1
|
Ruan H, Zhang Z, Tian L, Wang S, Hu S, Qiao JJ. The Salmonella effector SopB prevents ROS-induced apoptosis of epithelial cells by retarding TRAF6 recruitment to mitochondria. Biochem Biophys Res Commun 2016; 478:618-23. [PMID: 27473656 DOI: 10.1016/j.bbrc.2016.07.116] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 07/26/2016] [Indexed: 11/18/2022]
Abstract
Microbial pathogens enter host cells by injecting effector proteins of the Type III secretion system (T3SS), which facilitate pathogen translocation across the host cell membrane. These effector proteins exert their effects by modulating a variety of host innate immune responses, thereby facilitating bacterial replication and systemic infection. Salmonella enterica serovar typhimurium (S.typhimurium) is a clinically important pathogen that causes food poisoning and gastroenteritis. The SopB effector protein of S. typhimurium, encoded by Salmonella pathogenicity islands (SPI)-1 T3SS, protects host epithelial cells from infection-induced apoptosis. However, how SopB influences apoptosis induction remains unclear. Here, we investigated the mechanism of SopB action in host cells. We found that SopB inhibits infection-induced apoptosis by attenuating the production of reactive oxygen species (ROS) in mitochondria, the crucial organelles for apoptosis initiation. Further investigation revealed that SopB binds to cytosolic tumor necrosis factor receptor associated factor 6 (TRAF6) and forms a trap preventing the mitochondrial recruitment of TRAF6, an essential event for ROS generation within mitochondria. By studying the response of Traf6(+/+) and Traf6(-/-)mouse embryonic fibroblasts to S. typhimurium infection, we found that TRAF6 promoted apoptosis by increasing ROS accumulation, which led to increased Bax/Bcl-2 ratio, Bax recruitment to mitochondrial membrane, and release of Cyt c into the cytoplasm. These findings show that SopB suppresses host cell apoptosis by binding to TRAF6 and preventing mitochondrial ROS generation.
Collapse
Affiliation(s)
- Haihua Ruan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China.
| | - Zhen Zhang
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China
| | - Li Tian
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300192, China
| | - Suying Wang
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China
| | - Shuangyan Hu
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China
| | - Jian-Jun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300192, China.
| |
Collapse
|
2
|
Pha K, Navarro L. Yersinia type III effectors perturb host innate immune responses. World J Biol Chem 2016; 7:1-13. [PMID: 26981193 PMCID: PMC4768113 DOI: 10.4331/wjbc.v7.i1.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/02/2015] [Accepted: 11/04/2015] [Indexed: 02/05/2023] Open
Abstract
The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia effector proteins and their contribution to Yersinia pathogenesis.
Collapse
|
3
|
Spinner JL, Hasenkrug AM, Shannon JG, Kobayashi SD, Hinnebusch BJ. Role of the Yersinia YopJ protein in suppressing interleukin-8 secretion by human polymorphonuclear leukocytes. Microbes Infect 2015; 18:21-9. [PMID: 26361732 DOI: 10.1016/j.micinf.2015.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/20/2015] [Accepted: 08/31/2015] [Indexed: 12/19/2022]
Abstract
Polymorphonuclear leukocytes, in addition to their direct bactericidal activities, produce cytokines involved in the activation and regulation of the innate and adaptive immune response to infection. In this study we evaluated the cytokine response of human PMNs following incubation with the pathogenic Yersinia species. Yersinia pestis strains with the pCD1 virulence plasmid, which encodes cytotoxic Yop proteins that are translocated into host cells, stimulated little or no cytokine production compared to pCD1-negative strains. In particular, PMNs incubated with pCD1-negative Y. pestis secreted 1000-fold higher levels of interleukin-8 (IL-8 or CXCL8), a proinflammatory chemokine important for PMN recruitment and activation. Deletion of yopE, -H, -T, -M or ypkA had no effect on pCD1-dependent inhibition, whereas deletion of yopJ resulted in significantly increased IL-8 production. Like Y. pestis, the enteropathogenic Yersinia species inhibited IL-8 secretion by PMNs, and strains lacking the virulence plasmid induced high levels of IL-8. Our results show that virulence plasmid-encoded effector Yops, particularly YopJ, prevent IL-8 secretion by human PMNs. Suppression of the chemotactic IL-8 response by Y. pestis may contribute to the delayed PMN recruitment to the infected lymph node that typifies bubonic plague.
