Brown DM, Fernandes TF, Henry TB, Rossi AG, Tran L, Tucker C, Tyler CR, Stone V. Adoption of in vitro systems and zebrafish embryos as alternative models for reducing rodent use in assessments of immunological and oxidative stress responses to nanomaterials. Crit Rev Toxicol 2017; 48:252-271. [PMID: 29239234 DOI: 10.1080/10408444.2017.1404965] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Assessing the safety of engineered nanomaterials (NMs) is paramount to the responsible and sustainable development of nanotechnology, which provides huge societal benefits. Currently, there is no evidence that engineered NMs cause detrimental health effects in humans. However, investigation of NM toxicity using in vivo, in vitro, in chemico, and in silico models has demonstrated that some NMs stimulate oxidative stress and inflammation, which may lead to adverse health effects. Accordingly, investigation of these responses currently dominates NM safety assessments. There is a need to reduce reliance on rodent testing in nanotoxicology for ethical, financial and legislative reasons, and due to evidence that rodent models do not always predict the human response. We advocate that in vitro models and zebrafish embryos should have greater prominence in screening for NM safety, to better align nanotoxicology with the 3Rs principles. Zebrafish are accepted for use by regulatory agencies in chemical safety assessments (e.g. developmental biology) and there is growing acceptance of their use in biomedical research, providing strong foundations for their use in nanotoxicology. We suggest that investigation of the response of phagocytic cells (e.g. neutrophils, macrophages) in vitro should also form a key part of NM safety assessments, due to their prominent role in the first line of defense. The development of a tiered testing strategy for NM hazard assessment that promotes the more widespread adoption of non-rodent, alternative models and focuses on investigation of inflammation and oxidative stress could make nanotoxicology testing more ethical, relevant, and cost and time efficient.
Collapse
Affiliation(s)
| | - Rachel Verdon
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| | - Suzanne Gillies
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| | - David M Brown
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| | | | - Theodore B Henry
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| | - Adriano G Rossi
- b Medical Research Council (MRC) Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh , Edinburgh , UK
| | - Lang Tran
- c Institute of Occupational Medicine , Edinburgh , UK
| | - Carl Tucker
- b Medical Research Council (MRC) Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh , Edinburgh , UK
| | - Charles R Tyler
- d Department of Biosciences , College of Life and Environmental Sciences, University of Exeter , Exeter , UK
| | - Vicki Stone
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| |
Collapse
|
24
|
Saha SS, Suzuki J, Uda A, Watanabe K, Shimizu T, Watarai M. Silkworm model for Francisella novicida infection. Microb Pathog 2017; 113:94-101. [PMID: 29066381 DOI: 10.1016/j.micpath.2017.10.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 11/16/2022]
Abstract
Understanding the virulence and pathogenesis of human pathogens using insect models is an increasingly popular method. Francisella novicida, which is virulent in mice but non-pathogenic to immunocompetent humans, is widely used as an ideal candidate for Francisella research. In this study, we developed a silkworm (Bombyx mori) infection model for F. novicida by inoculating the hemocoels of silkworms with F. novicida. We found that silkworms died within 3-7 days of F. novicida infection. However, the deletion mutant of DotU, the core part of type VI secretion systems, failed to kill silkworm. In whole silkworm bodies, the bacterial load of the DotU deletion mutant was significantly less than that of the wild-type strain. Approximately 10-fold increase in bacterial load was recorded in hemolymph and subcutaneous tissues compared with that in the silk gland, Malpighian tubule, and reproductive organs. The CFU count of the DotU deletion mutant in all organs was similar results to the whole body CFU count. Confocal microscopy further confirmed the arrested growth of the mutant strain within hemocytes. The intracellular growth of F. novicida strains was also analyzed using the silkworm ovary-derived cell line BmN4. In BmN4, both CFU count assay and confocal microscopy revealed extensive growth of the wild-type strain compared with that of the mutant strain. Francisella DotU has already been proven as a virulence factor in mammals, and it was also found to be an essential virulence factor in our silkworm infection model. Therefore, this silkworm infection model is suitable for identifying new virulence factors of Francisella.
Collapse
Affiliation(s)
- Shib Shankar Saha
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1, Yoshida, Yamaguchi 753-8515, Japan; Department of Pathology and Parasitology, Patuakhali Science and Technology University, Babugonj, Barisal 8210, Bangladesh
| | - Jin Suzuki
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1, Yoshida, Yamaguchi 753-8515, Japan
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan
| | - Kenta Watanabe
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1, Yoshida, Yamaguchi 753-8515, Japan
| | - Takashi Shimizu
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1, Yoshida, Yamaguchi 753-8515, Japan
| | - Masahisa Watarai
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1, Yoshida, Yamaguchi 753-8515, Japan.
| |
Collapse
|
25
|
Muire PJ, Hanson LA, Wills R, Petrie-Hanson L. Differential gene expression following TLR stimulation in rag1-/- mutant zebrafish tissues and morphological descriptions of lymphocyte-like cell populations. PLoS One 2017; 12:e0184077. [PMID: 28910320 PMCID: PMC5598945 DOI: 10.1371/journal.pone.0184077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 08/17/2017] [Indexed: 12/21/2022] Open
Abstract
In the absence of lymphocytes, rag1-/- mutant zebrafish develop protective immunity to bacteria. In mammals, induction of protection by innate immunity can be mediated by macrophages or natural killer (NK) cells. To elucidate potential responsive cell populations, we morphologically characterized lymphocyte-like cells (LLCs) from liver, spleen and kidney hematopoietic tissues. In fish, these cells include NK cells and Non-specific cytotoxic cells (NCCs). We also evaluated the transcriptional expression response of select genes that are important indicators of NK and macrophage activation after exposure to specific TLR ligands. The LLC cell populations could be discriminated by size and further discriminated by the presence of cytoplasmic granules. Expression levels of mx, tnfα, ifnγ, t-bet and nitr9 demonstrated dynamic changes in response to intra-coelomically administered β glucan (a TLR2/6 ligand), Poly I:C (a TLR3 ligand) and resiquimod (R848) (a TLR7/8 ligand). Following TLR 2/6 stimulation, there was a greater than 100 fold increase in ifnγ in liver, kidney and spleen and moderate increases in tnfα in liver and kidney. TLR3 stimulation caused broad up regulation of mx, down-regulation of tnfα in kidney and spleen tissues and up regulation of nitr9 in the kidney. Following TLR 7/8 stimulation, there was a greater than 100 fold increase in ifnγ in liver and kidney and t-bet in liver. Our gene expression findings suggest that LLCs and macrophages are stimulated following β glucan exposure. Poly I:C causes type I interferon response and mild induction of LLC in the kidney and R-848 exposure causes the strongest LLC stimulation. Overall, the strongest NK like gene expression occurred in the liver. These differential effects of TLR ligands in rag1-/- mutant zebrafish shows strong NK cell-like gene expression responses, especially in the liver, and provides tools to evaluate the basis for protective immunity mediated by the innate immune cells of fish.
