1
|
Carrillo-Aké AG, Delgado-Domínguez J, Cervantes-Sarabia RB, Ruiz-Remigio A, Zamora-Chimal J, Salaiza-Suazo N, Torres-Tapia LW, Peraza-Sánchez SR, Becker I. Topical Application of Oxylipin (3 S)-16,17-Didehydrofalcarinol in Mice Infected with Leishmania mexicana: A Possible Treatment for Localized Cutaneous Leishmaniasis. JOURNAL OF NATURAL PRODUCTS 2025; 88:959-966. [PMID: 40179055 PMCID: PMC12038837 DOI: 10.1021/acs.jnatprod.4c01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/05/2025]
Abstract
Pentavalent antimonials are the first-line treatment for localized cutaneous leishmaniasis. However, they have disadvantages such as their elevated toxicity, high costs, and parenteral application. Plant-derived compounds may be an alternative treatment against this disease. Previous in vitro studies have shown that (3S)-16,17-didehydrofalcarinol (1), a polyacetylene oxylipin isolated from Tridax procumbens, is active against Leishmania mexicana. We have analyzed the mechanism of action of compound 1, evaluating reactive oxygen species production, apoptosis of L. mexicana, cytotoxicity in murine macrophages, and its efficacy in controlling the disease progression and parasite load when applied topically in C57BL/6 mice infected with L. mexicana. Results show that parasites incubated with 1.6 μM compound 1 significantly increased reactive oxygen species production (p ≤ 0.05). The percentage of apoptosis also increased significantly (p ≤ 0.05) and did not affect the viability of macrophages. The application of the topical formulations with 0.5% and 0.75% compound 1 for 7 weeks reduced disease progression and parasite load. We demonstrate that compound 1 generates the death of L. mexicana by apoptosis through reactive oxygen species production. We conclude that compound 1 can be used a possible alternative treatment for localized cutaneous leishmaniasis, enabling a less painful and more accessible therapy.
Collapse
Affiliation(s)
- Ana G. Carrillo-Aké
- Unidad
de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Hospital General de México
Dr. Balmis 148, Ciudad de México 06720, Mexico
| | - José Delgado-Domínguez
- Unidad
de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Hospital General de México
Dr. Balmis 148, Ciudad de México 06720, Mexico
| | - Rocely Buenaventura Cervantes-Sarabia
- Unidad
de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Hospital General de México
Dr. Balmis 148, Ciudad de México 06720, Mexico
| | - Adriana Ruiz-Remigio
- Unidad
de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Hospital General de México
Dr. Balmis 148, Ciudad de México 06720, Mexico
| | - Jaime Zamora-Chimal
- Unidad
de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Hospital General de México
Dr. Balmis 148, Ciudad de México 06720, Mexico
| | - Norma Salaiza-Suazo
- Unidad
de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Hospital General de México
Dr. Balmis 148, Ciudad de México 06720, Mexico
| | - Luis W. Torres-Tapia
- Centro
de Investigación Científica de Yucatán (CICY),
Unidad de Biotecnología, Calle 43 #130, Col. Chuburná de Hidalgo, Mérida, Yucatán 97205, Mexico
| | - Sergio R. Peraza-Sánchez
- Centro
de Investigación Científica de Yucatán (CICY),
Unidad de Biotecnología, Calle 43 #130, Col. Chuburná de Hidalgo, Mérida, Yucatán 97205, Mexico
| | - Ingeborg Becker
- Unidad
de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Hospital General de México
Dr. Balmis 148, Ciudad de México 06720, Mexico
| |
Collapse
|
2
|
Carneiro MB, Peters NC. The Paradox of a Phagosomal Lifestyle: How Innate Host Cell- Leishmania amazonensis Interactions Lead to a Progressive Chronic Disease. Front Immunol 2021; 12:728848. [PMID: 34557194 PMCID: PMC8452962 DOI: 10.3389/fimmu.2021.728848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Intracellular phagosomal pathogens represent a formidable challenge for innate immune cells, as, paradoxically, these phagocytic cells can act as both host cells that support pathogen replication and, when properly activated, are the critical cells that mediate pathogen elimination. Infection by parasites of the Leishmania genus provides an excellent model organism to investigate this complex host-pathogen interaction. In this review we focus on