1
|
Kakuda T, Sato T, Takuhara M, Hagiuda H, Suzuki Y. LysR-Type Transcriptional Regulator VirR Responds to Temperature and pH and Directly Activates the Transcription of virS-Containing Operon in Rhodococcus equi. Int J Microbiol 2025; 2025:6618952. [PMID: 39802684 PMCID: PMC11724031 DOI: 10.1155/ijm/6618952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Rhodococcus equi-a facultative intracellular pathogen of macrophages-causes bronchopneumonia in foals and patients who are immunocompromised. Virulent strains of R. equi possess a virulence-associated plasmid, which encodes a 15- to 17-kDa surface protein called virulence-associated protein A (VapA). VapA expression is regulated by temperature and pH. Two transcriptional regulators, VirR and VirS, are involved in the transcriptional regulation of vapA. VirR regulates VapA expression through VirS. However, whether VirR directly regulates virS transcription is unclear. In this study, we examined VirR binding to the promoter region of the icgA operon, which contains virS, using the electrophoretic mobility shift assay and DNase I footprinting. VirR bound DNA fragments containing the virR-icgA intergenic region. Transcription from the promoter in this region was VirR-dependent and regulated by temperature and pH. The VirR-binding site contained the LysR-type transcriptional regulator-binding consensus motif, T-N11-A. A point mutation (L98E) in the putative ligand-binding pocket of VirR constitutively activated the icgA promoter. However, no apparent difference was observed in the electrophoretic mobility shift assay and DNase I footprinting using the icgA promoter when L98E VirR was compared with wild-type VirR. A bacterial two-hybrid system identified an interaction between VirR and RpoA. Our data reveal that VirR binds the promoter of the icgA operon and directly activates its transcription. Furthermore, the regulation of VapA expression in response to temperature and pH is mediated by VirR.
Collapse
Affiliation(s)
- Tsutomu Kakuda
- Laboratory of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada Aomori 034-8628, Japan
| | - Takashi Sato
- Laboratory of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada Aomori 034-8628, Japan
| | - Mari Takuhara
- Laboratory of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada Aomori 034-8628, Japan
| | - Hirofumi Hagiuda
- Laboratory of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada Aomori 034-8628, Japan
| | - Yasunori Suzuki
- Laboratory of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada Aomori 034-8628, Japan
| |
Collapse
|
2
|
Miranda-CasoLuengo R, Yerlikaya Z, Luo H, Cheng C, Blanco A, Haas A, Meijer WG. The N-terminal domain is required for cell surface localisation of VapA, a member of the Vap family of Rhodococcus equi virulence proteins. PLoS One 2024; 19:e0298900. [PMID: 38421980 PMCID: PMC10903876 DOI: 10.1371/journal.pone.0298900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Rhodococcus equi pneumonia is an important cause of mortality in foals worldwide. Virulent equine isolates harbour an 80-85kb virulence plasmid encoding six virulence-associated proteins (Vaps). VapA, the main virulence factor of this intracellular pathogen, is known to be a cell surface protein that creates an intracellular niche for R. equi growth. In contrast, VapC, VapD and VapE are secreted into the intracellular milieu. Although these Vaps share very high degree of sequence identity in the C-terminal domain, the N-terminal domain (N-domain) of VapA is distinct. It has been proposed that this domain plays a role in VapA surface localization but no direct experimental data provides support to such hypothesis. In this work, we employed R. equi 103S harbouring an unmarked deletion of vapA (R. equi ΔvapA) as the genetic background to express C-terminal Strep-tagged Vap-derivatives integrated in the chromosome. The surface localization of these proteins was assessed by flow cytometry using the THE2122;-NWSHPQFEK Tag FITC-antibody. We show that VapA is the only cell surface Vap encoded in the virulence plasmid. We present compelling evidence for the role of the N-terminal domain of VapA on cell surface localization using fusion proteins in which the N-domain of VapD was exchanged with the N-terminus of VapA. Lastly, using an N-terminally Strep-tagged VapA, we found that the N-terminus of VapA is exposed to the extracellular environment. Given the lack of a lipobox in VapA and the exposure of the N-terminal Strep-tag, it is possible that VapA localization on the cell surface is mediated by interactions between the N-domain and components of the cell surface. We discuss the implications of this work on the light of the recent discovery that soluble recombinant VapA added to the extracellular medium functionally complement the loss of VapA.