Collapse
Affiliation(s)
- Preeti J. Muire
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Larry A. Hanson
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Robert Wills
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Lora Petrie-Hanson
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| |
Collapse
|
26
|
Brenz Y, Winther-Larsen HC, Hagedorn M. Expanding Francisella models: Pairing up the soil amoeba Dictyostelium with aquatic Francisella. Int J Med Microbiol 2017; 308:32-40. [PMID: 28843671 DOI: 10.1016/j.ijmm.2017.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022] Open
Abstract
The bacterial genus Francisella comprises highly pathogenic species that infect mammals, arthropods, fish and protists. Understanding virulence and host defense mechanisms of Francisella infection relies on multiple animal and cellular model systems. In this review, we want to summarize the most commonly used Francisella host model platforms and highlight novel, alternative model systems using aquatic Francisella species. Established mouse and macrophage models contributed extensively to our understanding of Francisella infection. However, murine and human cells display significant differences in their response to Francisella infection. The zebrafish and the amoeba Dictyostelium are well-established model systems for host-pathogen interactions and open up opportunities to investigate bacterial virulence and host defense. Comparisons between model systems using human and fish pathogenic Francisella species revealed shared virulence strategies and pathology between them. Hence, zebrafish and Dictyostelium might complement current model systems to find new vaccine candidates and contribute to our understanding of Francisella infection.
Collapse
Affiliation(s)
- Yannick Brenz
- Department of Parasitology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany.
| | - Hanne C Winther-Larsen
- Centre for Integrative Microbial Evolution (CIME) and Department of Pharmaceutical Biosciences, University of Oslo, Sem Sælands vei 3, 0371 Oslo, Norway.
| | - Monica Hagedorn
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
27
|
Tandberg J, Oliver C, Lagos L, Gaarder M, Yáñez AJ, Ropstad E, Winther-Larsen HC. Membrane vesicles from Piscirickettsia salmonis induce protective immunity and reduce development of salmonid rickettsial septicemia in an adult zebrafish model. FISH & SHELLFISH IMMUNOLOGY 2017; 67:189-198. [PMID: 28600194 DOI: 10.1016/j.fsi.2017.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 06/07/2023]
Abstract
Infections caused by the facultative intracellular bacterial pathogen Piscirickettsia salmonis remains an unsolved problem for the aquaculture as no efficient treatments have been developed. As a result, substantial amounts of antibiotic have been used to limit salmonid rickettsial septicemia (SRS) disease outbreaks. The antibiotic usage has not reduced the occurrence, but lead to an increase in resistant strains, underlining the need for new treatment strategies. P. salmonis produce membrane vesicles (MVs); small spherical structures know to contain a variety of bacterial components, including proteins, lipopolysaccharides (LPS), DNA and RNA. MVs mimics' in many aspects their mother cell, and has been reported as alternative vaccine candidates. Here, MVs from P. salmonis was isolated and evaluated as a vaccine candidate against SRS in an adult zebrafish infection model. When zebrafish was immunized with MVs they were protected from subsequent challenge with a lethal dose of P. salmonis. Histological analysis showed a reduced bacterial load upon challenge in the MV immunized group, and the mRNA expression levels of several immune related genes altered, including mpeg1.1, tnfα, il1b, il10 and il6. The MVs induced the secretion of IgM upon immunization, indicating an immunogenic effect of the vesicles. Taken together, the data demonstrate a vaccine potential of MVs against P. salmonis.
Collapse
Affiliation(s)
- Julia Tandberg
- Center of Integrative Microbiology and Evolution, University of Oslo, Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Cristian Oliver
- Institute of Biochemistry and Microbiology, Faculty of Science, Universidad Austral de Chile, Valdivia, Chile; Department of Biological Science, Faculty of Biological Science, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Leidy Lagos
- Center of Integrative Microbiology and Evolution, University of Oslo, Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Mona Gaarder
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Alejandro J Yáñez
- Institute of Biochemistry and Microbiology, Faculty of Science, Universidad Austral de Chile, Valdivia, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile; Austral-OMICS, Faculty of Science, Universidad Austral de Chile, Valdivia, Chile
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Hanne C Winther-Larsen
- Center of Integrative Microbiology and Evolution, University of Oslo, Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway.
| |
Collapse
|
28
|
Characterization and Vaccine Potential of Membrane Vesicles Produced by Francisella noatunensis subsp. orientalis in an Adult Zebrafish Model. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00557-16. [PMID: 28331079 PMCID: PMC5424235 DOI: 10.1128/cvi.00557-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/11/2017] [Indexed: 11/20/2022]
Abstract
Vaccine development against extracellular bacteria has been important for the sustainability of the aquaculture industry. In contrast, infections with intracellular pathogens remain largely an unresolved problem. Francisella noatunensis subsp. orientalis is a Gram-negative, facultative intracellular bacterium that causes the disease francisellosis in fish. Francisellosis is commonly characterized as a chronic granulomatous disease with high morbidity and can result in high mortality depending on the host. In this study, we explored the potential of bacterial membrane vesicles (MVs) as a vaccine agent against F. noatunensis subsp. orientalis. Bacterial MVs are spherical structures naturally released from the membrane of bacteria and are often enriched with selected bacterial components such as toxins and signaling molecules. MVs were isolated from broth-cultured F. noatunensis subsp. orientalis in the present work, and proteomic analysis by mass spectrometry revealed that MVs contained a variety of immunogenic factors, including the intracellular growth proteins IglC and IglB, known to be part of a Francisella pathogenicity island (FPI), as well as outer membrane protein OmpA, chaperonin GroEL, and chaperone ClpB. By using flow cytometry and electron microscopy, we observed that F. noatunensis subsp. orientalis mainly infects myelomonocytic cells, both in vivo and in vitro. Immunization with MVs isolated from F. noatunensis subsp. orientalis protects zebrafish from subsequent challenge with a lethal dose of F. noatunensis subsp. orientalis. To determine if MVs induce a typical acute inflammatory response, mRNA expression levels were assessed by quantitative real-time PCR. Expression of tnfa, il1b, and ifng, as well as mhcii, mpeg1.1, and ighm, was upregulated, thus confirming the immunogenic properties of F. noatunensis subsp. orientalis-derived MVs.