the dynamics of Leishmania amazonensis infection and the host innate immune response, including the impact of the adaptive immune response on phagocytic host cell recruitment and activation. L. amazonensis infection represents an important public health problem in South America where, distinct from other Leishmania parasites, it has been associated with all three clinical forms of leishmaniasis in humans: cutaneous, muco-cutaneous and visceral. Experimental observations demonstrate that most experimental mouse strains are susceptible to L. amazonensis infection, including the C57BL/6 mouse, which is resistant to other species such as Leishmania major, Leishmania braziliensis and Leishmania infantum. In general, the CD4+ T helper (Th)1/Th2 paradigm does not sufficiently explain the progressive chronic disease established by L. amazonensis, as strong cell-mediated Th1 immunity, or a lack of Th2 immunity, does not provide protection as would be predicted. Recent findings in which the balance between Th1/Th2 immunity was found to influence permissive host cell availability via recruitment of inflammatory monocytes has also added to the complexity of the Th1/Th2 paradigm. In this review we discuss the roles played by innate cells starting from parasite recognition through to priming of the adaptive immune response. We highlight the relative importance of neutrophils, monocytes, dendritic cells and resident macrophages for the establishment and progressive nature of disease following L. amazonensis infection.
Collapse
Affiliation(s)
- Matheus B Carneiro
- Snyder Institute for Chronic Diseases, Departments of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine and Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Nathan C Peters
- Snyder Institute for Chronic Diseases, Departments of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine and Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Osero BO, Aruleba RT, Brombacher F, Hurdayal R. Unravelling the unsolved paradoxes of cytokine families in host resistance and susceptibility to Leishmania infection. Cytokine X 2020; 2:100043. [PMID: 33415318 PMCID: PMC7773805 DOI: 10.1016/j.cytox.2020.100043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 12/29/2022] Open
Abstract
Leishmaniasis is a neglected disease caused by protozoan parasites of the genus Leishmania. Successful clearance of Leishmania relies on a robust human immune response and various cytokines have been implicated in resistance and susceptibility to Leishmania infection. Accordingly, various immunotherapeutic approaches involving cytokines and cytokine receptors are being considered as novel avenues of treatment given the limited efficacy of current anti-leishmanial drugs. These approaches target canonical T helper (Th)1/Type 1 cytokines as intended mediators of host-protection to infection whilst concomitantly suppressing Th2/Type 2 cytokines and their anticipated disease-promoting roles. However, the use of cytokine and cytokine receptor gene-deficient mice over the years has challenged this simplistic view of Th1/Type 1-mediated resistance and Th2/Type 2-mediated susceptibility. Indeed, contribution to susceptibility vs resistance is only a partial consequence to cytokine action as the overall response is multi-faceted due to the pleiotropic, redundant, antagonistic and synergistic action of cytokines and interactions with immune cells in the diseased state. Notably, while the responses of certain cytokines are selectively host-protective or characteristic disease-enhancers, some ligands exert a response depending on the parasite-species initiating infection. Paradoxically, others play dual or contradictory roles in different Leishmania immunopathologies. Hence, cytokines in disease is an unsolved paradox and a comprehensive knowledge of cytokine interplay is important to guide the development of novel immunotherapeutics against leishmaniasis. In this review, we characterize various cytokine families in persistence and clearance of the Leishmania parasite and particularly elucidate unsolved cytokine puzzles in leishmaniasis based on information acquired from "gain of knowledge by loss of function" studies in cytokine and cytokine receptor gene-deficient mice.
