1
|
Thin-layer chromatography, overlay technique and mass spectrometry: A versatile triad advancing glycosphingolipidomics. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:875-96. [DOI: 10.1016/j.bbalip.2011.04.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/18/2011] [Accepted: 04/10/2011] [Indexed: 12/16/2022]
|
2
|
Müthing J, Distler U. Advances on the compositional analysis of glycosphingolipids combining thin-layer chromatography with mass spectrometry. MASS SPECTROMETRY REVIEWS 2010; 29:425-479. [PMID: 19609886 DOI: 10.1002/mas.20253] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Glycosphingolipids (GSLs), composed of a hydrophilic carbohydrate chain and a lipophilic ceramide anchor, play pivotal roles in countless biological processes, including infectious diseases and the development of cancer. Knowledge of the number and sequence of monosaccharides and their anomeric configuration and linkage type, which make up the principal items of the glyco code of biologically active carbohydrate chains, is essential for exploring the function of GSLs. As part of the investigation of the vertebrate glycome, GSL analysis is undergoing rapid expansion owing to the application of novel biochemical and biophysical technologies. Mass spectrometry (MS) takes part in the network of collaborations to further unravel structural and functional aspects within the fascinating world of GSLs with the ultimate aim to better define their role in human health and disease. However, a single-method analytical MS technique without supporting tools is limited yielding only partial structural information. Because of its superior resolving power, robustness, and easy handling, high-performance thin-layer chromatography (TLC) is widely used as an invaluable tool in GSL analysis. The intention of this review is to give an insight into current advances obtained by coupling supplementary techniques such as TLC and mass spectrometry. A retrospective view of the development of this concept and the recent improvements by merging (1) TLC separation of GSLs, (2) their detection with oligosaccharide-specific proteins, and (3) in situ MS analysis of protein-detected GSLs directly on the TLC plate, are provided. The procedure works on a nanogram scale and was successfully applied to the identification of cancer-associated GSLs in several types of human tumors. The combination of these two supplementary techniques opens new doors by delivering specific structural information of trace quantities of GSLs with only limited investment in sample preparation.
Collapse
Affiliation(s)
- Johannes Müthing
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany.
| | | |
Collapse
|
3
|
Kirsch S, Müthing J, Peter-Katalinić J, Bindila L. On-line nano-HPLC/ESI QTOF MS monitoring of alpha2-3 and alpha2-6 sialylation in granulocyte glycosphingolipidome. Biol Chem 2009; 390:657-72. [PMID: 19361287 DOI: 10.1515/bc.2009.066] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel glycosphingolipidomic protocol using nano-high performance liquid chromatography coupled on-line to electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QTOF-MS) focusing on the separation of isomeric ganglioside structures is described here. A highly efficient separation of alpha2-3- and alpha2-6-sialylated ganglioside species of different carbohydrate chain length was achieved on an HILIC-amido column, followed by sensitive flow-through ESI-QTOF-MS detection and unambiguous structural identification by tandem MS experiments. The protocol was applied to encompass the glycosphingolipidome of human granulocytes, where 182 distinct components could be clearly identified and assigned regarding the ganglioside type and the isomer distribution.
Collapse
Affiliation(s)
- Stephan Kirsch
- Institute of Medical Physics and Biophysics, University of Münster, D-48149 Münster, Germany
| | | | | | | |
Collapse
|
4
|
Lee HS, Choe G, Kim WH, Kim HH, Song J, Park KU. Expression of Lewis antigens and their precursors in gastric mucosa: relationship with Helicobacter pylori infection and gastric carcinogenesis. J Pathol 2006; 209:88-94. [PMID: 16456898 DOI: 10.1002/path.1949] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Lewis (Le)-associated antigens are carbohydrates that are related biochemically to the ABO blood groups, and may have a role in Helicobacter pylori adherence. To evaluate their relationship to clinicopathological outcomes, gastric Le expression, including type 1 precursor, type 1 H, Le(a), Le(b), Le(x), Le(y) and sialylated Le(a) (CA19-9), was evaluated immunohistochemically in 233 gastric biopsy specimens obtained at routine gastroscopy. Expression was also investigated in gastric tissues showing chronic gastritis, intestinal metaplasia, and carcinoma from 42 patients with gastric cancer. A polymerase chain reaction was performed for H. pylori and the bacterial babA2 gene. We identified type 1 precursor expression in 34.3%, type 1 H in 55.8%, Le(a) in 44.2%, Le(b) in 82.0%, Le(x) in 44.2%, Le(y) 56.7%, and CA19-9 in 16.3% of the 233 gastric biopsy specimens. Expression of type 1 H, Le(b), and CA19-9 was significantly associated with H. pylori infection and histological features (p < 0.05), and expression of type 1 H was an independent predictive factor for H. pylori infection by multivariate logistic regression (p = 0.020). Positivity for the babA2 genotype correlated significantly with H. pylori infection and type 1 H expression in gastric biopsy specimens (p < 0.05). The babA2 genotype was more frequent in gastric mucosa from the gastric cancer patients than in gastric biopsy specimens from routine gastroscopy (p = 0.009). In the 42 gastric cancer patients, the frequency of type 1 precursor, Le(a), and Le(x) expression was significantly higher in intestinal metaplasia and carcinoma than in chronic gastritis (p < 0.05), but the frequency of type 1 H and Le(b) expression was significantly lower in intestinal metaplasia and carcinoma (p < 0.05). In conclusion, Le expression, especially that of type 1 H, was significantly associated with clinicopathological features. In gastric cancer patients, Le expression was altered in intestinal metaplasia and carcinoma in comparison with chronic gastritis.