Collapse
|
29
|
Lampe EO, Tandberg JI, Rishovd AL, Winther-Larsen HC. Francisella noatunensis ssp. noatunensis iglC deletion mutant protects adult zebrafish challenged with acute mortality dose of wild-type strain. DISEASES OF AQUATIC ORGANISMS 2017; 123:123-140. [PMID: 28262634 DOI: 10.3354/dao03087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The intracellular fish pathogen Francisella noatunensis remains an unsolved problem for aquaculture worldwide and an efficient vaccine is needed. In Francisella sp., IglC is an important virulence factor necessary for intracellular growth and escape from phagolysosomes. Deletion of the intracellular growth locus C (iglC) in Francisella sp. causes attenuation, but vaccine potential has only been attributed to ΔiglC from Francisella noatunensis ssp. orientalis, a warm-water fish pathogen. A ΔiglC mutant was constructed in the cold-water fish pathogen F. noatunensis ssp. noatunensis (Fnn), which causes francisellosis in Atlantic cod; the mutant was assessed in primary head kidney leucocytes from Atlantic cod. Fluorescence microscopy revealed reduced growth, while qPCR revealed an initial increase followed by a reduction in mutant genomes. Mutant-infected cod leucocytes presented higher interleukin 1 beta (il1β) and interleukin 8 (il8) transcription than wild-type (WT)-infected cells. Two doses of mutant and WT were tested in an adult zebrafish model whereupon 3 × 109 CFU caused acute disease and 3 × 107 CFU caused low mortality regardless of strain. However, splenomegaly developed only in the WT-infected zebrafish. Immunization with 7 × 106 CFU of Fnn ΔiglC protected zebrafish against challenge with a lethal dose of Fnn WT, and bacterial load was minimized within 28 d. Immunized fish had lower interleukin 6 (il6) and il8 transcription in kidney and prolonged interferon-gamma (ifng) transcription in spleens after challenge compared with non-immunized fish. Our data suggest an immunogenic potential of Fnn ΔiglC and indicate important cytokines associated with francisellosis pathogenesis and protection.
Collapse
Affiliation(s)
- Elisabeth O Lampe
- Center for Integrative Microbiology and Evolution, Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, 0316 Oslo, Norway
| | | | | | | |
Collapse
|
30
|
Lewisch E, Menanteau-Ledouble S, Tichy A, El-Matbouli M. Susceptibility of common carp and sunfish to a strain of Francisella noatunensis subsp. orientalis in a challenge experiment. DISEASES OF AQUATIC ORGANISMS 2016; 121:161-166. [PMID: 27667813 DOI: 10.3354/dao03044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Francisellosis, an emerging disease in many fish species, can cause high mortality in affected populations. Here we investigated the susceptibility of common carp Cyprinus carpio and sunfish Lepomis gibbosus to Francisella noatunensis subsp. orientalis (Fno), and possible transmission of the bacteria between the 2 fish species. In a challenge experiment, 3 groups of each species were injected intraperitoneally (IP) with 3 different doses of an Fno strain no. 9449 of the Norwegian Veterinary Institute, recovered from naturally infected ornamental Malawi cichlids. Infected carp were cohabitated with sunfish and vice versa. Control groups were injected with 0.9M phosphate-buffered saline and cohabitated accordingly. Fish were sampled at different time points. Mortality of challenged sunfish was observed during the first 96 h and reached 56.1%. In the control sunfish, 4 of 16 fish (25%) died within 48 h. In carp, no mortalities or clinical signs were observed during the experiment. General clinical and patho-anatomical disease signs of affected sunfish were observed. We detected granulomas in 2 cohabitated sunfish and 1 challenged carp, but could not re-isolate Fno from these fish. Fno was successfully cultured from 6 sunfish and 3 carp specimens until 35 d post injection. PCR of spleen and kidney with 16S rDNA Francisella-like bacterium primers 180f and 485r yielded amplicons in 68.3% of challenged sunfish and only 12.2% of challenged carp. We demonstrated that sunfish were susceptible to Fno infection while the carp were not. Horizontal transmission of the agent between the 2 fish species could not be demonstrated.
Collapse
Affiliation(s)
- E Lewisch
- Clinical Division of Fish Medicine, University of Veterinary Medicine, 1210 Vienna, Austria
| | | | | | | |
Collapse
|
31
|
Soto E, Halliday-Simmonds I, Francis S, Fraites T, Martínez-López B, Wiles J, Hawke JP, Endris RD. Improved Broth Microdilution Method for Antimicrobial Susceptibility Testing of Francisella Noatunensis Orientalis. JOURNAL OF AQUATIC ANIMAL HEALTH 2016; 28:199-207. [PMID: 27484609 DOI: 10.1080/08997659.2016.1185051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this project we optimized a minimal inhibitory concentration testing protocol for Francisella noatunensis orientalis. Thirty-three F. noatunensis orientalis isolates recovered from different fish species and locations were tested, and Escherichia coli ATCC 25922 was used as a quality control reference strain. A modified cation-adjusted Mueller Hinton broth supplemented with 2% IsoVitalex and 0.1% glucose (MMH) was tested at a pH of 6.4 ± 0.1, 7.1 ± 0.1, and 7.3 ± 0.1. Growth curves generated for F. noatunensis orientalis indicated that MMH at a pH of 6.4 ± 0.1 provided optimal growth. There were no significant differences in the growth curves obtained from isolates recovered from different fish species or from fresh or marine water. The pH of 6.4 ± 0.1 in the MMH media interfered with the inhibitory properties of the potentiated sulfonamides (ormetoprim-sulfadimethoxine and trimethoprim-sulfamethoxazole) when using the E. coli ATCC reference strain. Minimal inhibitory concentrations of eight antimicrobials (gentamicin, enrofloxacin, ampicillin, oxytetracycline, erythromycin, florfenicol, flumequine, and oxolinic acid) were similar for all F. noatunensis orientalis isolates. The in vitro susceptibility data provided here can provide a baseline for monitoring the development of antimicrobial resistance among F. noatunensis orientalis isolates, as well as provide valuable data in the development of potential therapeutics. Received October 27, 2015; accepted April 13, 2016.