Collapse
Affiliation(s)
- Bernard Ong'ondo Osero
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), South African Medical Research Council (SAMRC) on Immunology of Infectious Diseases, University of Cape Town, Observatory 7925, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Observatory 7925, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Raphael Taiwo Aruleba
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, Cape Town, South Africa
| | - Frank Brombacher
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), South African Medical Research Council (SAMRC) on Immunology of Infectious Diseases, University of Cape Town, Observatory 7925, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Observatory 7925, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Ramona Hurdayal
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), South African Medical Research Council (SAMRC) on Immunology of Infectious Diseases, University of Cape Town, Observatory 7925, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Observatory 7925, Cape Town, South Africa
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Observatory 7925, Cape Town, South Africa
| |
Collapse
|
4
|
Krayem I, Lipoldová M. Role of host genetics and cytokines in Leishmania infection. Cytokine 2020; 147:155244. [PMID: 33059974 DOI: 10.1016/j.cyto.2020.155244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/20/2020] [Accepted: 08/08/2020] [Indexed: 12/29/2022]
Abstract
Cytokines and chemokines are important regulators of innate and specific responses in leishmaniasis, a disease that currently affects 12 million people. We overviewed the current information about influences of genetically engineered mouse models of cytokine and chemokine on leishmaniasis. We found that genetic background of the host, parasite species and sub-strain, as well as experimental design often modify effects of genetically engineered cytokine genes. Next we analyzed genes and QTLs (quantitative trait loci) that control response to Leishmania species in mouse in order to establish relationship between genetic control of cytokine expression and organ pathology. These studies revealed a network-like complexity of the combined effects of the multiple functionally diverse QTLs and their individual specificity. Genetic control of organ pathology and systemic immune response overlap only partially. Some QTLs control both organ pathology and systemic immune response, but the effects of genes and loci with the strongest impact on disease are cytokine-independent, whereas several loci modify cytokines levels in serum without influencing organ pathology. Understanding this genetic control might be important in development of vaccines designed to stimulate certain cytokine spectrum.
Collapse
Affiliation(s)
- Imtissal Krayem
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Marie Lipoldová
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; Department of Natural Sciences, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sítná 3105, 272 01 Kladno, Czech Republic.
| |
Collapse
|
5
|
Suman SS, Kumar A, Singh AK, Amit A, Topno RK, Pandey K, Das VNR, Das P, Ali V, Bimal S. Dendritic cell engineered cTXN as new vaccine prospect against L. donovani. Cytokine 2020; 145:155208. [PMID: 32736961 DOI: 10.1016/j.cyto.2020.155208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 10/23/2022]
Abstract
Dendritic cells (DCs), as antigen-presenting cells, can reportedly be infected withLeishmaniaparasites and hence provide a better option to trigger T-cell primary immune responses and immunological memory. We consistently primed DCs during culture with purified recombinant cytosolic tryparedoxin (rcTXN) and then evaluated the vaccine prospect of presentation of rcTXN against VL in BALB/c mice. We reported earlier the immunogenic properties of cTXN antigen derived fromL. donovani when anti-cTXN antibody was detected in the sera of kala-azar patients. It was observed that cTXN antigen, when used as an immunogen with murine DCs acting as a vehicle, was able to induce complete protection against VL in an infected group of immunized mice. This vaccination triggered splenic macrophages to produce more IL-12 and GM-CSF, and restricted IL-10 release to a minimum in an immunized group of infected animals. Concomitant changes in T-cell responses against cTXN antigen were also noticed, which increased the release of protective cytokine-like IFN-γ under the influence of NF-κβ in the indicated vaccinated group of animals. All cTXN-DCs-vaccinated BALB/c mice survived during the experimental period of 120 days. The results obtained in our study suggest that DCs primed with cTXN can be used as a vaccine prospect for the control of visceral leishmaniasis.
