1
|
Goldmann O, Medina E. Revisiting Pathogen Exploitation of Clathrin-Independent Endocytosis: Mechanisms and Implications. Cells 2025; 14:731. [PMID: 40422234 DOI: 10.3390/cells14100731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/04/2025] [Accepted: 05/13/2025] [Indexed: 05/28/2025] Open
Abstract
Endocytosis is a specialized transport mechanism in which the cell membrane folds inward to enclose large molecules, fluids, or particles, forming vesicles that are transported within the cell. It plays a crucial role in nutrient uptake, immune responses, and cellular communication. However, many pathogens exploit the endocytic pathway to invade and survive within host cells, allowing them to evade the immune system and establish infection. Endocytosis can be classified as clathrin-mediated (CME) or clathrin-independent (CIE), based on the mechanism of vesicle formation. Unlike CME, which involves the formation of clathrin-coated vesicles that bud from the plasma membrane, CIE does not rely on clathrin-coated vesicles. Instead, other mechanisms facilitate membrane invagination and vesicle formation. CIE encompasses a variety of pathways, including caveolin-mediated, Arf6-dependent, and flotillin-dependent pathways. In this review, we discuss key features of CIE pathways, including cargo selection, vesicle formation, routes taken by internalized cargo, and the regulatory mechanisms governing CIE. Many viruses and bacteria hijack host cell CIE mechanisms to facilitate intracellular trafficking and persistence. We also revisit the exploitation of CIE by bacterial and viral pathogens, highlighting recent discoveries in entry mechanisms, intracellular fate, and host-pathogen interactions. Understanding how pathogens manipulate CIE in host cells can inform the development of novel antimicrobial and immunomodulatory interventions, offering new avenues for disease prevention and treatment.
Collapse
Affiliation(s)
- Oliver Goldmann
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
2
|
Bernhards CB, Lux MW, Katoski SE, Goralski TDP, Liem AT, Gibbons HS. barCoder: a tool to generate unique, orthogonal genetic tags for qPCR detection. BMC Bioinformatics 2021; 22:98. [PMID: 33648451 PMCID: PMC7919090 DOI: 10.1186/s12859-021-04019-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/11/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Tracking dispersal of microbial populations in the environment requires specific detection methods that discriminate between the target strain and all potential natural and artificial interferents, including previously utilized tester strains. Recent work has shown that genomic insertion of short identification tags, called "barcodes" here, allows detection of chromosomally tagged strains by real-time PCR. Manual design of these barcodes is feasible for small sets, but expansion of the technique to larger pools of distinct and well-functioning assays would be significantly aided by software-guided design. RESULTS Here we introduce barCoder, a bioinformatics tool that facilitates the process of creating sets of uniquely identifiable barcoded strains. barCoder utilizes the genomic sequence of the target strain and a set of user-specified PCR parameters to generate a list of suggested barcode "modules" that consist of binding sites for primers and probes, and appropriate spacer sequences. Each module is designed to yield optimal PCR amplification and unique identification. Optimal amplification includes metrics such as ideal melting temperature and G+C content, appropriate spacing, and minimal stem-loop formation; unique identification includes low BLAST hits against the target organism, previously generated barcode modules, and databases (such as NCBI). We tested the ability of our algorithm to suggest appropriate barcodes by generating 12 modules for Bacillus thuringiensis serovar kurstaki-a simulant for the potential biowarfare agent Bacillus anthracis-and three each for other potential target organisms with variable G+C content. Real-time PCR detection assays directed at barcodes were specific and yielded minimal cross-reactivity with a panel of near-neighbor and potential contaminant materials. CONCLUSIONS The barCoder algorithm facilitates the generation of synthetically barcoded biological simulants by (a) eliminating the task of creating modules by hand, (b) minimizing optimization of PCR assays, and (c) reducing effort wasted on non-unique barcode modules.
