1
|
Bouheraoua S, Cleeves S, Preusse M, Müsken M, Braubach P, Fuchs M, Falk C, Sewald K, Häussler S. Establishment and characterization of persistent Pseudomonas aeruginosa infections in air-liquid interface cultures of human airway epithelial cells. Infect Immun 2025; 93:e0060324. [PMID: 39964154 PMCID: PMC11895474 DOI: 10.1128/iai.00603-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 01/10/2025] [Indexed: 03/12/2025] Open
Abstract
Bacteria exhibit distinct behaviors in laboratory settings compared to infection environments. The presence of host cells induces changes in bacterial activity, while pathogens trigger immune responses that shape the microenvironment. Studying infection dynamics by microscopy, cytokine screening, and dual RNA sequencing in an air-liquid interface model, we found that prolonged Pseudomonas aeruginosa colonization of airway epithelium led to a pro-inflammatory response, consistent across P. aeruginosa strains, despite differences in the dynamics of this response. Concurrently, P. aeruginosa formed non-attached aggregates on the apical side of the cell layer and upregulated genes involved in biofilm formation and virulence. Notably, there was remarkable resemblance between the P. aeruginosa transcriptional profile in our model and that previously reported upon host cell contact. Developing a platform that replicates host microenvironments is vital not only for gaining deeper insights into the interplay between host and pathogen but also for evaluating therapeutic strategies in conditions that closely mirror clinical environments.
Collapse
Affiliation(s)
- Safaa Bouheraoua
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Sven Cleeves
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Matthias Preusse
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Peter Braubach
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Maximilian Fuchs
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Christine Falk
- Institute for Transplantation Immunology, Hannover Medical School, Hannover, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Susanne Häussler
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany
- Department of Clinical Microbiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Hajdú G, Szathmári C, Sőti C. Modeling Host-Pathogen Interactions in C. elegans: Lessons Learned from Pseudomonas aeruginosa Infection. Int J Mol Sci 2024; 25:7034. [PMID: 39000143 PMCID: PMC11241598 DOI: 10.3390/ijms25137034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Infections, such as that by the multiresistant opportunistic bacterial pathogen Pseudomonas aeruginosa, may pose a serious health risk, especially on vulnerable patient populations. The nematode Caenorhabditis elegans provides a simple organismal model to investigate both pathogenic mechanisms and the emerging role of innate immunity in host protection. Here, we review the virulence and infection strategies of P. aeruginosa and host defenses of C. elegans. We summarize the recognition mechanisms of patterns of pathogenesis, including novel pathogen-associated molecular patterns and surveillance immunity of translation, mitochondria, and lysosome-related organelles. We also review the regulation of antimicrobial and behavioral defenses by the worm's neuroendocrine system. We focus on how discoveries in this rich field align with well-characterized evolutionary conserved protective pathways, as well as on potential crossovers to human pathogenesis and innate immune responses.
Collapse
Affiliation(s)
- Gábor Hajdú
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Csenge Szathmári
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Csaba Sőti
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
3
|
Gopala Krishnan GK, Sethumadhavan A, Vellaichamy P, Mani M. Pseudomonas aeruginosa infection stimulates mitogen-activated protein kinases signaling pathway in human megakaryocytes. Microbiol Immunol 2019; 63:229-237. [PMID: 31041998 DOI: 10.1111/1348-0421.12685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/07/2023]
Abstract
Pseudomonas aeruginosa is a major cause of nosocomial infections and contributes to higher mortality in hospitalized individuals. Infection by P. aeruginosa triggers host immune response through activation of pathogen recognition receptors, which are present in innate cells. Several studies have reported the mechanism of P. aeruginosa induced innate immunity in multiple cell types. But so far there is no reports on response of megakaryocytes to P. aeruginosa infection. Hence, our aim was to investigate the precise role and signaling mechanism of megakaryocytes during P. aeruginosa infection. In this study, we used Mo7e cells as representatives of human megakaryocyte and found that P. aeruginosa infection induces cytotoxicity in these cells. We further demonstrated that P. aeruginosa infection modulates p38 and extracellular signal regulated kinase pathways in Mo7e cells. Protein expression profiling in P. aeruginosa lipopolysaccharide-treated Mo7e cells revealed upregulation of importin subunit β and downregulation of metabolic enzymes. Our results suggest that P. aeruginosa infection regulates mitogen-activated protein kinases signaling pathway and importin in Mo7e cells and that this is a potential mechanism for nuclear translocation of nuclear factor binding near the κ light-chain gene in B cells and c-Jun N-terminal kinases to induce cell cytotoxicity.