Collapse
Affiliation(s)
- Esteban Soto
- a Department of Medicine and Epidemiology, School of Veterinary Medicine , University of California , Tupper Hall 2108, 1 Shields Avenue, Davis , California 95616 , USA
- b Department of Biomedical Sciences , Ross University School of Veterinary Medicine , Post Office Box 334, Basseterre, St. Kitts, West Indies
| | - Iona Halliday-Simmonds
- b Department of Biomedical Sciences , Ross University School of Veterinary Medicine , Post Office Box 334, Basseterre, St. Kitts, West Indies
| | - Stewart Francis
- b Department of Biomedical Sciences , Ross University School of Veterinary Medicine , Post Office Box 334, Basseterre, St. Kitts, West Indies
| | - Trellor Fraites
- b Department of Biomedical Sciences , Ross University School of Veterinary Medicine , Post Office Box 334, Basseterre, St. Kitts, West Indies
| | - Beatriz Martínez-López
- c Center for Animal Disease Modeling and Surveillance, Department of Medicine and Epidemiology, School of Veterinary Medicine , University of California , Tupper Hall 2108, 1 Shields Avenue, Davis , California 95616 , USA
| | - Judy Wiles
- d Department of Pathobiological Sciences , Louisiana State University, School of Veterinary Medicine ,1909 Skip Bertman Drive, Baton Rouge , Louisiana 70803 , USA
| | - John P Hawke
- d Department of Pathobiological Sciences , Louisiana State University, School of Veterinary Medicine ,1909 Skip Bertman Drive, Baton Rouge , Louisiana 70803 , USA
| | - Richard D Endris
- e Endris Consulting , Inc., 492 Foothill Road, Bridgewater , New Jersey 08807 , USA
| |
Collapse
|
32
|
Jantrakajorn S, Wongtavatchai J. Francisella Infection in Cultured Tilapia in Thailand and the Inflammatory Cytokine Response. JOURNAL OF AQUATIC ANIMAL HEALTH 2016; 28:97-106. [PMID: 27196982 DOI: 10.1080/08997659.2015.1135198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Francisella infections developed in freshwater Nile Tilapia Oreochromis niloticus and red tilapia Oreochromis spp. farms in Thailand during 2012-2014. The diseased fish were lethargic and pale in color and showed numerous white nodules in their enlarged spleens. Histopathological examination and electron microscopy suggested that the white nodules were multifocal granulomas consisting of coccobacilli within vacuolated cells. Isolation of Francisella-like bacteria was achieved from 42 of 100 samples, while polymerase chain reaction confirmed Francisella infections in all samples. Analysis of the 16S rRNA gene from samples obtained from three different geographical culture areas revealed more than 99% similarity with F. noatunensis subsp. orientalis. The influence of Francisella infection on inflammatory cytokines was determined on splenic cells of fish intraperitoneally injected with the bacteria (0.8 × 10(5) colony-forming units per fish). Infected tilapia showed significantly greater expression of the pro-inflammatory genes interleukin-1β (IL-1β) and tumor necrotic factor-α (TNF-α) within 24 h postinjection (hpi) and for up to 96 hpi. However, down-regulation of an anti-inflammatory gene, transforming growth factor-β (TGF-β) was observed as early as 24 hpi. This investigation demonstrates that an imbalance between pro- and anti-inflammatory cytokines in response to the infection may account for the substantial number of granulomas in fish hematopoietic tissues that was found in the later stage of the disease. Received September 9, 2015; accepted December 13, 2015.
Collapse
Affiliation(s)
- Sasibha Jantrakajorn
- a Faculty of Veterinary Science , Prince of Songkla University , Songkhla , Thailand
- b Department of Veterinary Medicine , Chulalongkorn University , Bangkok , Thailand
| | | |
Collapse
|
33
|
Dissection of Francisella-Host Cell Interactions in Dictyostelium discoideum. Appl Environ Microbiol 2015; 82:1586-1598. [PMID: 26712555 DOI: 10.1128/aem.02950-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/22/2015] [Indexed: 12/31/2022] Open
Abstract
Francisella bacteria cause severe disease in both vertebrates and invertebrates and include one of the most infectious human pathogens. Mammalian cell lines have mainly been used to study the mechanisms by which Francisella manipulates its host to replicate within a large variety of hosts and cell types, including macrophages. Here, we describe the establishment of a genetically and biochemically tractable infection model: the amoeba Dictyostelium discoideum combined with the fish pathogen Francisella noatunensis subsp. noatunensis. Phagocytosed F. noatunensis subsp. noatunensis interacts with the endosomal pathway and escapes further phagosomal maturation by translocating into the host cell cytosol. F. noatunensis subsp. noatunensis lacking IglC, a known virulence determinant required for Francisella intracellular replication, follows the normal phagosomal maturation and does not grow in Dictyostelium. The attenuation of the F. noatunensis subsp. noatunensis ΔiglC mutant was confirmed in a zebrafish embryo model, where growth of F. noatunensis subsp. noatunensis ΔiglC was restricted. In Dictyostelium, F. noatunensis subsp. noatunensis interacts with the autophagic machinery. The intracellular bacteria colocalize with autophagic markers, and when autophagy is impaired (Dictyostelium Δatg1), F. noatunensis subsp. noatunensis accumulates within Dictyostelium cells. Altogether, the Dictyostelium-F. noatunensis subsp. noatunensis infection model recapitulates the course of infection described in other host systems. The genetic and biochemical tractability of the system allows new approaches to elucidate the dynamic interactions between pathogenic Francisella and its host organism.
Collapse
|
34
|
Hodgkinson JW, Grayfer L, Belosevic M. Biology of Bony Fish Macrophages. BIOLOGY 2015; 4:881-906. [PMID: 26633534 PMCID: PMC4690021 DOI: 10.3390/biology4040881] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/20/2015] [Accepted: 11/24/2015] [Indexed: 01/21/2023]
Abstract
Macrophages are found across all vertebrate species, reside in virtually all animal tissues, and play critical roles in host protection and homeostasis. Various mechanisms determine and regulate the highly plastic functional phenotypes of macrophages, including antimicrobial host defenses (pro-inflammatory, M1-type), and resolution and repair functions (anti-inflammatory/regulatory, M2-type). The study of inflammatory macrophages in immune defense of teleosts has garnered much attention, and antimicrobial mechanisms of these cells have been extensively studied in various fish models. Intriguingly, both similarities and differences have been documented for the regulation of lower vertebrate macrophage antimicrobial defenses, as compared to what has been described in mammals. Advances in our understanding of the teleost macrophage M2 phenotypes likewise suggest functional conservation through similar and distinct regulatory strategies, compared to their mammalian counterparts. In this review, we discuss the current understanding of the molecular mechanisms governing teleost macrophage functional heterogeneity, including monopoetic development, classical macrophage inflammatory and antimicrobial responses as well as alternative macrophage polarization towards tissues repair and resolution of inflammation.