Collapse
Affiliation(s)
- Shashi S Suman
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Akhilesh Kumar
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Ashish K Singh
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Ajay Amit
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) 495009, India
| | - R K Topno
- Department of Epidemiology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - K Pandey
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - V N R Das
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - P Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Vahab Ali
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Sanjiva Bimal
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India.
| |
Collapse
|
6
|
Jamal F, Singh MK, Hansa J, Pushpanjali, Ahmad G, Dikhit MR, Umar MS, Bimal S, Das P, Mujeeb AA, Singh SK, Zubair S, Owais M. Leishmania-Specific Promiscuous Membrane Protein Tubulin Folding Cofactor D Divulges Th 1/Th 2 Polarization in the Host via ERK -1/2 and p38 MAPK Signaling Cascade. Front Immunol 2020; 11:817. [PMID: 32582140 PMCID: PMC7280453 DOI: 10.3389/fimmu.2020.00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/09/2020] [Indexed: 11/24/2022] Open
Abstract
Visceral leishmaniasis (VL)-related mortality and morbidity imposes a great deal of health concern across the globe. The existing anti-leishmanial drug regimen generally fails to eliminate newly emerging resistant isolates of this dreadful parasite. In such circumstances, the development of a prophylactic strategy to impart protection against the disease is likely to take center stage. In order to develop a promising prophylactic vaccine, it is desirable to identify an adequately potential vaccine candidate. In silico analysis of Leishmania tubulin folding cofactor D protein predicted its potential to activate both B- and T-cell repertoires. Furthermore, the ELISA employing anti-peptide27 (a segment of tubulin folding cofactor D) antibody revealed its proficiency in VL diagnosis and treatment monitoring. The peptide27 and its cocktail with another Leishmania peptide (peptide23) prompted the up-regulation of pro-inflammatory cytokines, such as IFN-γ, TNF-α, IL-2, IL-17, etc., and the down-regulation of immune-regulatory cytokines, such as IL-10, in the immunized BALB/c mice. Coherent to the consequence of peptide-specific humoral immune response, peptide cocktail-based immunization ensued in the predominant amplification of pathogen-specific IgG2a over the IgG1 isotype, up-regulated proliferation of T lymphocytes, and enhanced production of nitric oxide, reactive oxygen species, etc. We also established that the peptide cocktail modulated host MAPK signaling to favor the amplification of Th1-dominated immune response in the host. The peptide cocktail mediated the activation of the host immune armory, which was eventually translated into a significant decline in parasitic load in the visceral organs of experimental animals challenged with Leishmania donovani.
Collapse
Affiliation(s)
- Fauzia Jamal
- Interdesciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Manish K Singh
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Jagadish Hansa
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Pushpanjali
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Ghufran Ahmad
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Manas Ranjan Dikhit
- Department of Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Mohd Saad Umar
- Interdesciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Sanjiva Bimal
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Pradeep Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Anzar Abdul Mujeeb
- Interdesciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Shubhankar K Singh
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Swaleha Zubair
- Department of Computer Science, Aligarh Muslim University, Aligarh, India
| | - Mohammad Owais
- Interdesciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
7
|
Carneiro MB, Lopes ME, Hohman LS, Romano A, David BA, Kratofil R, Kubes P, Workentine ML, Campos AC, Vieira LQ, Peters NC. Th1-Th2 Cross-Regulation Controls Early Leishmania Infection in the Skin by Modulating the Size of the Permissive Monocytic Host Cell Reservoir. Cell Host Microbe 2020; 27:752-768.e7. [PMID: 32298657 DOI: 10.1016/j.chom.2020.03.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/13/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022]
Abstract
The impact of T helper (Th) 1 versus Th2 immunity on intracellular infections is attributed to classical versus alternative activation of macrophages leading to resistance or susceptibility. However, observations in multiple infectious settings demonstrate deficiencies in mediators of Th1-Th2 immunity, which have paradoxical or no impact. We report that prior to influencing activation, Th1/Th2 immunity first controls the size of the permissive host cell reservoir. During early Leishmania infection of the skin, IFN-γ- or STAT6-mediated changes in phagocyte activation were counteracted by changes in IFN-γ-mediated recruitment of permissive CCR2+ monocytes. Monocytes were required for early parasite expansion and acquired an alternatively activated phenotype despite the Th1 dermal environment required for their recruitment. Surprisingly, STAT6 did not enhance intracellular parasite proliferation, but rather modulated the size and permissiveness of the monocytic host cell reservoir via regulation of IFN-γ and IL-10. These observations expand our understanding of the Th1-Th2 paradigm during infection.