Collapse
Affiliation(s)
- Raúl Miranda-CasoLuengo
- UCD School of Biomolecular and Biomedical Science and UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Zeynep Yerlikaya
- UCD School of Biomolecular and Biomedical Science and UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
- Department of Microbiology, School of Veterinary Medicine, Firat University, Elazığ, Türkiye
| | - Haixia Luo
- UCD School of Biomolecular and Biomedical Science and UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Cheng Cheng
- UCD School of Biomolecular and Biomedical Science and UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Alfonso Blanco
- Flow Cytometry Core Technology, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Albert Haas
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Wim G. Meijer
- UCD School of Biomolecular and Biomedical Science and UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Mourenza Á, Collado C, Bravo-Santano N, Gil JA, Mateos LM, Letek M. The extracellular thioredoxin Etrx3 is required for macrophage infection in Rhodococcus equi. Vet Res 2020; 51:38. [PMID: 32156317 PMCID: PMC7063783 DOI: 10.1186/s13567-020-00763-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/18/2020] [Indexed: 01/19/2023] Open
Abstract
Rhodococcus equi is an intracellular veterinary pathogen that is becoming resistant to current antibiotherapy. Genes involved in preserving redox homeostasis could be promising targets for the development of novel anti-infectives. Here, we studied the role of an extracellular thioredoxin (Etrx3/REQ_13520) in the resistance to phagocytosis. An etrx3-null mutant strain was unable to survive within macrophages, whereas the complementation with the etrx3 gene restored its intracellular survival rate. In addition, the deletion of etrx3 conferred to R. equi a high susceptibility to sodium hypochlorite. Our results suggest that Etrx3 is essential for the resistance of R. equi to specific oxidative agents.
Collapse
Affiliation(s)
- Álvaro Mourenza
- Department of Molecular Biology, Area of Microbiology, University of León, León, Spain
| | - Cristina Collado
- Department of Molecular Biology, Area of Microbiology, University of León, León, Spain
| | | | - José A Gil
- Department of Molecular Biology, Area of Microbiology, University of León, León, Spain
| | - Luís M Mateos
- Department of Molecular Biology, Area of Microbiology, University of León, León, Spain.
| | - Michal Letek
- Department of Molecular Biology, Area of Microbiology, University of León, León, Spain.
| |
Collapse
|
4
|
Vázquez‐Boland JA, Meijer WG. The pathogenic actinobacterium Rhodococcus equi: what's in a name? Mol Microbiol 2019; 112:1-15. [PMID: 31099908 PMCID: PMC6852188 DOI: 10.1111/mmi.14267] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2019] [Indexed: 12/17/2022]
Abstract
Rhodococcus equi is the only recognized animal pathogenic species within an extended genus of metabolically versatile Actinobacteria of considerable biotechnological interest. Best known as a horse pathogen, R. equi is commonly isolated from other animal species, particularly pigs and ruminants, and causes severe opportunistic infections in people. As typical in the rhodococci, R. equi niche specialization is extrachromosomally determined, via a conjugative virulence plasmid that promotes intramacrophage survival. Progress in the molecular understanding of R. equi and its recent rise as a novel paradigm of multihost adaptation has been accompanied by an unusual nomenclatural instability, with a confusing succession of names: "Prescottia equi", "Prescotella equi", Corynebacterium hoagii and Rhodococcus hoagii. This article reviews current advances in the genomics, biology and virulence of this pathogenic actinobacterium with a unique mechanism of plasmid-transferable animal host tropism. It also discusses the taxonomic and nomenclatural issues around R. equi in the light of recent phylogenomic evidence that confirms its membership as a bona fide Rhodococcus.