Collapse
Affiliation(s)
- Gopi Krishnan Gopala Krishnan
- Cell Signaling Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Aiswarya Sethumadhavan
- Cell Signaling Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Pavithra Vellaichamy
- Cell Signaling Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Maheswaran Mani
- Cell Signaling Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
4
|
Riquelme SA, Ahn D, Prince A. Pseudomonas aeruginosa and Klebsiella pneumoniae Adaptation to Innate Immune Clearance Mechanisms in the Lung. J Innate Immun 2018; 10:442-454. [PMID: 29617698 PMCID: PMC6785651 DOI: 10.1159/000487515] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 01/02/2023] Open
Abstract
Many different species of gram-negative bacteria are associated with infection in the lung, causing exacerbations of chronic obstructive pulmonary disease, cystic fibrosis (CF), and ventilator-associated pneumonias. These airway pathogens must adapt to common host clearance mechanisms that include killing by antimicrobial peptides, antibiotics, oxidative stress, and phagocytosis by leukocytes. Bacterial adaptation to the host is often evident phenotypically, with increased extracellular polysaccharide production characteristic of some biofilm-associated organisms. Given the relatively limited repertoire of bacterial strategies to elude airway defenses, it seems likely that organisms sharing the same ecological niche might also share common strategies to persistently infect the lung. In this review, we will highlight some of the major factors responsible for the adaptation of Pseudomonas aeruginosa to the lung, addressing how growth in biofilms enables persistent infection, relevant to, but not limited to, the pathogenesis of infection in CF. In contrast, we will discuss how carbapenem-resistant Klebsiella pneumoniae evade immune clearance, an organism often associated with ventilator-associated pneumonia and health-care-acquired pneumonias, but not a typical pathogen in CF.
Collapse
Affiliation(s)
| | | | - Alice Prince
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
5
|
Dosunmu EF, Emeh RO, Dixit S, Bakeer MK, Coats MT, Owen DR, Pillai SR, Singh SR, Dennis VA. The anti-microbial peptide TP359 attenuates inflammation in human lung cells infected with Pseudomonas aeruginosa via TLR5 and MAPK pathways. PLoS One 2017; 12:e0176640. [PMID: 28467446 PMCID: PMC5415104 DOI: 10.1371/journal.pone.0176640] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/13/2017] [Indexed: 11/19/2022] Open
Abstract
Pseudomonas aeruginosa infection induces vigorous inflammatory mediators secreted by epithelial cells, which do not necessarily eradicate the pathogen. Nonetheless, it reduces lung function due to significant airway damage, most importantly in cystic fibrosis patients. Recently, we published that TP359, a proprietary cationic peptide had potent bactericidal effects against P. aeruginosa, which were mediated by down-regulating its outer membrane biogenesis genes. Herein, we hypothesized that TP359 bactericidal effects could also serve to regulate P. aeruginosa-induced lung inflammation. We explored this hypothesis by infecting human A549 lung cells with live P. aeruginosa non-isogenic, mucoid and non-mucoid strains and assessed the capacity of TP359 to regulate the levels of elicited TNFα, IL-6 and IL-8 inflammatory cytokines. In all instances, the mucoid strain elicited higher concentrations of cytokines in comparison to the non-mucoid strain, and TP359 dose-dependently down-regulated their respective levels, suggesting its regulation of lung inflammation. Surprisingly, P. aeruginosa flagellin, and not its lipopolysaccharide moiety, was the primary inducer of inflammatory cytokines in lung cells, which were similarly down-regulated by TP359. Blocking of TLR5, the putative flagellin receptor, completely abrogated the capacity of infected lung cells to secrete cytokines, underscoring that TP359 regulates inflammation via the TLR5-dependent signaling pathway. Downstream pathway-specific inhibition studies further revealed that the MAPK pathway, essentially p38 and JNK are necessary for induction of P. aeruginosa elicited inflammatory cytokines and their down-regulation by TP359. Collectively, our data provides evidence to support exploring the relevancy of TP359 as an anti-microbial and anti-inflammatory agent against P. aeruginosa for clinical applications.