Collapse
Affiliation(s)
- Casey B Bernhards
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA.,Excet, Inc., Springfield, VA, 22150, USA
| | - Matthew W Lux
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Sarah E Katoski
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Tyler D P Goralski
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Alvin T Liem
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA.,DCS Corporation, Abingdon, MD, 21009, USA
| | - Henry S Gibbons
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA.
| |
Collapse
|
3
|
Ma S, Dong Y, Wang N, Liu J, Lu C, Liu Y. Identification of a new effector-immunity pair of Aeromonas hydrophila type VI secretion system. Vet Res 2020; 51:71. [PMID: 32448355 PMCID: PMC7245790 DOI: 10.1186/s13567-020-00794-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/26/2020] [Indexed: 12/23/2022] Open
Abstract
The type VI secretion system (T6SS) is a multiprotein weapon that kills eukaryotic predators or prokaryotic competitors by delivering toxic effectors. Despite the importance of T6SS in bacterial environmental adaptation, it is still challenging to systematically identify T6SS effectors because of their high diversity and lack of conserved domains. In this report, we discovered a putative effector gene, U876-17730, in the whole genome of Aeromonas hydrophila NJ-35 based on the reported conservative domain DUF4123 (domain of unknown function), with two cognate immunity proteins encoded downstream. Phylogenetic tree analysis of amino acids indicates that AH17730 belongs to the Tle1 (type VI lipase effector) family, and therefore was named Tle1AH. The deletion of tle1AH resulted in significantly decreased biofilm formation, antibacterial competition ability and virulence in zebrafish (Danio rerio) when compared to the wild-type strain. Only when the two immunity proteins coexist can bacteria protect themselves from the toxicity of Tle1AH. Further study shows that Tle1AH is a kind of phospholipase that possesses a conserved lipase motif, Gly-X-Ser-X-Gly (X is for any amino acid). Tle1AH is secreted by T6SS, and this secretion requires its interaction with an associated VgrG (valine-glycine repeat protein G). In conclusion, we identified a T6SS effector-immunity pair and verified its function, which lays the foundation for future research on the role of T6SS in the pathogenic mechanism of A. hydrophila.
Collapse
Affiliation(s)
- Shuiyan Ma
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuhao Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nannan Wang
- College of Animal Science and Technology, Jinling Institute of Technology, Nanjing, 211169, China
| | - Jin Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chengping Lu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
In Vivo Virulence Characterization of Pregnancy-Associated Listeria monocytogenes Infections. Infect Immun 2018; 86:IAI.00397-18. [PMID: 30104213 PMCID: PMC6204711 DOI: 10.1128/iai.00397-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that infects the placenta and can cause pregnancy complications. Listeriosis usually occurs as a sporadic infection, but large outbreaks are also reported. Listeria monocytogenes is a foodborne pathogen that infects the placenta and can cause pregnancy complications. Listeriosis usually occurs as a sporadic infection, but large outbreaks are also reported. Virulence from clinical isolates is rarely analyzed due to the large number of animals required, but this knowledge could help guide the response to an outbreak. We implemented a DNA barcode system using signature tags that allowed us to efficiently assay variations in virulence across a large number of isolates. We tested 77 signature-tagged clones of clinical L. monocytogenes strains from 72 infected human placentas and 5 immunocompromised patients, all of which were isolated since 2000. These strains were tested for virulence in a modified competition assay in comparison to that of the laboratory strain 10403S. We used two in vivo models of listeriosis: the nonpregnant mouse and the pregnant guinea pig. Strains that were frequently found at a high abundance within infected organs were considered hypervirulent, while strains frequently found at a low abundance were considered hypovirulent. Virulence split relatively evenly among hypovirulent strains, hypervirulent strains, and strains as virulent as 10403S. The laboratory strain was found to have an intermediate virulence phenotype, supporting its suitability for use in pathogenesis studies. Further, we found that splenic virulence and placental virulence are closely linked in both the guinea pig and mouse models. This suggests that outbreak and sporadic pregnancy-associated L. monocytogenes strains are not generally more virulent than lab reference strains. However, some strains did show consistent and reproducible virulence differences, suggesting that their further study may reveal deeper insights into the biological underpinnings of listeriosis.