Collapse
Affiliation(s)
- José A. Vázquez‐Boland
- Microbial Pathogenesis Group, Edinburgh Medical School (Biomedical Sciences – Infection Medicine)University of EdinburghChancellor's Building, Little France campusEdinburghEH16 4SBUK
| | - Wim G. Meijer
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
| |
Collapse
|
5
|
Wright LM, Carpinone EM, Bennett TL, Hondalus MK, Starai VJ. VapA of Rhodococcus equi binds phosphatidic acid. Mol Microbiol 2017; 107:428-444. [PMID: 29205554 DOI: 10.1111/mmi.13892] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/28/2017] [Accepted: 12/03/2017] [Indexed: 12/30/2022]
Abstract
Rhodococcus equi is a multihost, facultative intracellular bacterial pathogen that primarily causes pneumonia in foals less than six months in age and immunocompromised people. Previous studies determined that the major virulence determinant of R. equi is the surface bound virulence associated protein A (VapA). The presence of VapA inhibits the maturation of R. equi-containing phagosomes and promotes intracellular bacterial survival, as determined by the inability of vapA deletion mutants to replicate in host macrophages. While the mechanism of action of VapA remains elusive, we show that soluble recombinant VapA32-189 both rescues the intramacrophage replication defect of a wild type R. equi strain lacking the vapA gene and enhances the persistence of nonpathogenic Escherichia coli in macrophages. During macrophage infection, VapA was observed at both the bacterial surface and at the membrane of the host-derived R. equi containing vacuole, thus providing an opportunity for VapA to interact with host constituents and promote alterations in phagolysosomal function. In support of the observed host membrane binding activity of VapA, we also found that rVapA32-189 interacted specifically with liposomes containing phosphatidic acid in vitro. Collectively, these data demonstrate a lipid binding property of VapA, which may be required for its function during intracellular infection.
Collapse
Affiliation(s)
- Lindsay M Wright
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Emily M Carpinone
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Terry L Bennett
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Mary K Hondalus
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Vincent J Starai
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.,Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
6
|
MacArthur I, Anastasi E, Alvarez S, Scortti M, Vázquez-Boland JA. Comparative Genomics of Rhodococcus equi Virulence Plasmids Indicates Host-Driven Evolution of the vap Pathogenicity Island. Genome Biol Evol 2017; 9:1241-1247. [PMID: 28369330 PMCID: PMC5434932 DOI: 10.1093/gbe/evx057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2017] [Indexed: 01/16/2023] Open
Abstract
The conjugative virulence plasmid is a key component of the Rhodococcus equi accessory genome essential for pathogenesis. Three host-associated virulence plasmid types have been identified: the equine pVAPA and porcine pVAPB circular variants, and the linear pVAPN found in bovine (ruminant) isolates. We recently characterized the R. equi pangenome (Anastasi E, et al. 2016. Pangenome and phylogenomic analysis of the pathogenic actinobacterium Rhodococcus equi. Genome Biol Evol. 8:3140–3148.) and we report here the comparative analysis of the virulence plasmid genomes. Plasmids within each host-associated type were highly similar despite their diverse origins. Variation was accounted for by scattered single nucleotide polymorphisms and short nucleotide indels, while larger indels—mostly in the plasticity region near the vap pathogencity island (PAI)—defined plasmid genomic subtypes. Only one of the plasmids analyzed, of pVAPN type, was exceptionally divergent due to accumulation of indels in the housekeeping backbone. Each host-associated plasmid type carried a unique PAI differing in vap gene complement, suggesting animal host-specific evolution of the vap multigene family. Complete conservation of the vap PAI was observed within each host-associated plasmid type. Both diversity of host-associated plasmid types and clonality of specific chromosomal-plasmid genomic type combinations were observed within the same R. equi phylogenomic subclade. Our data indicate that the overall strong conservation of the R. equi host-associated virulence plasmids is the combined result of host-driven selection, lateral transfer between strains, and geographical spread due to international livestock exchanges.
Collapse
Affiliation(s)
- Iain MacArthur
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Elisa Anastasi
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Sonsiray Alvarez
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Mariela Scortti
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom.,Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Edinburgh, United Kingdom
| | - José A Vázquez-Boland
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom.,Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Edinburgh, United Kingdom.,Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Complete Genome Sequence of Rhodococcus sp. Strain WMMA185, a Marine Sponge-Associated Bacterium. GENOME ANNOUNCEMENTS 2016; 4:4/6/e01406-16. [PMID: 27979952 PMCID: PMC5159585 DOI: 10.1128/genomea.01406-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Rhodococcus strain WMMA185 was isolated from the marine sponge Chondrilla nucula as part of ongoing drug discovery efforts. Analysis of the 4.44-Mb genome provides information regarding interspecies interactions as pertains to regulation of secondary metabolism and natural product biosynthetic potentials.