Collapse
Affiliation(s)
- Ejovwoke F. Dosunmu
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, Alabama, United States of America
| | - Robert O. Emeh
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, Alabama, United States of America
| | - Saurabh Dixit
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, Alabama, United States of America
| | - Mona K. Bakeer
- Lousiana State University Health Sciences Center, School of Allied Health Professions, New Orleans, Louisiana, United States of America
| | - Mamie T. Coats
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, Alabama, United States of America
| | - Donald R. Owen
- Therapeutic Peptides Inc., Baton Rouge, Louisiana, United States of America
| | - Shreekumar R. Pillai
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, Alabama, United States of America
| | - Shree R. Singh
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, Alabama, United States of America
| | - Vida A. Dennis
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, Alabama, United States of America
- * E-mail:
| |
Collapse
|
6
|
Schwarzer C, Fischer H, Machen TE. Chemotaxis and Binding of Pseudomonas aeruginosa to Scratch-Wounded Human Cystic Fibrosis Airway Epithelial Cells. PLoS One 2016; 11:e0150109. [PMID: 27031335 PMCID: PMC4816407 DOI: 10.1371/journal.pone.0150109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/09/2016] [Indexed: 11/18/2022] Open
Abstract
Confocal imaging was used to characterize interactions of Pseudomonas aeruginosa (PA, expressing GFP or labeled with Syto 11) with CF airway epithelial cells (CFBE41o-, grown as confluent monolayers with unknown polarity on coverglasses) in control conditions and following scratch wounding. Epithelia and PAO1-GFP or PAK-GFP (2 MOI) were incubated with Ringer containing typical extracellular salts, pH and glucose and propidium iodide (PI, to identify dead cells). PAO1 and PAK swam randomly over and did not bind to nonwounded CFBE41o- cells. PA migrated rapidly (began within 20 sec, maximum by 5 mins) and massively (10–80 fold increase, termed “swarming”), but transiently (random swimming after 15 mins), to wounds, particularly near cells that took up PI. Some PA remained immobilized on cells near the wound. PA swam randomly over intact CFBE41o- monolayers and wounded monolayers that had been incubated with medium for 1 hr. Expression of CFTR and altered pH of the media did not affect PA interactions with CFBE41o- wounds. In contrast, PAO1 swarming and immobilization along wounds was abolished in PAO1 (PAO1ΔcheYZABW, no expression of chemotaxis regulatory components cheY, cheZ, cheA, cheB and cheW) and greatly reduced in PAO1 that did not express amino acid receptors pctA, B and C (PAO1ΔpctABC) and in PAO1 incubated in Ringer containing a high concentration of mixed amino acids. Non-piliated PAKΔpilA swarmed normally towards wounded areas but bound infrequently to CFBE41o- cells. In contrast, both swarming and binding of PA to CFBE41o- cells near wounds were prevented in non-flagellated PAKΔfliC. Data are consistent with the idea that (i) PA use amino acid sensor-driven chemotaxis and flagella-driven swimming to swarm to CF airway epithelial cells near wounds and (ii) PA use pili to bind to epithelial cells near wounds.