Collapse
Affiliation(s)
- H S Lee
- Department of Pathology, Seoul National University College of Medicine, Korea
| | | | | | | | | | | |
Collapse
|
5
|
Miller-Podraza H, Lanne B, Angström J, Teneberg S, Milh MA, Jovall PA, Karlsson H, Karlsson KA. Novel Binding Epitope for Helicobacter pylori Found in Neolacto Carbohydrate Chains. J Biol Chem 2005; 280:19695-703. [PMID: 15743770 DOI: 10.1074/jbc.m412688200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori is a bacterium that colonizes the stomach of a majority of the global human population causing common gastric diseases like ulcers and cancer. It has an unusually complex pattern of binding to various host glycoconjugates including interaction with sialylated, sulfated, and fucosylated sequences. The present study describes an additional binding epitope comprising the neolacto internal sequence of GlcNAcbeta3-Galbeta4GlcNAcbeta. The binding was detected on TLC plates as an interaction with a seven-sugar ganglioside of rabbit thymus. The glycolipid was purified and characterized as Neu5Gcalpha3Galbeta4GlcNAcbeta3Galbeta4GlcNAcbeta3-Galbeta4Glcbeta1Cer with less than 10% of the fraction carrying a repeated lacto (type-1) core chain, Galbeta3Glc-NAcbeta3Galbeta3GlcNAcbeta. After stepwise chemical and enzymatic degradation and structural analysis of products the strongest binder was found to be the pentaglycosylceramide GlcNAcbeta3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1-Cer, whereas the hexa- and tetraglycosylceramides were less active, and the trihexosylceramide was inactive. Further studies revealed that the terminal GlcNAcbeta of the pentaglycosylceramide may be exchanged for either GalNAcbeta3, GalNAcalpha3, or Galalpha3 without loss of the activity. Calculated minimum energy conformers of these four isoreceptors show a substantial topographical similarity suggesting that this binding is a result of a molecular mimicry. Although the glycoconjugate composition of human gastric epithelial cells is not known in detail it is proposed that repeating N-acetyllactosamine units of glycoconjugates may serve as bacterial attachment sites in the stomach.
Collapse
|
6
|
Gustafsson A, Kacskovics I, Breimer ME, Hammarström L, Holgersson J. Carbohydrate phenotyping of human and animal milk glycoproteins. Glycoconj J 2005; 22:109-18. [PMID: 16133831 DOI: 10.1007/s10719-005-0356-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Revised: 01/14/2005] [Accepted: 01/20/2005] [Indexed: 01/30/2023]
Abstract
Breast-milk has a well-known anti-microbial effect, which is in part due to the many different carbohydrate structures expressed. This renders it a position as a potential therapeutic for treatment of infection by different pathogens, thus avoiding the drawbacks of many antibiotics. The plethora of carbohydrate epitopes in breast-milk is known to differ between species, with human milk expressing the most complex one. We have investigated the expression of protein-bound carbohydrate epitopes in milk from man, cow, goat, sheep, pig, horse, dromedary and rabbit. Proteins were separated by SDS-PAGE and the presence of carbohydrate epitopes on milk proteins were analysed by Western blotting using different lectins and carbohydrate-specific antibodies. We show that ABH, Lewis (Le)x, sialyl-Lex, Lea, sialyl-Lea and Leb carbohydrate epitopes are expressed mainly on man, pig and horse milk proteins. The blood group precursor structure H type 1 is expressed in all species investigated, while only pig, dromedary and rabbit milk proteins carry H type 2 epitopes. These epitopes are receptors for Helicobacter pylori (Leb and sialyl-Lex), enteropathogenic (H type 1, Lea and Lex) and enterotoxic Escherichia coli (heat-stable toxin; H type 1 and 2), and Campylobacter jejuni (H type 2). Thus, milk from these animals or their genetically modified descendants could have a therapeutic effect by inhibiting pathogen colonization and infection.