Collapse
|
5
|
Dong Y, Wang Y, Liu J, Ma S, Awan F, Lu C, Liu Y. Discovery of lahS as a Global Regulator of Environmental Adaptation and Virulence in Aeromonas hydrophila. Int J Mol Sci 2018; 19:E2709. [PMID: 30208624 PMCID: PMC6163582 DOI: 10.3390/ijms19092709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 01/06/2023] Open
Abstract
Aeromonas hydrophila is an important aquatic microorganism that can cause fish hemorrhagic septicemia. In this study, we identified a novel LysR family transcriptional regulator (LahS) in the A. hydrophila Chinese epidemic strain NJ-35 from a library of 947 mutant strains. The deletion of lahS caused bacteria to exhibit significantly decreased hemolytic activity, motility, biofilm formation, protease production, and anti-bacterial competition ability when compared to the wild-type strain. In addition, the determination of the fifty percent lethal dose (LD50) in zebrafish demonstrated that the lahS deletion mutant (ΔlahS) was highly attenuated in virulence, with an approximately 200-fold increase in LD50 observed as compared with that of the wild-type strain. However, the ΔlahS strain exhibited significantly increased antioxidant activity (six-fold). Label-free quantitative proteome analysis resulted in the identification of 34 differentially expressed proteins in the ΔlahS strain. The differentially expressed proteins were involved in flagellum assembly, metabolism, redox reactions, and cell density induction. The data indicated that LahS might act as a global regulator to directly or indirectly regulate various biological processes in A. hydrophila NJ-35, contributing to a greater understanding the pathogenic mechanisms of A. hydrophila.
Collapse
Affiliation(s)
- Yuhao Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yao Wang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jin Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shuiyan Ma
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Furqan Awan
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chengping Lu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Rychli K, Stessl B, Szakmary-Brändle K, Strauß A, Wagner M, Schoder D. Listeria monocytogenes Isolated from Illegally Imported Food Products into the European Union Harbor Different Virulence Factor Variants. Genes (Basel) 2018; 9:E428. [PMID: 30142903 PMCID: PMC6162745 DOI: 10.3390/genes9090428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/13/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022] Open
Abstract
Unregulated international flow of foods poses a danger to human health, as it may be contaminated with pathogens. Recent studies have investigated neglected routes of pathogen transmission and reported the occurrence of Listeria monocytogenes in food illegally imported into the European Union (EU), either confiscated at four international airports or sold illegally on the Romanian black market. In this study we investigated the genotype diversity and the amino acid sequence variability of three main virulence factors of 57 L. monocytogenes isolates. These isolates were derived from 1474 food samples illegally imported into the EU and originated from 17 different countries. Multilocus sequence typing revealed 16 different sequence types (STs) indicating moderate genotype diversity. The most prevalent STs were ST2, ST9, and ST121. The pulsed-field gel electrophoresis (PFGE) analysis resulted in 34 unique pulsotypes. PFGE types assigned to the most prevalent STs (ST2, ST9, and ST121) were highly related in their genetic fingerprint. Internalin A (InlA) was present in 20 variants, including six truncated InlA variants, all harbored by isolates of ST9 and ST121. We detected eight ST-specific listeriolysin O (LLO) variants, and among them, one truncated form. The actin-assembly-inducing protein ActA was present in 15 different ST-specific variants, including four ActA variants with an internal truncation. In conclusion, this study shows that L. monocytogenes, isolated from illegally imported food, have moderate genotype diversity, but diverse virulence factors variants, mainly of InlA.