Collapse
Affiliation(s)
- Justin L Spinner
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 905 S. 4th St., Hamilton, Montana 59840, USA
| | - Aaron M Hasenkrug
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 905 S. 4th St., Hamilton, Montana 59840, USA
| | - Jeffrey G Shannon
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 905 S. 4th St., Hamilton, Montana 59840, USA
| | - Scott D Kobayashi
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 905 S. 4th St., Hamilton, Montana 59840, USA
| | - B Joseph Hinnebusch
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 905 S. 4th St., Hamilton, Montana 59840, USA.
| |
Collapse
|
4
|
Almog T, Kandel-Kfir M, Shaish A, Dissen M, Shlomai G, Voronov E, Apte RN, Harats D, Kamari Y. Knockdown of interleukin-1α does not attenuate LPS-induced production of interleukin-1β in mouse macrophages. Cytokine 2015; 73:138-43. [DOI: 10.1016/j.cyto.2015.01.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 12/15/2014] [Accepted: 01/23/2015] [Indexed: 12/25/2022]
|
5
|
Thinwa J, Segovia JA, Bose S, Dube PH. Integrin-mediated first signal for inflammasome activation in intestinal epithelial cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:1373-82. [PMID: 24965773 DOI: 10.4049/jimmunol.1400145] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
How intestinal epithelial cells (IECs) recognize pathogens and activate inflammasomes at intestinal surfaces is poorly understood. We hypothesized that IECs use integrin receptors to recognize pathogens and initiate inflammation within the intestinal tract. We find that IECs infected with Yersinia enterocolitica, an enteric pathogen, use β1 integrins as pathogen recognition receptors detecting the bacterial adhesin invasin (Inv). The Inv-integrin interaction provides the first signal for NLRP3 inflammasome activation with the type three secretion system translocon providing the second signal for inflammasome activation, resulting in release of IL-18. During infection, Yersinia employs two virulence factors, YopE and YopH, to counteract Inv-mediated integrin-dependent inflammasome activation. Furthermore, NLRP3 inflammasome activation in epithelial cells requires components of the focal adhesion complex signaling pathway, focal adhesion kinase, and rac1. The binding of Inv to β1 integrins rapidly induces IL-18 mRNA expression, suggesting integrins provide a first signal for NLRP3 inflammasome activation. These data suggest integrins function as pathogen recognition receptors on IECs to rapidly induce inflammasome-derived IL-18-mediated responses.
Collapse
Affiliation(s)
- Josephine Thinwa
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, TX 78229; and
| | - Jesus A Segovia
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, TX 78229; and Center for Airway Inflammation Research, University of Texas Health Science Center, San Antonio, TX 78229
| | - Santanu Bose
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, TX 78229; and Center for Airway Inflammation Research, University of Texas Health Science Center, San Antonio, TX 78229
| | - Peter H Dube
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, TX 78229; and Center for Airway Inflammation Research, University of Texas Health Science Center, San Antonio, TX 78229
| |
Collapse
|
6
|
Bliska JB, Wang X, Viboud GI, Brodsky IE. Modulation of innate immune responses by Yersinia type III secretion system translocators and effectors. Cell Microbiol 2013; 15:1622-31. [PMID: 23834311 DOI: 10.1111/cmi.12164] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 06/21/2013] [Accepted: 07/01/2013] [Indexed: 12/13/2022]
Abstract
The innate immune system of mammals responds to microbial infection through detection of conserved molecular determinants called 'pathogen-associated molecular patterns' (PAMPs). Pathogens use virulence factors to counteract PAMP-directed responses. The innate immune system can in turn recognize signals generated by virulence factors, allowing for a heightened response to dangerous pathogens. Many Gram-negative bacterial pathogens encode type III secretion systems (T3SSs) that translocate effector proteins, subvert PAMP-directed responses and are critical for infection. A plasmid-encoded T3SS in the human-pathogenic Yersinia species translocates seven effectors into infected host cells. Delivery of effectors by the T3SS requires plasma membrane insertion of two translocators, which are thought to form a channel called a translocon. Studies of the Yersinia T3SS have provided key advances in our understanding of how innate immune responses are generated by perturbations in plasma membrane and other signals that result from translocon insertion. Additionally, studies in this system revealed that effectors function to inhibit innateimmune responses resulting from insertion of translocons into plasma membrane. Here, we review these advances with the goal of providing insight into how a T3SS can activate and inhibit innate immune responses, allowing a virulent pathogen to bypass host defences.
Collapse
Affiliation(s)
- James B Bliska
- Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | | | | | | |
Collapse
|
7
|
Ott L, Scholz B, Höller M, Hasselt K, Ensser A, Burkovski A. Induction of the NFκ-B signal transduction pathway in response to Corynebacterium diphtheriae infection. Microbiology (Reading) 2013; 159:126-135. [DOI: 10.1099/mic.0.061879-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Lisa Ott
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Mikrobiologie, Staudtstr. 5, 91058 Erlangen, Germany
| | - Brigitte Scholz
- Klinische und Molekulare Virologie, Virologisches Institut des Universitätsklinikums Erlangen, Schlossgarten 4, 91054, Erlangen, Germany
| | - Martina Höller
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Mikrobiologie, Staudtstr. 5, 91058 Erlangen, Germany
| | - Kristin Hasselt
- BioCer Entwicklungs-GmbH, Ludwig-Thoma-Str. 36c, 95447 Bayreuth, Germany
| | - Armin Ensser
- Klinische und Molekulare Virologie, Virologisches Institut des Universitätsklinikums Erlangen, Schlossgarten 4, 91054, Erlangen, Germany
| | - Andreas Burkovski
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Mikrobiologie, Staudtstr. 5, 91058 Erlangen, Germany
| |
Collapse
|