Collapse
Affiliation(s)
- Anki Gustafsson
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
7
|
Unemo M, Aspholm-Hurtig M, Ilver D, Bergström J, Borén T, Danielsson D, Teneberg S. The sialic acid binding SabA adhesin of Helicobacter pylori is essential for nonopsonic activation of human neutrophils. J Biol Chem 2005; 280:15390-7. [PMID: 15689619 DOI: 10.1074/jbc.m412725200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Infiltration of neutrophils and monocytes into the gastric mucosa is a hallmark of chronic gastritis caused by Helicobacter pylori. Certain H. pylori strains nonopsonized stimulate neutrophils to production of reactive oxygen species causing oxidative damage of the gastric epithelium. Here, the contribution of some H. pylori virulence factors, the blood group antigen-binding adhesin BabA, the sialic acid-binding adhesin SabA, the neutrophil-activating protein HP-NAP, and the vacuolating cytotoxin VacA, to the activation of human neutrophils in terms of adherence, phagocytosis, and oxidative burst was investigated. Neutrophils were challenged with wild type bacteria and isogenic mutants lacking BabA, SabA, HP-NAP, or VacA. Mutant and wild type strains lacking SabA had no neutrophil-activating capacity, demonstrating that binding of H. pylori to sialylated neutrophil receptors plays a pivotal initial role in the adherence and phagocytosis of the bacteria and the induction of the oxidative burst. The link between receptor binding and oxidative burst involves a G-protein-linked signaling pathway and downstream activation of phosphatidylinositol 3-kinase as shown by experiments using signal transduction inhibitors. Collectively our data suggest that the sialic acid-binding SabA adhesin is a prerequisite for the nonopsonic activation of human neutrophils and, thus, is a virulence factor important for the pathogenesis of H. pylori infection.
Collapse
Affiliation(s)
- Magnus Unemo
- Department of Clinical Microbiology, Orebro University Hospital
| | | | | | | | | | | | | |
Collapse
|
8
|
Takahashi T, Matsumoto T, Nakamura M, Matsui H, Kiyohara H, Sasakawa C, Yamada H. A novel in vitro infection model of Helicobacter pylori using mucin-producing murine gastric surface mucous cells. Helicobacter 2004; 9:302-12. [PMID: 15270744 DOI: 10.1111/j.1083-4389.2004.00243.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Helicobacter pylori is found within the gastric surface mucous gel layer and in the epithelial surface. Gastric cancer cells have been used in experimental H. pylori infection in vitro, although cancer cells have some abnormalities in cellular properties. The aim of this study was to develop an in vitro H. pylori infection model using normal gastric surface cells that produce gastric mucin. MATERIALS AND METHODS Normal murine gastric surface mucous cells (GSM06) were cultured by the liquid interface method using a serum-free medium and a collagen gel containing a fibroblast cell line (L929) and infected with H. pylori. Infection by H. pylori was assessed by enumerating the colony-forming units (CFU) of H. pylori adhered to GSM06 cells and by transmission electron microscopy. The production of mucin was determined by a lectin binding assay, sugar analysis, and MUC5AC gene expression. RESULTS GSM06 cells cultured under these conditions produced mucin containing N-acetylgalactosamine and MUC5AC as the core protein. Significantly higher numbers of H. pylori adhered to GSM06 cells under mucin-producing conditions than under nonproducing conditions. Microscopic observation showed a filamentous structure resembling a type IV secretion system apparatus formed between the surface of GSM06 cells and H. pylori. CONCLUSIONS This study demonstrates a novel in vitro H. pylori infection model using mucin-producing murine GSM06 cells for early stages of infection.