Collapse
Affiliation(s)
- Jordan W Hodgkinson
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC 20052, USA.
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
35
|
Soto E, Halliday-Simmonds I, Francis S, Kearney MT, Hansen JD. Biofilm formation of Francisella noatunensis subsp. orientalis. Vet Microbiol 2015; 181:313-7. [PMID: 26507830 DOI: 10.1016/j.vetmic.2015.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/29/2015] [Accepted: 10/08/2015] [Indexed: 11/25/2022]
Abstract
Francisella noatunensis subsp. orientalis (Fno) is an emergent fish pathogen in both marine and fresh water environments. The bacterium is suspected to persist in the environment even without the presence of a suitable fish host. In the present study, the influence of different abiotic factors such as salinity and temperature were used to study the biofilm formation of different isolates of Fno including intracellular growth loci C (iglC) and pathogenicity determinant protein A (pdpA) knockout strains. Finally, we compared the susceptibility of planktonic and biofilm to three disinfectants used in the aquaculture and ornamental fish industry, namely Virkon(®), bleach and hydrogen peroxide. The data indicates that Fno is capable of producing biofilms within 24 h where both salinity as well as temperature plays a role in the growth and biofilm formation of Fno. Mutations in the iglC or pdpA, both known virulence factors, do not appear to affect the capacity of Fno to produce biofilms, and the minimum inhibitory concentration, and minimum biocidal concentration for the three disinfectants were lower than the minimum biofilm eradication concentration values. This information needs to be taken into account if trying to eradicate the pathogen from aquaculture facilities or aquariums.
Collapse
Affiliation(s)
- Esteban Soto
- Department of Medicine and Epidemiology, University of California-Davis, School of Veterinary Medicine, Davis, CA 95616, USA; Department of Biomedical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, St. Kitts, West Indies.
| | - Iona Halliday-Simmonds
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, St. Kitts, West Indies
| | - Stewart Francis
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, St. Kitts, West Indies
| | - Michael T Kearney
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - John D Hansen
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA
| |
Collapse
|
36
|
Harvie EA, Huttenlocher A. Neutrophils in host defense: new insights from zebrafish. J Leukoc Biol 2015; 98:523-37. [PMID: 25717145 PMCID: PMC4569048 DOI: 10.1189/jlb.4mr1114-524r] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 12/11/2022] Open
Abstract
Neutrophils are highly motile phagocytic cells that play a critical role in the immune response to infection. Zebrafish (Danio rerio) are increasingly used to study neutrophil function and host-pathogen interactions. The generation of transgenic zebrafish lines with fluorescently labeled leukocytes has made it possible to visualize the neutrophil response to infection in real time by use of optically transparent zebrafish larvae. In addition, the genetic tractability of zebrafish has allowed for the generation of models of inherited neutrophil disorders. In this review, we discuss several zebrafish models of infectious disease, both in the context of immunocompetent, as well as neutrophil-deficient hosts and how these models have shed light on neutrophil behavior during infection.
Collapse
Affiliation(s)
- Elizabeth A Harvie
- *Microbiology Doctoral Training Program, Departments of Medical Microbiology and Immunology and Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anna Huttenlocher
- *Microbiology Doctoral Training Program, Departments of Medical Microbiology and Immunology and Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
37
|
Sanders JL, Moulton H, Moulton Z, McLeod R, Dubey JP, Weiss LM, Zhou Y, Kent ML. The zebrafish, Danio rerio, as a model for Toxoplasma gondii: an initial description of infection in fish. JOURNAL OF FISH DISEASES 2015; 38:675-9. [PMID: 25951508 PMCID: PMC4548885 DOI: 10.1111/jfd.12393] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/23/2015] [Accepted: 04/23/2015] [Indexed: 05/04/2023]
Abstract
Toxoplasma gondii infects a very wide range of mammals and birds, and about one-third of humans are infected with this protozoan parasite. Chronic T. gondii infection has historically been believed to be asymptomatic; however there is now evidence that links chronic infection with several psychiatric disorders. While there are drugs to treat acute toxoplasmosis, there are currently no treatments for the latent form of the parasite. Currently, T. gondii in vivo research is performed using murine models, which are limited by cost and the inability to perform high throughput assays. To develop an improved in vivo model, we adapted zebrafish to 37°C and injected them intraperitoneally with two strains of T. gondii at a concentration of 10 tissue cysts per fish, and observed them for 7 days post injection. Fish were examined by histology for the presence of T. gondii development. Intracellular parasites were observed in fish at 5 to 7 days post injection. The pattern of infection observed was similar to that found in mammalian infection, with parasites developing in the somatic muscle, heart, liver, spleen, kidney, and brain.