Collapse
Affiliation(s)
- Kathrin Rychli
- Institute of Milk Hygiene, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Beatrix Stessl
- Institute of Milk Hygiene, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Kati Szakmary-Brändle
- Institute of Milk Hygiene, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Anja Strauß
- Institute of Milk Hygiene, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Martin Wagner
- Institute of Milk Hygiene, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Dagmar Schoder
- Institute of Milk Hygiene, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
7
|
Dong Y, Liu J, Pang M, Du H, Wang N, Awan F, Lu C, Liu Y. Catecholamine-Stimulated Growth of Aeromonas hydrophila Requires the TonB2 Energy Transduction System but Is Independent of the Amonabactin Siderophore. Front Cell Infect Microbiol 2016; 6:183. [PMID: 28018865 PMCID: PMC5149522 DOI: 10.3389/fcimb.2016.00183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/28/2016] [Indexed: 01/19/2023] Open
Abstract
The growth-stimulating effects of catecholamine stress hormones have been demonstrated in many pathogens. However, catecholamine-induced growth and its underlying mechanisms remain poorly understood in Aeromonas hydrophila. The present study sought to demonstrate that norepinephrine (NE), epinephrine (Epi), dopamine (Dopa), and L-dopa stimulate the growth of A. hydrophila in iron-restricted media containing serum. NE exhibited the strongest growth stimulation, which could be blocked by adrenergic antagonists. Furthermore, it was demonstrated that NE could sequester iron from transferrin, thereby providing a more accessible iron source for utilization by A. hydrophila. The deletion of the amoA gene associated with amonabactin synthesis revealed that the amonabactin siderophore is not required for NE-stimulated growth. However, the deletion of the TonB2 energy transduction system resulted in the loss of growth promotion by NE, indicating that a specific TonB-dependent outer membrane receptor might be involved in the transport of iron from transferrin. Collectively, our data show that catecholamine sensing promotes the growth of A. hydrophila in a manner that is dependent on the TonB2 energy transduction system.
Collapse
Affiliation(s)
- Yuhao Dong
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Jin Liu
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Maoda Pang
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Hechao Du
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Nannan Wang
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Furqan Awan
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Chengping Lu
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Yongjie Liu
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
8
|
Väliaho J, Faisal I, Ortutay C, Smith CIE, Vihinen M. Characterization of all possible single-nucleotide change caused amino acid substitutions in the kinase domain of Bruton tyrosine kinase. Hum Mutat 2015; 36:638-47. [PMID: 25777788 DOI: 10.1002/humu.22791] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/27/2015] [Accepted: 03/10/2015] [Indexed: 12/31/2022]
Abstract
Knowledge about features distinguishing deleterious and neutral variations is crucial for interpretation of novel variants. Bruton tyrosine kinase (BTK) contains the highest number of unique disease-causing variations among the human protein kinases, still it is just 10% of all the possible single-nucleotide substitution-caused amino acid variations (SNAVs). In the BTK kinase domain (BTK-KD) can appear altogether 1,495 SNAVs. We investigated them all with bioinformatic and protein structure analysis methods. Most disease-causing variations affect conserved and buried residues disturbing protein stability. Minority of exposed residues is conserved, but strongly tied to pathogenicity. Sixty-seven percent of variations are predicted to be harmful. In 39% of the residues, all the variants are likely harmful, whereas in 10% of sites, all the substitutions are tolerated. Results indicate the importance of the entire kinase domain, involvement in numerous interactions, and intricate functional regulation by conformational change. These results can be extended to other protein kinases and organisms.
Collapse
Affiliation(s)
- Jouni Väliaho
- BioMediTech, University of Tampere, Tampere, Finland
| | - Imrul Faisal
- BioMediTech, University of Tampere, Tampere, Finland
| | - Csaba Ortutay
- BioMediTech, University of Tampere, Tampere, Finland.,Present address is HiDucator Ltd., Erämiehentie 2 E 22, Kangasala FI-36200, Finland
| | - C I Edvard Smith
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Mauno Vihinen
- BioMediTech, University of Tampere, Tampere, Finland.,Department of Experimental Medical Science, Lund University, Lund, Sweden.,Research Unit, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
9
|
Glutathione activates virulence gene expression of an intracellular pathogen. Nature 2015; 517:170-3. [PMID: 25567281 DOI: 10.1038/nature14029] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/03/2014] [Indexed: 12/15/2022]
Abstract
Intracellular pathogens are responsible for much of the world-wide morbidity and mortality due to infectious diseases. To colonize their hosts successfully, pathogens must sense their environment and regulate virulence gene expression appropriately. Accordingly, on entry into mammalian cells, the facultative intracellular bacterial pathogen Listeria monocytogenes remodels its transcriptional program by activating the master virulence regulator PrfA. Here we show that bacterial and host-derived glutathione are required to activate PrfA. In this study a genetic selection led to the identification of a bacterial mutant in glutathione synthase that exhibited reduced virulence gene expression and was attenuated 150-fold in mice. Genome sequencing of suppressor mutants that arose spontaneously in vivo revealed a single nucleotide change in prfA that locks the protein in the active conformation (PrfA*) and completely bypassed the requirement for glutathione during infection. Biochemical and genetic studies support a model in which glutathione-dependent PrfA activation is mediated by allosteric binding of glutathione to PrfA. Whereas glutathione and other low-molecular-weight thiols have important roles in redox homeostasis in all forms of life, here we demonstrate that glutathione represents a critical signalling molecule that activates the virulence of an intracellular pathogen.