Collapse
Affiliation(s)
- Tetsufumi Takahashi
- Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Roche N, Angström J, Hurtig M, Larsson T, Borén T, Teneberg S. Helicobacter pylori and complex gangliosides. Infect Immun 2004; 72:1519-29. [PMID: 14977958 PMCID: PMC356016 DOI: 10.1128/iai.72.3.1519-1529.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recognition of sialic acid-containing glycoconjugates by the human gastric pathogen Helicobacter pylori has been repeatedly demonstrated. To investigate the structural requirements for H. pylori binding to complex gangliosides, a large number of gangliosides were isolated and characterized by mass spectrometry and proton nuclear magnetic resonance. Ganglioside binding of sialic acid-recognizing H. pylori strains (strains J99 and CCUG 17874) and knockout mutant strains with the sialic acid binding adhesin SabA or the NeuAcalpha3Galbeta4GlcNAcbeta3Galbeta4GlcNAcbeta-binding neutrophil-activating protein HPNAP deleted was investigated using the thin-layer chromatogram binding assay. The wild-type bacteria bound to N-acetyllactosamine-based gangliosides with terminal alpha3-linked NeuAc, while gangliosides with terminal NeuGcalpha3, NeuAcalpha6, or NeuAcalpha8NeuAcalpha3 were not recognized. The factors affecting binding affinity were identified as (i) the length of the N-acetyllactosamine carbohydrate chain, (ii) the branches of the carbohydrate chain, and (iii) fucose substitution of the N-acetyllactosamine core chain. While the J99/NAP(-) mutant strain displayed a ganglioside binding pattern identical to that of the parent J99 wild-type strain, no ganglioside binding was obtained with the J99/SabA(-) mutant strain, demonstrating that the SabA adhesin is the sole factor responsible for the binding of H. pylori bacterial cells to gangliosides.
Collapse
Affiliation(s)
- Niamh Roche
- Institute of Medical Biochemistry, Göteborg University, SE 405 30 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
10
|
O'Connor PB, Mirgorodskaya E, Costello CE. High pressure matrix-assisted laser desorption/ionization Fourier transform mass spectrometry for minimization of ganglioside fragmentation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2002; 13:402-407. [PMID: 11951978 DOI: 10.1016/s1044-0305(02)00351-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Transiently elevating pressure in a matrix-assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS) source into the 1-10 mbar range during ionization decreases the metastable fragmentation of gangliosides. This allows detection of the molecular ion species without loss of the highly labile sialic acid residues. In these experiments, gangliosides with up to five sialic acids were ionized by MALDI and detected with the FTMS. In each case, when the high pressure collisional cooling was used, the singly charged molecular ion was the base peak in the spectra, both in the positive and negative ion modes, and minimal metastable fragmentation was observed. This result is promising, as the previously developed TLC separation methods can be coupled to MALDI-FTMS.
Collapse
Affiliation(s)
- Peter B O'Connor
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, Massachusetts 02118, USA.
| | | | | |
Collapse
|
11
|
Angata T, Varki A. Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem Rev 2002; 102:439-69. [PMID: 11841250 DOI: 10.1021/cr000407m] [Citation(s) in RCA: 970] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Takashi Angata
- Glycobiology Research and Training Center, Department of Medicine, University of California-San Diego, La Jolla, California 92093-0687, USA
| | | |
Collapse
|
12
|
|
13
|
Lundström AM, Blom K, Sundaeus V, Bölin I. HpaA shows variable surface localization but the gene expression is similar in different Helicobacter pylori strains. Microb Pathog 2001; 31:243-53. [PMID: 11710844 DOI: 10.1006/mpat.2001.0466] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Due to earlier contradictory results regarding the localization of the putative Helicobacter pylori adhesin A (HpaA), we aimed to compare the gene and protein expression and surface localization of HpaA in different H. pylori strains. Five H. pylori strains were cultivated for 11 days and analysed by Northern blot analysis, flow cytometry (FCM), semi-quantitative dot blot, colony blot, immuno-electron microscopy (IEM), and phase-contrast microscopy. The highest transcriptional activity of the hapA gene as observed after 3-4 days of cultivation and two mRNA transcripts of 1600 and 3100 nucleotides, respectively, were detected in all five strains with the hpaA probe. We also showed by reverse transcription-polymerase chain reaction (RT-PCR) that the hpaA gene is co-transcribed with the downstream omp18 gene. The highest total HpaA protein production in bacteria occurred between day 3 and 7, as determined by semi-quantitative dot blot, and was similar in the different strains. The maximal proportion of cells with HpaA on the bacterial surface, detected by FCM, was for strain SS1, 90%; Hel 344, 60%; CCUG 17875, 61%; CCUG 17874, 86% and for strain AH 244 only 35%. By IEM HpaA was detected in all strains both on the bacterial surface and on the flagellar sheath.