Collapse
Affiliation(s)
- Justin L. Sanders
- Department of Microbiology, Oregon State University, Corvallis, OR
- Author for correspondence ()
| | - Hong Moulton
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR
| | | | - Rima McLeod
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL
| | - J. P. Dubey
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD
| | - Louis M. Weiss
- Departments of Pathology and Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Ying Zhou
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL
| | - Michael L. Kent
- Department of Microbiology, Oregon State University, Corvallis, OR
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR
| |
Collapse
|
38
|
Monette MM, Evans DL, Krunkosky T, Camus A, Jaso-Friedmann L. Nonspecific cytotoxic cell antimicrobial protein (NCAMP-1): a novel alarmin ligand identified in zebrafish. PLoS One 2015; 10:e0116576. [PMID: 25689842 PMCID: PMC4331361 DOI: 10.1371/journal.pone.0116576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 12/10/2014] [Indexed: 01/13/2023] Open
Abstract
Cells from the coelomic cavity of adult zebrafish (zf) were used to study the alarmin-like activities of nonspecific cytotoxic cell antimicrobial protein-1 (NCAMP-1). Immunohistochemistry studies using polyclonal anti-NCAMP-1 identified constitutive NCAMP-1 in epithelial cells of the zf anterior kidney, in liver parenchyma and in the lamina propria of the intestine. NCAMP-1 was also located in the cytosol of mononuclear cells in these tissues. Cytosolic NCAMP-1 was detected in a diverse population of coelomic cells (CC) using confocal microscopy and polyclonal anti-NCAMP-1 staining. Large mononuclear and heterophil-like CC had intracellular NCAMP-1. These studies indicated that NCAMP-1 is constitutively found in epithelial cells and in ZFCC. To establish a relationship between NCAMP-1 and the alarmin functions of ATP, a stimulation-secretion model was initiated using zf coelomic cells (ZFCC). ZFCCs treated with the alarmin ATP secreted NCAMP-1 into culture supernatants. Treatment of ZFCC with either ATP or NCAMP-1 activated purinergic receptor induced pore formation detected by the ZFCC uptake of the dye YO-PRO-1. ATP induced YO-PRO-1 uptake was inhibited by antagonists oxidized-ATP, KN62, or CBB. These antagonists did not compete with NCAMP-1 induced YO-PRO-1 uptake. Binding of ZFCC by both ATP and NCAMP-1 produced an influx of Ca2+. Combined treatment of ZFCC with ATP and NCAMP-1 increased target cell cytotoxicity. Individually NCAMP-1 or ATP treatment did not produce target cell damage. Similar to ATP, NCAMP-1 activates cellular pore formation, calcium influx and cytotoxicity.
Collapse
Affiliation(s)
- Margaret Mariscal Monette
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Donald Lee Evans
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Thomas Krunkosky
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Alvin Camus
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Liliana Jaso-Friedmann
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
39
|
Brudal E, Lampe EO, Reubsaet L, Roos N, Hegna IK, Thrane IM, Koppang EO, Winther-Larsen HC. Vaccination with outer membrane vesicles from Francisella noatunensis reduces development of francisellosis in a zebrafish model. FISH & SHELLFISH IMMUNOLOGY 2015; 42:50-57. [PMID: 25449706 DOI: 10.1016/j.fsi.2014.10.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/17/2014] [Accepted: 10/17/2014] [Indexed: 06/04/2023]
Abstract
Infection of fish with the facultative intracellular bacterium Francisella noatunensis remains an unresolved problem for aquaculture industry worldwide as it is difficult to vaccinate against without using live attenuated vaccines. Outer membrane vesicles (OMVs) are biological structures shed by Gram-negative bacteria in response to various environmental stimuli. OMVs have successfully been used to vaccinate against both intracellular and extracellular pathogens, due to an ability to stimulate innate, cell-mediated and humoral immune responses. We show by using atomic force and electron microscopy that the fish pathogenic bacterium F. noatunensis subspecies noatunensis (F.n.n.) shed OMVs both in vitro into culture medium and in vivo in a zebrafish infection model. The main protein constituents of the OMV are IglC, PdpD and PdpA, all known Francisella virulence factors, in addition to the outer membrane protein FopA and the chaperonin GroEL, as analyzed by mass spectrometry. The vesicles, when used as a vaccine, reduced proliferation of the bacterium and protected zebrafish when subsequently challenged with a high dose of F.n.n. without causing adverse effects for the host. Also granulomatous responses were reduced in F.n.n.-challenged zebrafish after OMV vaccination. Taken together, the data support the possible use of OMVs as vaccines against francisellosis in fish.
Collapse
Affiliation(s)
- Espen Brudal
- Section for Microbiology, Immunology and Parasitology, Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, PO Box 8146 Dep, 0033 Oslo, Norway; Laboratory for Microbial Dynamics (LaMDa), School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Elisabeth O Lampe
- Laboratory for Microbial Dynamics (LaMDa), School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Léon Reubsaet
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Norbert Roos
- Department of Biosciences, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Ida K Hegna
- Laboratory for Microbial Dynamics (LaMDa), School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Ida Marie Thrane
- Laboratory for Microbial Dynamics (LaMDa), School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Erling O Koppang
- Section for Anatomy and Pathology, Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, PO Box 8146 Dep, 0033 Oslo, Norway
| | - Hanne C Winther-Larsen
- Laboratory for Microbial Dynamics (LaMDa), School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway.
| |
Collapse
|
40
|
Oyarbide U, Iturria I, Rainieri S, Pardo MA. Use of gnotobiotic zebrafish to study Vibrio anguillarum pathogenicity. Zebrafish 2014; 12:71-80. [PMID: 25548877 DOI: 10.1089/zeb.2014.0972] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We evaluated the use of the gnotobiotic zebrafish system to study the effects of bacterial infection, and analyzed expression of genes involved in zebrafish innate immunity. Using a GFP-labeled strain of Vibrio anguillarum, we fluorescently monitored colonization of the zebrafish intestinal tract and used gene expression analysis to compare changes in genes involved in innate immunity between nongnotobiotic and gnotobiotic larvae. The experiments performed with the gnotobiotic zebrafish reveal new insights into V. anguillarum pathogenesis. Specifically, an alteration of the host immune system was detected through the suppression of a number of innate immune genes (NFKB, IL1B, TLR4, MPX, and TRF) during the first 3 h post infection. This immunomodulation can be indicative of a "stealth mechanism" of mucus invasion in which the pathogen found a sheltered niche, a typical trait of intracellular pathogens.
Collapse
Affiliation(s)
- Usua Oyarbide
- Food Research Division, Azti-Tecnalia , Derio, Spain
| | | | | | | |
Collapse
|
41
|
Liu X, Chang X, Wu H, Xiao J, Gao Y, Zhang Y. Role of intestinal inflammation in predisposition of Edwardsiella tarda infection in zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2014; 41:271-278. [PMID: 25224880 DOI: 10.1016/j.fsi.2014.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/19/2014] [Accepted: 09/05/2014] [Indexed: 06/03/2023]
Abstract
Edwardsiella tarda, an enteric opportunistic pathogen, is associated with acute to chronic edwardsiellosis in cultured fish, resulting in heavy losses in aquaculture. To date, the pathogenesis of E. tarda has been extensively studied and a great deal of vaccine candidates have been attempted. However, the research on the predisposition of E. tarda infection is poorly reported. In this study, the effects of intestinal inflammation on E. tarda infection were investigated using a zebrafish model that influenced by perturbation of intestinal microbiota. Featured symptoms of edwardsiellosis were observed in intestinal inflammatory zebrafish compared with healthy fish. Higher bacterial numbers were detected in both mucosal tissues (intestine, skin and gills) and lymphoid tissues (liver, spleen and kidney) of inflammatory zebrafish while the bacterial loads in healthy zebrafish appeared to be relatively lower by 10-100 folds. Moreover, significant up-regulation of IL-1β, TNF-α and iNOS was noticed in multiple tissues of zebrafish with intestinal inflammation between 6 and 72 h post infection. However, only moderate elevation was observed in the gills and liver of healthy fish. Furthermore, the expression of genes involved in neutrophil recruitment (mpx, IL-8 and LECT2) and antimicrobial response (β-defensin and hepcidin) showed notable up-regulation in the intestine of inflammatory zebrafish. These results demonstrate that fish with intestinal inflammation is more susceptible to E. tarda and the antimicrobial response during E. tarda infection might inhibit the growth of intestinal microbiota. Our results suggest that maintaining good management to avoid intestinal inflammation is a feasible prevention measure against edwardsiellosis.