Collapse
Affiliation(s)
- Christian Schwarzer
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Horst Fischer
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Terry E. Machen
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
7
|
Chekabab SM, Silverman RJ, Lafayette SL, Luo Y, Rousseau S, Nguyen D. Staphylococcus aureus Inhibits IL-8 Responses Induced by Pseudomonas aeruginosa in Airway Epithelial Cells. PLoS One 2015; 10:e0137753. [PMID: 26360879 PMCID: PMC4567135 DOI: 10.1371/journal.pone.0137753] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/21/2015] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas aeruginosa (PA) and Staphylococcus aureus (SA) are major respiratory pathogens and can concurrently colonize the airways of patients with chronic obstructive diseases, such as cystic fibrosis (CF). Airway epithelial cell signalling is critical to the activation of innate immune responses. In the setting of polymicrobial colonization or infection of the respiratory tract, how epithelial cells integrate different bacterial stimuli remains unknown. Our study examined the inflammatory responses to PA and SA co-stimulations. Immortalised airway epithelial cells (Beas-2B) exposed to bacteria-free filtrates from PA (PAF) induced a robust production of the neutrophil chemoattractant IL-8 while bacteria-free filtrates from SA (SAF) had a minimal effect. Surprisingly, co-stimulation with PAF+SAF demonstrated that SAF strongly inhibited the PAF-driven IL-8 production, showing that SAF has potent anti-inflammatory effects. Similarly SAF decreased IL-8 production induced by the TLR1/TLR2 ligand Pam3CysSK4 but not the TLR4 ligand LPS nor TLR5 ligand flagellin in Beas-2B cells. Moreover, SAF greatly dampened TLR1/TLR2-mediated activation of the NF-κB pathway, but not the p38 MAPK pathway. We observed this SAF-dependent anti-inflammatory activity in several SA clinical strains, as well as in the CF epithelial cell line CFBE41o-. These findings show a novel direct anti-inflammatory effect of SA on airway epithelial cells, highlighting its potential to modulate inflammatory responses in the setting of polymicrobial infections.
Collapse
Affiliation(s)
- Samuel M. Chekabab
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Meakins Christie Laboratories, McGill University, Montreal, Quebec, Canada
| | - Richard J. Silverman
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Shantelle L. Lafayette
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Meakins Christie Laboratories, McGill University, Montreal, Quebec, Canada
| | - Yishan Luo
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Simon Rousseau
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Meakins Christie Laboratories, McGill University, Montreal, Quebec, Canada
| | - Dao Nguyen
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Meakins Christie Laboratories, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
8
|
Pouring salt on a wound: Pseudomonas aeruginosa virulence factors alter Na+ and Cl- flux in the lung. J Bacteriol 2013; 195:4013-9. [PMID: 23836869 DOI: 10.1128/jb.00339-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen with multiple niches in the human body, including the lung. P. aeruginosa infections are particularly damaging or fatal for patients with ventilator-associated pneumonia, chronic obstructive pulmonary disease, and cystic fibrosis (CF). To establish an infection, P. aeruginosa relies on a suite of virulence factors, including lipopolysaccharide, phospholipases, exoproteases, phenazines, outer membrane vesicles, type III secreted effectors, flagella, and pili. These factors not only damage the epithelial cell lining but also induce changes in cell physiology and function such as cell shape, membrane permeability, and protein synthesis. While such virulence factors are important in initial infection, many become dysregulated or nonfunctional during the course of chronic infection. Recent work on the virulence factors alkaline protease (AprA) and CF transmembrane conductance regulator inhibitory factor (Cif) show that P. aeruginosa also perturbs epithelial ion transport and osmosis, which may be important for the long-term survival of this microbe in the lung. Here we discuss the literature regarding host physiology-altering virulence factors with a focus on Cif and AprA and their potential roles in chronic infection and immune evasion.