Collapse
Affiliation(s)
- A M Lundström
- Department of Medical Microbiology and Immunology, Göteborg University, Göteborg, Sweden
| | | | | | | |
Collapse
|
14
|
Roche N, Larsson T, Angström J, Teneberg S. Helicobacter pylori-binding gangliosides of human gastric adenocarcinoma. Glycobiology 2001; 11:935-44. [PMID: 11744628 DOI: 10.1093/glycob/11.11.935] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acidic and neutral glycosphingolipids were isolated from a human gastric adenocarcinoma, and binding of Helicobacter pylori to the isolated glycosphingolipids was assessed using the chromatogram binding assay. The isolated glycosphingolipids were characterized using fast atom bombardment mass spectrometry and by binding of antibodies and lectins. The predominating neutral glycosphingolipids were found to migrate in the di- to tetraglycosylceramide regions as revealed by anisaldehyde staining and detection with lectins. No binding of H. pylori to these compounds was obtained. The most abundant acidic glycosphingolipids, migrating as the GM3 ganglioside and sialyl-neolactotetraosylceramide, were not recognized by the bacteria. Instead, H. pylori selectively interacted with slow-migrating, low abundant gangliosides not detected by anisaldehyde staining. Binding-active gangliosides were isolated and characterized by mass spectrometry, proton nuclear magnetic resonance, and lectin binding as sialyl-neolactohexaosylceramide (NeuAcalpha3Galbeta4GlcNAcbeta3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer) and sialyl-neolactooctaosylceramide (NeuAcalpha3Galbeta4GlcNAcbeta3Galbeta4GlcNAcbeta3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer).
Collapse
Affiliation(s)
- N Roche
- Institute of Medical Biochemistry, Göteborg University, P.O. Box 440, SE 405 30 Göteborg, Sweden
| | | | | | | |
Collapse
|
15
|
Affiliation(s)
- J Müthing
- Technical Faculty, Institute for Cell Culture Technology, University of Bielefeld, Germany
| |
Collapse
|
16
|
Karlsson A, Miller-Podraza H, Johansson P, Karlsson KA, Dahlgren C, Teneberg S. Different glycosphingolipid composition in human neutrophil subcellular compartments. Glycoconj J 2001; 18:231-43. [PMID: 11602807 DOI: 10.1023/a:1013183124004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The binding of a number of carbohydrate-recognizing ligands to glycosphingolipids and polyglycosylceramides of human neutrophil subcellular fractions (plasma membranes/secretory vesicles of resting and ionomycin-stimulated cells, specific and azurophil granules) was examined using the chromatogram binding assay. Several organelle-related differences in glycosphingolipid content were observed. The most prominent difference was a decreased content of the GM3 ganglioside in plasma membranes of activated neutrophils. Gangliosides recognized by anti-VIM-2 antibodies were detected mainly in the acid fractions of azurophil and specific granules. Slow-migrating gangliosides and polyglycosylceramides with Helicobacter pylori-binding activity were found in all acid fractions. A non-acid triglycosylceramide, recognized by Gal(alpha)4Gal-binding Escherichia coli, was detected in the plasma membrane/secretory vesicles but not in the azurophil and specific granules. Although no defined roles of glycosphingolipids have yet been conclusively established with respect to neutrophil function, the fact that many of the identified glycosphingolipids are stored in granules, is in agreement with their role as receptor structures that are exposed on the neutrophil cell surface upon fusion of granules with the plasma membrane. Accordingly, we show that neutrophil granules store specific carbohydrate epitopes that are upregulated to the plasma membrane upon cell activation.
Collapse
Affiliation(s)
- A Karlsson
- Department of Medical Microbiology and Immunology, Göteborg University, P.O. Box 435, 405 30 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
17
|
Abul-Milh M, Barnett Foster D, Lingwood CA. In vitro binding of Helicobacter pylori to monohexosylceramides. Glycoconj J 2001; 18:253-60. [PMID: 11602809 DOI: 10.1023/a:1012460824913] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
H. pylori is the major cause of human gastritis, duodenal ulcer and thus gastric adenocarcinoma. Many glycosphingolipid species have been postulated as receptors for H. pylori and it is likely that H. pylori attachment requires multiple, perhaps sequential receptor/ligand interactions. In this study, the binding of a number of H. pylori clinical isolates, as well as stock strains, to acid and neutral glycosphingolipids separated on thin-layer chromatograms was characterized under microaerobic conditions. All H. pylori clinical isolates, laboratory strains and type culture collection strains recognized galactosylceramide (Galbeta1Cer) with ceramide containing sphingosine and hydroxylated fatty acid (type I), or non-hydroxylated fatty acid (type II), on thin-layer chromatograms and when incorporated into liposomes. The clinical isolates bound stronger to Galbeta1Cer (type II) than Galbeta1Cer (type I) on TLC, whereas lab and culture collection strains showed the opposite binding preference. A clear preference in binding to Galbeta1Cer (type I) incorporated into liposome was shown by most tested strains. Clinical isolates bound well to glucosylceramide (Glcbeta1Cer) with hydroxylated fatty acid, whereas weak binding to this glycolipid was detected with the lab and type collection strains. None of the tested strains bound Glcbeta1Cer with non-hydroxylated fatty acid on the solid surface, but some strains of both clinical or type collection origins showed weak or very weak binding in the liposome assay. A clear distinction between the binding specificity of living organisms (under microaerobic conditions) as opposed to dying organisms (under normoxic conditions) illustrates the importance of cellular physiology in this process. These studies illustrate lipid modulation of the potential receptor function of monohexosylceramides and the distinction between the receptor repertoire of H. pylori clinical isolates and cultured strains commonly used to study host-cell adhesion.