Collapse
|
8
|
Transcriptome reprogramming by plasmid-encoded transcriptional regulators is required for host niche adaption of a macrophage pathogen. Infect Immun 2015; 83:3137-45. [PMID: 26015480 DOI: 10.1128/iai.00230-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/18/2015] [Indexed: 11/20/2022] Open
Abstract
Rhodococcus equi is a facultative intracellular pathogen of macrophages, relying on the presence of a conjugative virulence plasmid harboring a 21-kb pathogenicity island (PAI) for growth in host macrophages. The PAI encodes a family of 6 virulence-associated proteins (Vaps) in addition to 20 other proteins. The contribution of these to virulence has remained unclear. We show that the presence of only 3 virulence plasmid genes (of 73 in total) is required and sufficient for intracellular growth. These include a single vap family member, vapA, and two PAI-located transcriptional regulators, virR and virS. Both transcriptional regulators are essential for wild-type-level expression of vapA, yet vapA expression alone is not sufficient to allow intracellular growth. A whole-genome microarray analysis revealed that VirR and VirS substantially integrate themselves into the chromosomal regulatory network, significantly altering the transcription of 18% of all chromosomal genes. This pathoadaptation involved significant enrichment of select gene ontologies, in particular, enrichment of genes involved in transport processes, energy production, and cellular metabolism, suggesting a major change in cell physiology allowing the bacterium to grow in the hostile environment of the host cell. The results suggest that following the acquisition of the virulence plasmid by an avirulent ancestor of R. equi, coevolution between the plasmid and the chromosome took place, allowing VirR and VirS to regulate the transcription of chromosomal genes in a process that ultimately promoted intracellular growth. Our findings suggest a mechanism for cooption of existing chromosomal traits during the evolution of a pathogenic bacterium from an avirulent saprophyte.
Collapse
|
9
|
An Invertron-Like Linear Plasmid Mediates Intracellular Survival and Virulence in Bovine Isolates of Rhodococcus equi. Infect Immun 2015; 83:2725-37. [PMID: 25895973 DOI: 10.1128/iai.00376-15] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 04/16/2015] [Indexed: 12/16/2022] Open
Abstract
We report a novel host-associated virulence plasmid in Rhodococcus equi, pVAPN, carried by bovine isolates of this facultative intracellular pathogenic actinomycete. Surprisingly, pVAPN is a 120-kb invertron-like linear replicon unrelated to the circular virulence plasmids associated with equine (pVAPA) and porcine (pVAPB variant) R. equi isolates. pVAPN is similar to the linear plasmid pNSL1 from Rhodococcus sp. NS1 and harbors six new vap multigene family members (vapN to vapS) in a vap pathogenicity locus presumably acquired via en bloc mobilization from a direct predecessor of equine pVAPA. Loss of pVAPN rendered R. equi avirulent in macrophages and mice. Mating experiments using an in vivo transconjugant selection strategy demonstrated that pVAPN transfer is sufficient to confer virulence to a plasmid-cured R. equi recipient. Phylogenetic analyses assigned the vap multigene family complement from pVAPN, pVAPA, and pVAPB to seven monophyletic clades, each containing plasmid type-specific allelic variants of a precursor vap gene carried by the nearest vap island ancestor. Deletion of vapN, the predicted "bovine-type" allelic counterpart of vapA, essential for virulence in pVAPA, abrogated pVAPN-mediated intramacrophage proliferation and virulence in mice. Our findings support a model in which R. equi virulence is conferred by host-adapted plasmids. Their central role is mediating intracellular proliferation in macrophages, promoted by a key vap determinant present in the common ancestor of the plasmid-specific vap islands, with host tropism as a secondary trait selected during coevolution with specific animal species.
Collapse
|
10
|
Reuss SM, Cohen ND. Update on Bacterial Pneumonia in the Foal and Weanling. Vet Clin North Am Equine Pract 2015; 31:121-35. [DOI: 10.1016/j.cveq.2014.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|