Collapse
|
9
|
Kravchenko VV, Kaufmann GF. Bacterial inhibition of inflammatory responses via TLR-independent mechanisms. Cell Microbiol 2013; 15:527-36. [DOI: 10.1111/cmi.12109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/07/2013] [Accepted: 01/10/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Vladimir V. Kravchenko
- Department of Immunology & Microbial Science; The Scripps Research Institute; 10550 North Torrey Pines Road; La Jolla; CA; 92037; USA
| | | |
Collapse
|
10
|
Rieber N, Brand A, Hector A, Graepler-Mainka U, Ost M, Schäfer I, Wecker I, Neri D, Wirth A, Mays L, Zundel S, Fuchs J, Handgretinger R, Stern M, Hogardt M, Döring G, Riethmüller J, Kormann M, Hartl D. Flagellin Induces Myeloid-Derived Suppressor Cells: Implications forPseudomonas aeruginosaInfection in Cystic Fibrosis Lung Disease. THE JOURNAL OF IMMUNOLOGY 2012; 190:1276-84. [DOI: 10.4049/jimmunol.1202144] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Exploitation of host signaling pathways by microbial quorum sensing signals. Curr Opin Microbiol 2011; 15:162-8. [PMID: 22204809 DOI: 10.1016/j.mib.2011.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/28/2011] [Accepted: 12/02/2011] [Indexed: 02/07/2023]
Abstract
Environmental and commensal microbes that live within, on and around us have an enormous impact on human health. Recent progress in studies of prokaryotic interplay as well as host-bacteria interactions suggests that secreted microbial products, including quorum sensing signals (QSS), are important mediators of these intrakingdom and interkingdom relations. Reports have assigned QSS diverse and sometimes seemingly contradictory effects on mammalian cell physiology ranging from either blunting of the immune response or exerting pro-inflammatory activities to inducing cellular stress pathways and ultimately apoptosis. Thus, it is still unclear whether microbes utilize QSS to establish and maintain infections via modulation of host signaling pathways or if the eukaryotic host uses the conserved microbial QSS structures as molecular danger beacons to detect and fight infections. Along the same lines exactly how and under what circumstances QSS are detected by host cells remains a mystery, especially considering the distinct chemical properties of the QSS classes with some being small enough to passively diffuse across membranes while others most likely require extracellular recognition mechanisms.
Collapse
|
12
|
Hossain MS, Jaye DL, Pollack BP, Farris AB, Tselanyane ML, David E, Roback JD, Gewirtz AT, Waller EK. Flagellin, a TLR5 agonist, reduces graft-versus-host disease in allogeneic hematopoietic stem cell transplantation recipients while enhancing antiviral immunity. THE JOURNAL OF IMMUNOLOGY 2011; 187:5130-40. [PMID: 22013117 DOI: 10.4049/jimmunol.1101334] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Graft-versus-host disease (GVHD) is a major cause of morbidity and mortality in patients treated with allogeneic hematopoietic stem cell transplantation (HSCT). Posttransplant immunosuppressive drugs incompletely control GVHD and increase susceptibility to opportunistic infections. In this study, we used flagellin, a TLR5 agonist protein (∼50 kDa) extracted from bacterial flagella, as a novel experimental treatment strategy to reduce both acute and chronic GVHD in allogeneic HSCT recipients. On the basis of the radioprotective effects of flagellin, we hypothesized that flagellin could ameliorate GVHD in lethally irradiated murine models of allogeneic HSCT. Two doses of highly purified flagellin (administered 3 h before irradiation and 24 h after HSCT) reduced GVHD and led to better survival in both H-2(b) → CB6F1 and H-2(K) → B6 allogeneic HSCT models while preserving >99% donor T cell chimerism. Flagellin treatment preserved long-term posttransplant immune reconstitution characterized by more donor thymic-derived CD4(+)CD25(+)Foxp3(+) regulatory T cells and significantly enhanced antiviral immunity after murine CMV infection. The proliferation index and activation status of donor spleen-derived T cells and serum concentration of proinflammatory cytokines in flagellin-treated recipients were reduced significantly within 4 d posttransplant compared with those of the PBS-treated control recipients. Allogeneic transplantation of radiation chimeras previously engrafted with TLR5 knockout hematopoietic cells showed that interactions between flagellin and TLR5 expressed on both donor hematopoietic and host nonhematopoietic cells were required to reduce GVHD. Thus, the peritransplant administration of flagellin is a novel therapeutic approach to control GVHD while preserving posttransplant donor immunity.