Collapse
Affiliation(s)
- M Abul-Milh
- Department of Applied Chemical and Biological Sciences, Ryerson Polytechnic University, 350 Victoria St., Toronto, Ontario, Canada M5B 2K3
| | | | | |
Collapse
|
18
|
Miller-Podraza H. Polyglycosylceramides, Poly-N-acetyllactosamine-Containing Glycosphingolipids: Methods of Analysis, Structure, and Presumable Biological Functions. Chem Rev 2000; 100:4663-82. [PMID: 11749361 DOI: 10.1021/cr990347o] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- H Miller-Podraza
- Institute of Medical Biochemistry, Göteborg University, P.O. Box 440, SE 405 30 Göteborg, Sweden
| |
Collapse
|
19
|
Abstract
It is highly unlikely that chronic infection with H. pylori could occur in the absence of adhesin-host cell interactions. Also, there is no evidence that any of the serious outcomes of H. pylori infection such as gastric and duodenal ulcers, gastric cancer or mucosa-associated lymphoid tissue (MALT) lymphoma could occur without prior colonization of the gastric epithelium mediated by H. pylori adhesins. H. pylori is highly adaptable, as evidenced by the fact that it can occupy a single host for decades. An important facet of this adaptability is its ability to physically interact with various types of host cells and also with host mucins and extracellular matrix proteins using a number of different adhesins displaying a variety of unique receptor specificities. Thus it is highly unlikely that any one particular H. pylori adhesin will ever be proven responsible for a particular outcome such as duodenal ulcer, MALT lymphoma, or adenocarcinoma. Also, while the search for additional H. pylori adhesins should and certainly will continue, we suggest that the scope of this effort should be expanded to include investigations into the patterns of expression and interaction between individual outer membrane proteins. Which of the numerous H. pylori outer membrane proteins (OMPs) actually function as adhesins (i.e., have receptor-binding sites) and which OMPs are simply necessary for optimal display of the adhesive OMPs? There are many other important questions about H. pylori adhesins waiting to be answered. For example, which adhesins are responsible for loose adherence to host cells and which adhesins are responsible for intimate, or membrane-to-membrane, adherence, and do these adhesins normally work in concert or in a sequential fashion? Also, is a specific type of adhesin necessary for type IV protein translocation into host cells and, if so, is adhesin expression coregulated with the effector protein export?
Collapse
Affiliation(s)
- D J Evans
- Department of Medicine, VA Medical Center, and Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
20
|
Johansson L, Johansson P, Miller-Podraza H. Neu5Acalpha3Gal is part of the Helicobacter pylori binding epitope in polyglycosylceramides of human erythrocytes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:559-65. [PMID: 10561598 DOI: 10.1046/j.1432-1327.1999.00893.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sialic acid dependent binding by the human pathogen Helicobacter pylori to polyglycosylceramides of human erythrocytes was investigated. Polyglycosylceramides, complex glycosphingolipids with a branched N-acetyllactosamine core, were isolated from human erythrocytes, blood group O, and subfractionated after peracetylation by anion-exchange chromatography. Three subfractions were deacetylated, analysed by matrix-assisted laser desorption ionization-time of flight MS and 2D 1H NMR spectroscopy. The observed mass ranges were m/z = 3093-7622, 3968-7255 and 3459-7987 in the mass spectra of the first, second and third fractions, respectively. The observed ions agreed with the general formula Hex(x+2)HexNAcxFucyNeu5AczCer. Two-dimensional 1H total correlation spectra of the mixtures showed that the first fraction contained 3-linked sialic acid and the second and third fractions contained both 3-linked and 6-linked sialic acid. Thin-layer chromatogram binding assays using the lectins from Maackia amurensis, specific for Neu5Acalpha3Galbeta4GlcNAc, and Sambucus nigra, specific for Neu5Acalpha6Gal/GalNAc, were used to confirm this distribution. H. pylori recognized all three fractions in the binding assay, indicating that the 3-linked, rather than 6-linked, sialic acid is essential for binding.