Collapse
Affiliation(s)
- Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xinyue Chang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
| | - Jingfan Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuan Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
42
|
Williamson D. Approaches to modelling the human immune response in transition of candidates from research to development. J Immunol Res 2014; 2014:395302. [PMID: 24949489 PMCID: PMC4033477 DOI: 10.1155/2014/395302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 03/11/2014] [Indexed: 11/28/2022] Open
Abstract
This review considers the steps required to evaluate a candidate biodefense vaccine or therapy as it emerges from the research phase, in order to transition it to development. The options for preclinical modelling of efficacy are considered in the context of the FDA's Animal Rule.
Collapse
Affiliation(s)
- Diane Williamson
- Defence Science and Technology Laboratory (DSTL), Porton Down, Salisbury, Wilts SP4 0JQ, UK
| |
Collapse
|
43
|
Establishment of three Francisella infections in zebrafish embryos at different temperatures. Infect Immun 2014; 82:2180-94. [PMID: 24614659 DOI: 10.1128/iai.00077-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella spp. are facultative intracellular pathogens identified in increasingly diverse hosts, including mammals. F. noatunensis subsp. orientalis and F. noatunensis subsp. noatunensis infect fish inhabiting warm and cold waters, respectively, while F. tularensis subsp. novicida is highly infectious for mice and has been widely used as a model for the human pathogen F. tularensis. Here, we established zebrafish embryo infection models of fluorescently labeled F. noatunensis subsp. noatunensis, F. noatunensis subsp. orientalis, and F. tularensis subsp. novicida at 22, 28, and 32°C, respectively. All infections led to significant bacterial growth, as shown by reverse transcription-quantitative PCR (RT-qPCR), and to a robust proinflammatory immune response, dominated by increased transcription of tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β). F. noatunensis subsp. orientalis was the most virulent, F. noatunensis subsp. noatunensis caused chronic infection, and F. tularensis subsp. novicida showed moderate virulence and led to formation of relatively small granuloma-like structures. The use of transgenic zebrafish strains with enhanced green fluorescent protein (EGFP)-labeled immune cells revealed their detailed interactions with Francisella species. All three strains entered preferentially into macrophages, which eventually assembled into granuloma-like structures. Entry into neutrophils was also observed, though the efficiency of this event depended on the route of infection. The results demonstrate the usefulness of the zebrafish embryo model for studying infections caused by different Francisella species at a wide range of temperatures and highlight their interactions with immune cells.
Collapse
|
44
|
Leite CE, Maboni LDO, Cruz FF, Rosemberg DB, Zimmermann FF, Pereira TCB, Bogo MR, Bonan CD, Campos MM, Morrone FB, Battastini AMO. Involvement of purinergic system in inflammation and toxicity induced by copper in zebrafish larvae. Toxicol Appl Pharmacol 2013; 272:681-9. [PMID: 23933163 DOI: 10.1016/j.taap.2013.08.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 12/20/2022]
Abstract
The use of zebrafish (Danio rerio) is increasing as an intermediate preclinical model, to prioritize drug candidates for mammalian testing. As the immune system of the zebrafish is quite similar to that of mammals, models of inflammation are being developed for the screening of new drugs. The characterization of these models is crucial for studies that seek for mechanisms of action and specific pharmacological targets. It is well known that copper is a metal that induces damage and cell migration to hair cells of lateral line of zebrafish. Extracellular nucleotides/nucleosides, as ATP and adenosine (ADO), act as endogenous signaling molecules during tissue damage by exerting effects on inflammatory and immune responses. The present study aimed to characterize the inflammatory status, and to investigate the involvement of the purinergic system in copper-induced inflammation in zebrafish larvae. Fishes of 7 days post-fertilization were exposed to 10 μM of copper for a period of 24 h. The grade of oxidative stress, inflammatory status, copper uptake, the activity and the gene expression of the enzymes responsible for controlling the levels of nucleotides and adenosine were evaluated. Due to the copper accumulation in zebrafish larvae tissues, the damage and oxidative stress were exacerbated over time, resulting in an inflammatory process involving IL-1β, TNF-α, COX-2 and PGE2. Within the purinergic system, the mechanisms that control the ADO levels were the most involved, mainly the reactions performed by the isoenzyme ADA 2. In conclusion, our data shed new lights on the mechanisms related to copper-induced inflammation in zebrafish larvae.
Collapse
Affiliation(s)
- Carlos Eduardo Leite
- Instituto de Toxicologia e Farmacologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, CEP 90619-900, Brazil; Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, CEP 90035-003, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ferrer-Navarro M, Planell R, Yero D, Mongiardini E, Torrent G, Huedo P, Martínez P, Roher N, Mackenzie S, Gibert I, Daura X. Abundance of the Quorum-Sensing Factor Ax21 in Four Strains of Stenotrophomonas maltophilia Correlates with Mortality Rate in a New Zebrafish Model of Infection. PLoS One 2013; 8:e67207. [PMID: 23840626 PMCID: PMC3693955 DOI: 10.1371/journal.pone.0067207] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 05/15/2013] [Indexed: 02/06/2023] Open
Abstract
Stenotrophomonas maltophilia is a Gram-negative pathogen with emerging nosocomial incidence. Little is known about its pathogenesis and the genomic diversity exhibited by clinical isolates complicates the study of pathogenicity and virulence factors. Here, we present a strategy to identify such factors in new clinical isolates of S. maltophilia, incorporating an adult-zebrafish model of S. maltophilia infection to evaluate relative virulence coupled to 2D difference gel electrophoresis to explore underlying differences in protein expression. In this study we report upon three recent clinical isolates and use the collection strain ATCC13637 as a reference. The adult-zebrafish model shows discrimination capacity, i.e. from very low to very high mortality rates, with clinical symptoms very similar to those observed in natural S. maltophilia infections in fish. Strain virulence correlates with resistance to human serum, in agreement with previous studies in mouse and rat and therefore supporting zebrafish as a replacement model. Despite its clinical origin, the collection strain ATCC13637 showed obvious signs of attenuation in zebrafish, with null mortality. Multilocus-sequence-typing analysis revealed that the most virulent strains, UV74 and M30, exhibit the strongest genetic similitude. Differential proteomic analysis led to the identification of 38 proteins with significantly different abundance in the three clinical strains relative to the reference strain. Orthologs of several of these proteins have been already reported to have a role in pathogenesis, virulence or resistance mechanisms thus supporting our strategy. Proof of concept is further provided by protein Ax21, whose abundance is shown here to be directly proportional to mortality in the zebrafish infection model. Indeed, recent studies have demonstrated that this protein is a quorum-sensing-related virulence factor.