Collapse
|
10
|
Ciolacu L, Nicolau AI, Wagner M, Rychli K. Listeria monocytogenes isolated from food samples from a Romanian black market show distinct virulence profiles. Int J Food Microbiol 2014; 209:44-51. [PMID: 25241012 DOI: 10.1016/j.ijfoodmicro.2014.08.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 02/06/2023]
Abstract
Listeria monocytogenes is a facultative intracellular foodborne pathogen responsible for listeriosis. In a recent study, in which we investigated neglected exogenous routes of transmission of foodborne pathogens into the European Union, we have isolated 15 L. monocytogenes strains in food products, which were imported from the Republic of Moldavia to Romania and illegally sold at a local market. The aim of this study was to characterize the subtype and virulence potential of these 15 L. monocytogenes strains. Multilocus sequence typing revealed that these L. monocytogenes strains belong to six different sequence types (ST2, ST8, ST9, ST20, ST121 and ST155). In addition, in vitro virulence assays using human intestinal epithelial Caco2 and macrophage-like THP1 cells showed a high strain variability regarding the invasion efficiency in Caco2 cells (0.98-2.78%) and the intracellular growth rate in both cell types. Both ST121 strains and the ST9 isolate were unable to invade Caco2 cells, and all ST155 strains showed no proliferation inside macrophages and revealed low cytotoxicity. Furthermore we performed sequence analysis of three main virulence factors: PrfA, internalin A (InlA) and listeriolysin O (LLO). The Romanian food isolates showed a high diversity in the InlA and LLO amino acid sequences, whereas the amino acid sequence of PrfA of all strains was identical. Overall, the amino acid sequences of PrfA, InlA and LLO were identical for strains belonging to the same ST. We detected in total 30 different amino acid substitutions, resulting in seven different InlA variants, two of which have not yet been described. The three strains, which were unable to invade Caco2 cells, harboured a premature stop codon resulting in truncated InlA. Furthermore, we detected four different amino acid substitutions in the LLO sequence, which are present in four variants. The number of LLO mutations correlates negatively with intracellular growth in Caco2 and THP1 cells and subsequently with cytotoxicity. In conclusion, we show that L. monocytogenes isolated from food samples from a Romanian black market show distinct virulence profiles, due to a high diversity in the amino acid sequence of main virulence factors.
Collapse
Affiliation(s)
- Luminita Ciolacu
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria; "Dunarea de Jos" University of Galati, 47 Domneasca St., 800008 Galaţi, Romania.
| | - Anca Ioana Nicolau
- "Dunarea de Jos" University of Galati, 47 Domneasca St., 800008 Galaţi, Romania.
| | - Martin Wagner
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Kathrin Rychli
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
11
|
Crystal structure of listeriolysin O reveals molecular details of oligomerization and pore formation. Nat Commun 2014; 5:3690. [PMID: 24751541 DOI: 10.1038/ncomms4690] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/18/2014] [Indexed: 01/17/2023] Open
Abstract
Listeriolysin O (LLO) is an essential virulence factor of Listeria monocytogenes that causes listeriosis. Listeria monocytogenes owes its ability to live within cells to the pH- and temperature-dependent pore-forming activity of LLO, which is unique among cholesterol-dependent cytolysins. LLO enables the bacteria to cross the phagosomal membrane and is also involved in activation of cellular processes, including the modulation of gene expression or intracellular Ca(2+) oscillations. Neither the pore-forming mechanism nor the mechanisms triggering the signalling processes in the host cell are known in detail. Here, we report the crystal structure of LLO, in which we identified regions important for oligomerization and pore formation. Mutants were characterized by determining their haemolytic and Ca(2+) uptake activity. We analysed the pore formation of LLO and its variants on erythrocyte ghosts by electron microscopy and show that pore formation requires precise interface interactions during toxin oligomerization on the membrane.