Collapse
Affiliation(s)
- L Johansson
- Institute of Medical Biochemistry, Göteborg University, Sweden
| | | | | |
Collapse
|
21
|
Miller-Podraza H, Bergström J, Teneberg S, Milh MA, Longard M, Olsson BM, Uggla L, Karlsson KA. Helicobacter pylori and neutrophils: sialic acid-dependent binding to various isolated glycoconjugates. Infect Immun 1999; 67:6309-13. [PMID: 10569742 PMCID: PMC97034 DOI: 10.1128/iai.67.12.6309-6313.1999] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Helicobacter pylori has been shown to agglutinate erythrocytes in a sialic acid-dependent manner. However, very few studies have examined relevant target cells in the human stomach. Neutrophils are required for the onset of gastritis, and the inflammatory reaction may be induced on contact between bacteria and neutrophils. In the present work, glycolipids and glycoproteins were isolated from neutrophils and were studied for binding by overlay with radiolabeled bacteria on thin-layer chromatograms and on membrane blots. There was a complex pattern of binding bands. The only practical binding activity found was sialic acid dependent, since treatment of glycoconjugates with neuraminidase or mild periodate eliminated binding. As shown before for binding to erythrocytes and other glycoconjugates, bacterial cells grown on agar bound to many glycoconjugates, while growth in broth resulted in bacteria that would bind only to polyglycosylceramides, which are highly heterogeneous and branched poly-N-acetyllactosamine-containing glycolipids. Approximately seven positive bands were found for glycoproteins, and the traditional ganglioside fraction showed a complex, slow-moving interval with very strong sialic-acid-dependent binding, probably explained by Fuc substitutions on GlcNAc.
Collapse
Affiliation(s)
- H Miller-Podraza
- Institute of Medical Biochemistry, Göteborg University, SE 405 30 Göteborg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Takematsu H, Diaz S, Stoddart A, Zhang Y, Varki A. Lysosomal and cytosolic sialic acid 9-O-acetylesterase activities can Be encoded by one gene via differential usage of a signal peptide-encoding exon at the N terminus. J Biol Chem 1999; 274:25623-31. [PMID: 10464298 DOI: 10.1074/jbc.274.36.25623] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
9-O-Acetylation is one of the most common modifications of sialic acids, and it can affect several sialic acid-mediated recognition phenomena. We previously reported a cDNA encoding a lysosomal sialic acid-specific 9-O-acetylesterase, which traverses the endoplasmic reticulum-Golgi pathway and localizes primarily to lysosomes and endosomes. In this study, we report a variant cDNA derived from the same gene that contains a different 5' region. This cDNA has a putative open reading frame lacking a signal peptide-encoding sequence and is thus a candidate for the previously described cytosolic sialic acid 9-O-acetylesterase activity. Epitope-tagged constructs confirm that the new sequence causes the protein product to be targeted to the cytosol and has esterase activity. Using reverse transcription-polymerase chain reaction to distinguish the two forms of message, we show that although the lysosomal sialic acid-specific 9-O-acetylesterase message has a widespread pattern of expression in adult mouse tissues, this cytosolic sialic acid 9-O-acetylesterase form has a rather restricted distribution, with the strongest expression in the liver, ovary, and brain. Using a polyclonal antibody directed against the 69-amino acid region common to both proteins, we confirmed that the expression of glycosylated and nonglycosylated polypeptides occurred in appropriate subcellular fractions of normal mouse tissues. Rodent liver polypeptides reacting to the antibody also co-purify with previously described lysosomal sialic acid esterase activity and at least a portion of the cytosolic activity. Thus, two sialic acid 9-O-acetylesterases found in very different subcellular compartments can be encoded by a single gene by differential usage of a signal peptide-encoding exon at the N terminus. The 5'-rapid amplification of cDNA ends results and the differences in tissue-specific expression suggest that expression of these two products may be differentially regulated by independent promoters.