Collapse
Affiliation(s)
- Matheus Batista Carneiro
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Mateus Eustáquio Lopes
- Departamento de Bioquímica e Imunologia - ICB - Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270901, Brazil
| | - Leah S Hohman
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Audrey Romano
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bruna Araujo David
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Rachel Kratofil
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Paul Kubes
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Matthew L Workentine
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Alexandre C Campos
- Departamento de Bioquímica e Imunologia - ICB - Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270901, Brazil
| | - Leda Quercia Vieira
- Departamento de Bioquímica e Imunologia - ICB - Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270901, Brazil
| | - Nathan C Peters
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada.
| |
Collapse
|
8
|
Differential immune response modulation in early Leishmania amazonensis infection of BALB/c and C57BL/6 macrophages based on transcriptome profiles. Sci Rep 2019; 9:19841. [PMID: 31882833 PMCID: PMC6934472 DOI: 10.1038/s41598-019-56305-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 12/10/2019] [Indexed: 12/26/2022] Open
Abstract
The fate of Leishmania infection can be strongly influenced by the host genetic background. In this work, we describe gene expression modulation of the immune system based on dual global transcriptome profiles of bone marrow-derived macrophages (BMDMs) from BALB/c and C57BL/6 mice infected with Leishmania amazonensis. A total of 12,641 host transcripts were identified according to the alignment to the Mus musculus genome. Differentially expressed genes (DEGs) profiling revealed a differential modulation of the basal genetic background between the two hosts independent of L. amazonensis infection. In addition, in response to early L. amazonensis infection, 10 genes were modulated in infected BALB/c vs. non-infected BALB/c macrophages; and 127 genes were modulated in infected C57BL/6 vs. non-infected C57BL/6 macrophages. These modulated genes appeared to be related to the main immune response processes, such as recognition, antigen presentation, costimulation and proliferation. The distinct gene expression was correlated with the susceptibility and resistance to infection of each host. Furthermore, upon comparing the DEGs in BMDMs vs. peritoneal macrophages, we observed no differences in the gene expression patterns of Jun, Fcgr1 and Il1b, suggesting a similar activation trends of transcription factor binding, recognition and phagocytosis, as well as the proinflammatory cytokine production in response to early L. amazonensis infection. Analysis of the DEG profile of the parasite revealed only one DEG among the 8,282 transcripts, indicating that parasite gene expression in early infection does not depend on the host genetic background.