Collapse
|
12
|
Prediction of B-Cell Epitopes in Listeriolysin O, a Cholesterol Dependent Cytolysin Secreted by Listeria monocytogenes. Adv Bioinformatics 2014; 2014:871676. [PMID: 24523732 PMCID: PMC3909977 DOI: 10.1155/2014/871676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/09/2013] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenes is a gram-positive, foodborne bacterium responsible for disease in humans and animals. Listeriolysin O (LLO) is a required virulence factor for the pathogenic effects of L. monocytogenes. Bioinformatics revealed conserved putative epitopes of LLO that could be used to develop monoclonal antibodies against LLO. Continuous and discontinuous epitopes were located by using four different B-cell prediction algorithms. Three-dimensional molecular models were generated to more precisely characterize the predicted antigenicity of LLO. Domain 4 was predicted to contain five of eleven continuous epitopes. A large portion of domain 4 was also predicted to comprise discontinuous immunogenic epitopes. Domain 4 of LLO may serve as an immunogen for eliciting monoclonal antibodies that can be used to study the pathogenesis of L. monocytogenes as well as develop an inexpensive assay.
Collapse
|
13
|
Role of pore-forming toxins in neonatal sepsis. Clin Dev Immunol 2013; 2013:608456. [PMID: 23710203 PMCID: PMC3655490 DOI: 10.1155/2013/608456] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/27/2013] [Indexed: 11/17/2022]
Abstract
Protein toxins are important virulence factors contributing to neonatal sepsis. The major pathogens of neonatal sepsis, group B Streptococci, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus, secrete toxins of different molecular nature, which are key for defining the disease. Amongst these toxins are pore-forming exotoxins that are expressed as soluble monomers prior to engagement of the target cell membrane with subsequent formation of an aqueous membrane pore. Membrane pore formation is not only a means for immediate lysis of the targeted cell but also a general mechanism that contributes to penetration of epithelial barriers and evasion of the immune system, thus creating survival niches for the pathogens. Pore-forming toxins, however, can also contribute to the induction of inflammation and hence to the manifestation of sepsis. Clearly, pore-forming toxins are not the sole factors that drive sepsis progression, but they often act in concert with other bacterial effectors, especially in the initial stages of neonatal sepsis manifestation.
Collapse
|
14
|
Hamon MA, Ribet D, Stavru F, Cossart P. Listeriolysin O: the Swiss army knife of Listeria. Trends Microbiol 2012; 20:360-8. [PMID: 22652164 DOI: 10.1016/j.tim.2012.04.006] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 04/10/2012] [Accepted: 04/18/2012] [Indexed: 12/30/2022]
Abstract
Listeriolysin O (LLO) is a toxin produced by Listeria monocytogenes, an opportunistic bacterial pathogen responsible for the disease listeriosis. This disease starts with the ingestion of contaminated foods and mainly affects immunocompromised individuals, newborns, and pregnant women. In the laboratory, L. monocytogenes is used as a model organism to study processes such as cell invasion, intracellular survival, and cell-to-cell spreading, as this Gram-positive bacterium has evolved elaborate molecular strategies to subvert host cell functions. LLO is a major virulence factor originally shown to be crucial for bacterial escape from the internalization vacuole after entry into cells. However, recent studies are revisiting the role of LLO during infection and are revealing new insights into the action of LLO, in particular before bacterial entry. These latest findings along with their impact on the infectious process will be discussed.
Collapse
Affiliation(s)
- Mélanie Anne Hamon
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, F-75015 Paris, France
| | | | | | | |
Collapse
|