Collapse
Affiliation(s)
- H Takematsu
- Glycobiology Research and Training Center, Divisions of Hematology-Oncology and Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|
23
|
Karlsson H, Johansson L, Miller-Podraza H, Karlsson KA. Fingerprinting of large oligosaccharides linked to ceramide by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: highly heterogeneous polyglycosylceramides of human erythrocytes with receptor activity for Helicobacter pylori. Glycobiology 1999; 9:765-78. [PMID: 10406842 DOI: 10.1093/glycob/9.8.765] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Highly microheterogeneous polyglycosylceramides (PGCs) of human erythrocytes with an average composition of about 25 monosaccharides linked to ceramide were analyzed by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS). The human gastric pathogen Helicobacter pylori was earlier shown to bind this glycosphingolipid mixture by thin-layer chromatogram binding assay. The receptor activity was present along the whole nonresolved chromatographic interval. Mass spectra of intact PGCs were compared with corresponding spectra of oligosaccharides enzymatically released from the ceramides. Two subfractions of PGCs containing less than one and more than one sialic acid residue per molecule were used. MALDI-MS spectra were recorded in both linear and reflectron mode with the accuracies of </=0.08% and </=0.02%, respectively, which allowed determination of the constituent parts of the detected ions in form of ceramide and number of hexoses, N-acetylhexosamines, fucoses and sialic acids. Molecular species were found based on ceramide with mainly sphingosine and fatty acids 24:0 and 24:1 (with less amounts of 22:0), and with a total number of monosaccharides ranging from 11 (neutral, m/z = 2605 for [M+Na](+)) to 41 (one sialic acid, m/z = 8057 for [M-H](-)). The saccharide composition obtained supported a successively extended and branched N -acetyllactosamine core with substitutions of fucoses (0 up to 8) and sialic acid (0 to 1). The reliable molecular analysis of large oligosaccharides linked to ceramide using this approach will be of great help for the further structure analysis in order to define the epitope for the sialic acid-dependent binding by the bacterium.
Collapse
Affiliation(s)
- H Karlsson
- Institute of Medical Biochemistry, Göteborg University, P.O. Box 440, SE-405 30 Göteborg, Sweden
| | | | | | | |
Collapse
|
24
|
Johansson L, Johansson P, Miller-Podraza H. Detection by the lectins from Maackia amurensis and Sambucus nigra of 3- and 6-linked sialic acid in gangliosides with neolacto chains separated on thin-layer chromatograms and blotted to PVDF membranes. Anal Biochem 1999; 267:239-41. [PMID: 9918679 DOI: 10.1006/abio.1998.2982] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- L Johansson
- Institute of Medical Biochemistry, Göteborg University, Göteborg, SE-405 30,
| | | | | |
Collapse
|
25
|
Johansson L, Miller-Podraza H. Analysis of 3- and 6-linked sialic acids in mixtures of gangliosides using blotting to polyvinylidene difluoride membranes, binding assays, and various mass spectrometry techniques with application to recognition by Helicobacter pylori. Anal Biochem 1998; 265:260-8. [PMID: 9882401 DOI: 10.1006/abio.1998.2920] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A convenient approach to analyze 3- and 6-linked sialic acids in mixtures of biologically active gangliosides was developed. The procedure was adapted to work on small amounts of material and included parallel tests, which allowed direct analysis of structure and activity. The initial step in the procedure was separation of a mixture of gangliosides by thin-layer chromatography (TLC) and blotting to a polyvinylidene difluoride membrane. The gangliosides were then analyzed (a) by direct desorption from the membrane and fast atom bombardment mass spectrometry (FAB MS), (b) by membrane-binding assay using the NeuAcalpha3- and NeuAcalpha6-specific lectins from Maackia amurensis and Sambucus nigra, respectively, and (c) by TLC binding assay with radiolabeled bacteria. All experiments were performed on a mixture of gangliosides from human leucocytes, which contained species with affinity for the human gastric pathogen Helicobacter pylori. The procedure was used with good results for gangliosides with up to seven sugars per ceramide. A three-sugar ganglioside was identified as GM3 with ceramides composed of sphingosine (d18:1) and 20:0, h20:0, and 24:0 fatty acids. The sequences of four bands in the five-sugar region were consistent with sialylparagloboside (NeuAcalpha3/6Galbeta4GlcNAcbeta3Galbeta4GlcbetaCer). The ceramides were composed of d18:1 and 24:1 fatty acid in the first and third bands, and d18:1 and 16:0 fatty acid in the second and fourth bands from the top. The sialic acid was shown to be 3-linked in the upper two bands and 6-linked in the lower two bands. The same distribution of sialic acid and ceramides but the sequence elongated with one N-acetyllactosamine unit was observed in the less resolved interval containing seven-sugar glycosphingolipids. The direct comparison of binding of lectins and radiolabeled bacteria showed that H. pylori recognized 3-linked sialic acid only. These results were supported by a novel technique of analysis of the sialic acid linkage position by trifluoroacetolysis and gas chromatography/MS. Direct membrane/FAB MS was ineffective for species migrating below the seven-sugar region on the TLC. In this case, the membranes were instead cut in bands and the gangliosides extracted by methanol before analysis by FAB MS.
Collapse
Affiliation(s)
- L Johansson
- Institute of Medical Biochemistry, Göteborg University, Göteborg, SE-405 30, Sweden.
| | | |
Collapse
|