Collapse
Affiliation(s)
- Mario Ferrer-Navarro
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, Spain
| | - Raquel Planell
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, Spain
| | - Daniel Yero
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, Spain
| | - Elías Mongiardini
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, Spain
| | - Gerard Torrent
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, Spain
| | - Pol Huedo
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, Spain
| | - Paula Martínez
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, Spain
| | - Nerea Roher
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, Spain
| | - Simon Mackenzie
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, Spain
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Isidre Gibert
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, Spain
- * E-mail: (XD); (IG)
| | - Xavier Daura
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- * E-mail: (XD); (IG)
| |
Collapse
|
46
|
Francisella noatunensis subsp. orientalis pathogenesis analyzed by experimental immersion challenge in Nile tilapia, Oreochromis niloticus (L.). Vet Microbiol 2013; 164:77-84. [DOI: 10.1016/j.vetmic.2013.01.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/18/2013] [Accepted: 01/22/2013] [Indexed: 10/27/2022]
|
47
|
Abstract
UNLABELLED The rapid increase in information about genes and their associations with human diseases has highlighted the need for model organisms suitable for genetic manipulation and drug testing. The zebrafish is a valuable vertebrate animal model that offers many advantages, including the relative ease of husbandry and genetic manipulation and the capacity for high-throughput screens. In this review, we describe the zebrafish as a model for paediatric diseases, with particular emphasis on haematopoietic and infectious diseases. CONCLUSION The zebrafish has become an established vertebrate model in which to elucidate the molecular mechanisms of various human diseases.
Collapse
Affiliation(s)
- Olli Lohi
- Paediatric Research Centre, University of Tampere Medical School and Tampere University Hospital, Tampere, Finland
| | | | | |
Collapse
|
48
|
Li YJ, Hu B. Establishment of Multi-Site Infection Model in Zebrafish Larvae for Studying Staphylococcus aureus Infectious Disease. J Genet Genomics 2012; 39:521-34. [DOI: 10.1016/j.jgg.2012.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/26/2012] [Accepted: 07/16/2012] [Indexed: 11/30/2022]
|
49
|
Mycobacterium marinum SecA2 promotes stable granulomas and induces tumor necrosis factor alpha in vivo. Infect Immun 2012; 80:3512-20. [PMID: 22851747 DOI: 10.1128/iai.00686-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
SecA2 is an ATPase present in some pathogenic Gram-positive bacteria, is required for translocation of a limited set of proteins across the cytosolic membrane, and plays an important role in virulence in several bacteria, including mycobacteria that cause diseases such as tuberculosis and leprosy. However, the mechanisms by which SecA2 affects virulence are incompletely understood. To investigate whether SecA2 modulates host immune responses in vivo, we studied Mycobacterium marinum infection in two different hosts: an established zebrafish model and a recently described mouse model. Here we show that M. marinum ΔsecA2 was attenuated for virulence in both host species and SecA2 was needed for normal granuloma numbers and for optimal tumor necrosis factor alpha response in both zebrafish and mice. M. marinum ΔsecA2 was more sensitive to SDS and had unique protrusions from its cell envelope when examined by cryo-electron tomography, suggesting that SecA2 is important for bacterial cell wall integrity. These results provide evidence that SecA2 induces granulomas and is required for bacterial modulation of the host response because it affects the mycobacterial cell envelope.
Collapse
|
50
|
Yang D, Liu Q, Yang M, Wu H, Wang Q, Xiao J, Zhang Y. RNA-seq liver transcriptome analysis reveals an activated MHC-I pathway and an inhibited MHC-II pathway at the early stage of vaccine immunization in zebrafish. BMC Genomics 2012; 13:319. [PMID: 22805612 PMCID: PMC3583171 DOI: 10.1186/1471-2164-13-319] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 07/17/2012] [Indexed: 01/18/2023] Open
Abstract
Background Zebrafish (Danio rerio) is a prominent vertebrate model of human development and pathogenic disease and has recently been utilized to study teleost immune responses to infectious agents threatening the aquaculture industry. In this work, to clarify the host immune mechanisms underlying the protective effects of a putative vaccine and improve its immunogenicity in the future efforts, high-throughput RNA sequencing technology was used to investigate the immunization-related gene expression patterns of zebrafish immunized with Edwardsiella tarda live attenuated vaccine. Results Average reads of 18.13 million and 14.27 million were obtained from livers of zebrafish immunized with phosphate buffered saline (mock) and E. tarda vaccine (WED), respectively. The reads were annotated with the Ensembl zebrafish database before differential expressed genes sequencing (DESeq) comparative analysis, which identified 4565 significantly differentially expressed genes (2186 up-regulated and 2379 down-regulated in WED; p<0.05). Among those, functional classifications were found in the Gene Ontology database for 3891 and in the Kyoto Encyclopedia of Genes and Genomes database for 3467. Several pathways involved in acute phase response, complement activation, immune/defense response, and antigen processing and presentation were remarkably affected at the early stage of WED immunization. Further qPCR analysis confirmed that the genes encoding the factors involved in major histocompatibility complex (MHC)-I processing pathway were up-regulated, while those involved in MHC-II pathway were down-regulated. Conclusion These data provided insights into the molecular mechanisms underlying zebrafish immune response to WED immunization and might aid future studies to develop a highly immunogenic vaccine against gram-negative bacteria in teleosts.
Collapse
Affiliation(s)
- Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | | | | | | | | | | | | |
Collapse
|