Collapse
Affiliation(s)
- Mohammad S Hossain
- Division of Stem Cell and Bone Marrow Transplantation, Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Choi YH, Lee SN, Aoyagi H, Yamasaki Y, Yoo JY, Park B, Shin DM, Yoon HG, Yoon JH. The extracellular signal-regulated kinase mitogen-activated protein kinase/ribosomal S6 protein kinase 1 cascade phosphorylates cAMP response element-binding protein to induce MUC5B gene expression via D-prostanoid receptor signaling. J Biol Chem 2011; 286:34199-214. [PMID: 21832046 DOI: 10.1074/jbc.m111.247684] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mucus hypersecretion is a prominent feature of respiratory diseases, and MUC5B is a major airway mucin. Mucin gene expression can be affected by inflammatory mediators, including prostaglandin (PG) D(2,) an inflammatory mediator synthesized by hematopoietic PGD synthase (H-PGDS). PGD(2) binds to either D-prostanoid receptor (DP1) or chemoattractant receptor homologous molecule expressed on T-helper type 2 cells (CRTH2). We investigated the mechanisms by which PGD(2) induces MUC5B gene expression in airway epithelial cells. Western blot analysis showed that H-PGDS was highly expressed in nasal polyps. Similar results were obtained for PGD(2) expression. In addition, we could clearly detect the expressions of both H-PGDS and DP1 in nasal epithelial cells but not CRTH2. We demonstrated that PGD(2) increased MUC5B gene expression in normal human nasal epithelial cells as well as in NCI-H292 cells in vitro. S5751, a DP1 antagonist, inhibited PGD(2)-induced MUC5B expression, whereas a CRTH2 antagonist (OC0459) did not. These data suggest that PGD(2) induced MUC5B expression via DP1. Pretreatment with extracellular signal-regulated kinase (ERK) inhibitor (PD98059) blocked both PGD(2)-induced ERK mitogen-activated protein kinase (MAPK) activation and MUC5B expression. Proximity ligation assays showed direct interaction between RSK1 and cAMP response element-binding protein (CREB). Stimulation with PGD(2) caused an increase in intracellular cAMP levels, whereas intracellular Ca(2+) did not have such an effect. PGD(2)-induced MUC5B mRNA levels were regulated by CREB via direct interaction with two cAMP-response element sites (-921/-914 and -900/-893). Finally, we demonstrated that PGD(2) can induce MUC5B overproduction via ERK MAPK/RSK1/CREB signaling and that DP1 receptor may have suppressive effects in controlling MUC5B overproduction in the airway.
Collapse
Affiliation(s)
- Yeon Ho Choi
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Okuda J, Hayashi N, Tanabe S, Minagawa S, Gotoh N. Degradation of interleukin 8 by the serine protease MucD of Pseudomonas aeruginosa. J Infect Chemother 2011; 17:782-92. [PMID: 21626303 DOI: 10.1007/s10156-011-0257-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/02/2011] [Indexed: 12/14/2022]
Abstract
We investigated the influence of the type III effector, ExoS, on the host epithelial cell response to Pseudomonas aeruginosa infection, and we found that disruption of the exoS gene caused a significant increase in the amount of interleukin-8 (IL-8) in the culture medium of Caco-2 cells. We show that IL-8 was degraded in the culture medium following infection of the cells with the wild-type (PAO1), but not the exoS knock-out (the ΔexoS) strain. Purified ExoS protein itself did not degrade IL-8. We next show that IL-8 degradation by PAO1 was inhibited by the addition of serine protease inhibitors. These results strongly suggest that a bacterial serine protease that degrades IL-8 is expressed and secreted into the culture medium of Caco-2 cells infected with PAO1, and that the expression of this protein is repressed in cells infected with the ΔexoS strain. The PAO1 genome encodes 28 different protease genes, including two serine proteases: PA3535 and mucD. PA3535 and mucD gene knock-outs were constructed (ΔmucD and ΔPA3535), and ΔmucD but not ΔPA3535 showed reduced IL-8 degradation. To understand the significance of IL-8 degradation, we next evaluated neutrophil infiltration in lungs excised from mice intranasally infected with the P. aeruginosa strains. Increased neutrophil infiltration was observed in PAO1-infected mice, but not in ΔexoS- or ΔmucD-infected mice. Taken together, our results suggest that P. aeruginosa escapes from phagocytic killing due to IL-8 degradation following the secretion of the MucD serine protease, whose expression appears to be influenced by ExoS.
Collapse
Affiliation(s)
- Jun Okuda
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchicho, Yamashina, Kyoto 607-8414, Japan
| | | | | | | | | |
Collapse
|