Collapse
|
9
|
Salgado CL, Dias EL, Stringari LL, Covre LP, Dietze R, Lima Pereira FE, de Matos Guedes HL, Rossi-Bergmann B, Gomes DCO. Pam3CSK4 adjuvant given intranasally boosts anti-Leishmania immunogenicity but not protective immune responses conferred by LaAg vaccine against visceral leishmaniasis. Microbes Infect 2019; 21:328-335. [PMID: 30817996 DOI: 10.1016/j.micinf.2019.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/17/2019] [Accepted: 02/19/2019] [Indexed: 12/29/2022]
Abstract
The use of adjuvants in vaccine formulations is a well-established practice to improve immunogenicity and protective immunity against diseases. Previously, we have demonstrated the feasibility of intranasal vaccination with the antigen of killed Leishmania amazonensis promastigotes (LaAg) against experimental leishmaniasis. In this work, we sought to optimize the immunogenic effect and protective immunity against murine visceral leishmaniasis conferred by intranasal delivery of LaAg in combination with a synthetic TLR1/TLR2 agonist (Pam3CSK4). Intranasal vaccination with LaAg/PAM did not show toxicity or adverse effects, induced the increase of delayed-type hypersensitivity response and the production of inflammatory cytokines after parasite antigen recall. However, mice vaccinated with LaAg/PAM and challenged with Leishmania infantum presented significant reduction of parasite burden in both liver and spleen, similar to those vaccinated with LaAg. Although LaAg/PAM intranasal vaccination had induced higher frequencies of specific CD4+ and CD8+ T cells and increased levels of IgG2a antibody isotype in serum, both LaAg and LaAg/PAM groups presented similar levels of IL-4 and IFN-y and decreased production of IL-10 when compared to controls. Our results provide the first evidence of the feasibility of intranasal immunization with antigens of killed Leishmania in association with a TLR agonist, which may be explored for developing an effective and alternative strategy for vaccination against visceral leishmaniasis.
Collapse
Affiliation(s)
- Caio Loureiro Salgado
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo - UFES, Vitória, Brazil
| | - Emmanoel Loss Dias
- Núcleo de Núcleo de Biotecnologia, Universidade Federal do Espírito Santo - UFES, Vitória, Brazil
| | | | - Luciana Polaco Covre
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo - UFES, Vitória, Brazil
| | - Reynaldo Dietze
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo - UFES, Vitória, Brazil; Global Health and Tropical Medicine, Instituto de Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | | | - Herbet Leonel de Matos Guedes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Núcleo Multidisciplinar de Pesquisa UFRJ, Xerém em Biologia (NUMPEX-BIO), Polo Avançado de Xerém, Universidade Federal do Rio de Janeiro, Duque de Caxias, Rio de Janeiro, Brazil; Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Brazil
| | - Bartira Rossi-Bergmann
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Claudio Oliveira Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo - UFES, Vitória, Brazil; Núcleo de Núcleo de Biotecnologia, Universidade Federal do Espírito Santo - UFES, Vitória, Brazil.
| |
Collapse
|
10
|
Rostamian M, Niknam HM. Leishmania tropica: What we know from its experimental models. ADVANCES IN PARASITOLOGY 2018; 104:1-38. [PMID: 31030767 DOI: 10.1016/bs.apar.2018.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Leishmania tropica causes different forms of leishmaniasis in many parts of the world. Animal models can help to clarify the issues of pathology and immune response in L. tropica infections and can be applied to the control, prevention and treatment of the disease. The aim of this article is to summarize published data related to experimental models of this parasite, presenting an overview of the subject. We also present in brief the epidemiology, transmission and human manifestation of L. tropica infection. Mice, rats and hamsters have been used for experimental models of L. tropica infection. Main findings of the published studies show that: (1) Hamsters are the best animal model for L. tropica infection, with the drawback of being outbred hence not suitable for many studies. (2) L. tropica infection causes a non-ulcerative and chronic pathology as cutaneous form in mice and usually visceral form in hamsters. (3) L. tropica infection in mice results in a weaker immune response in comparison to Leishmania major. (4) While the Th1 responses are evoked against L. tropica, Th2 responses do not explain the outcomes of this infection, and IL-10 and TGF-β are two main suppressive cytokines. (5) The host genotype affects the immune response and disease outcome of L. tropica infection and the dose, strain, routes of inoculation, and sex of the host are among the factors affecting disease outcome of this species.
Collapse
Affiliation(s)
- Mosayeb Rostamian
- Nosocomial Infections Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamid M Niknam
- Immunology Department, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
11
|
Gonzaga WFKM, Geraldo MM, Vivanco BC, Popi AF, Mariano M, Batista WL, Xander P. Evaluation of Experimental Infection with L. ( L.) Amazonensis in X-Linked Immunodeficient Mice. J Parasitol 2017; 103:708-717. [PMID: 28783468 DOI: 10.1645/16-145] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
B-1 cells are a subtype of B cells with peculiar characteristics. These cells are distinct from B-2 lymphocytes in their morphology, ontogeny, tissue distribution, and phenotypic functional features. B-1 cells can participate in the immune response in several ways, for example, by being recruited to inflammatory foci, producing large amounts of IL-10 cytokine, and differentiating into IgM-secreting cells or phagocytes. Nevertheless, the role of B-1 cells in the pathogenesis of experimental leishmaniasis has not been fully elucidated. Here we evaluated the role of B-1 cells in Leishmania ( L.) amazonensis infection using X-linked immunodeficient (XID) mice that possess a mutation in Bruton's tyrosine kinase (Btk) that leads to a reduced number of B-1 cells. The course of infection and the corresponding immune response were analyzed in infected mice. XID mice showed an increase in parasite number in paws, lymph nodes, and spleen compared to BALB/c infected controls. Infected XID mice had higher IL-10 levels and lower anti- Leishmania IgM. The adoptive transfer of peritoneal B-1 cells into XID mice restored peritoneal B-1 cells and parasite burden in the footpad in a pattern similar to that observed in the BALB/c controls at 10 wk. Our results demonstrate the higher susceptibility of XID mice to infection with L. ( L.) amazonensis compared to controls. In addition, we show that the presence of B-1 cells contributes to improved animal resistance to parasites, suggesting that these cells are involved in the control of cutaneous infection caused by L. ( L.) amazonensis.
Collapse
Affiliation(s)
| | | | - Bruno Camolese Vivanco
- * Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Campus São Paulo, Rua Botucatu, 862, 4° andar, 04023-062, São Paulo, Brazil
| | - Ana Flavia Popi
- * Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Campus São Paulo, Rua Botucatu, 862, 4° andar, 04023-062, São Paulo, Brazil
| | - Mario Mariano
- * Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Campus São Paulo, Rua Botucatu, 862, 4° andar, 04023-062, São Paulo, Brazil
| | - Wagner Luiz Batista
- * Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Campus São Paulo, Rua Botucatu, 862, 4° andar, 04023-062, São Paulo, Brazil
| | | |
Collapse
|
12
|
Figueiredo AB, Souza-Testasicca MC, Mineo TWP, Afonso LCC. Leishmania amazonensis-Induced cAMP Triggered by Adenosine A 2B Receptor Is Important to Inhibit Dendritic Cell Activation and Evade Immune Response in Infected Mice. Front Immunol 2017; 8:849. [PMID: 28791011 PMCID: PMC5524897 DOI: 10.3389/fimmu.2017.00849] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/05/2017] [Indexed: 12/20/2022] Open
Abstract
Differently from others Leishmania species, infection by the protozoan parasite L. amazonensis is associated with a lack of antigen-specific T-cell responses. Dendritic cells (DC) are essential for the innate immune response and for directing the differentiation of T-helper lymphocytes. Previously, we showed that L. amazonensis infection impairs DC activation through the activation of adenosine A2B receptor, and here, we evaluated the intracellular events triggered by this receptor in infected cells. To this aim, bone marrow-derived DC from C57BL/6J mice were infected with metacyclic promastigotes of L. amazonensis. Our results show, for the first time, that L. amazonensis increases the production of cAMP and the phosphorylation of extracellular signal-regulated protein kinases 1/2 (ERK1/2) in infected DC by a mechanism dependent on the A2B receptor. Furthermore, L. amazonensis impairs CD40 expression and IL-12 production by DC, and the inhibition of adenylate cyclase, phosphoinositide 3-kinase (PI3K), and ERK1/2 prevent these effects. The increase of ERK1/2 phosphorylation and the inhibition of DC activation by L. amazonensis are independent of protein kinase A (PKA). In addition, C57BL/6J mice were inoculated in the ears with metacyclic promastigotes, in the presence of PSB1115, an A2B receptor antagonist. PSB1115 treatment increases the percentage of CD40+ DC on ears and draining lymph nodes. Furthermore, this treatment reduces lesion size and tissue parasitism. Lymph node cells from treated mice produce higher levels of IFN-γ than control mice, without altering the production of IL-10. In conclusion, we suggest a new pathway used by the parasite (A2B receptor → cAMP → PI3K → ERK1/2) to suppress DC activation, which may contribute to the decrease of IFN-γ production following by the deficiency in immune response characteristic of L. amazonensis infection.
Collapse
Affiliation(s)
- Amanda Braga Figueiredo
- Laboratório de Imunoparasitologia, ICEB/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Míriam Conceição Souza-Testasicca
- Laboratório de Imunoparasitologia, ICEB/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Brazil.,Coordenadoria da Área de Ciências Biológicas, Instituto Federal de Minas Gerais, Campus Ouro Preto, Ouro Preto, Brazil
| | - Tiago Wilson Patriarca Mineo
- Laboratório de Imunoparasitologia "Dr. Mario Endsfeldz Camargo", ICBIM, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Luís Carlos Crocco Afonso
- Laboratório de Imunoparasitologia, ICEB/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
13
|
Dikhit MR, Kumar A, Amit A, Dehury B, Nathsharma YP, Ansari MY, Ali V, Topno RK, Das V, Pandey K, Sahoo GC, Bimal S, Das P. Mining the Proteome of Leishmania donovani for the Development of Novel MHC Class I Restricted Epitope for the Control of Visceral Leishmaniasis. J Cell Biochem 2017; 119:378-391. [PMID: 28585770 DOI: 10.1002/jcb.26190] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/05/2017] [Indexed: 12/26/2022]
Abstract
Although, the precise host defence mechanism(s) is not completely understood, T cell-mediated immune responses is believed to play a pivotal role in controlling parasite infection. Here we target the stage dependent over expressed gene. Here, the consensus based computational approach was adopted for the screening of potential major histocompatibility complex class I restricted epitopes. Based on the computational analysis and previously published report, a set 19 antigenic proteins derived from Leishmania donovani were screened for further characterization as vaccine candidates. A total of 49 epitopes were predicted, which revealed a comprehensive binding affinity to the 40 different MHC class I supertypes. Based on the population coverage and HLA cross presentation, nine highly promiscuous epitopes such as LTYDDVWTV (P1), FLFPQRTAL(P2), FLFSNGAVV (P3), YIYNFGIRV (P4), YMTAAFAAL (P5), KLLRPFAPL (P6), FMLGWIVTI (P7), SLFERNKRV (P8), and SVWNRIFTL (P9) which have either a high or an intermediate TAP binding affinity were selected for further analysis. Theoretical population coverage analysis of polytope vaccine (P1-P9) revealed more than 92% population. Stimulation with the cocktail of peptide revealed a proliferative CD8+ T cell response and increased IFN-γ production. An upregulated NF-κB activity is thought to be play a pivotal role in T cell proliferation against the selected peptide. The Th1-type cytokine profile (presence of IFN-γ and absence of IL-10) suggests the potentiality of the cocktail of epitope as a subunit vaccine against leishmaniasis. However, the efficiency of these epitopes to trigger other Th1 cytokines and chemokines in a humanized mice model could explore its plausibility as a vaccine candidate. J. Cell. Biochem. 119: 378-391, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Manas R Dikhit
- Department of Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | -
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Akhilesh Kumar
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Ajay Amit
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Budheswar Dehury
- Department of Bioinformatics, ICMR Regional Medical research Centre, Bhubaneswar, Odisha 751016, India
| | - Yangya Prasad Nathsharma
- Department of Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Mohammad Yousuf Ansari
- Department of Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Vahab Ali
- Departmentof Biochemistry, Rajendra Memorial Research Institute of Medical, Patna 800007, India
| | - Roshan Kamal Topno
- Department of Epidemiology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Vnr Das
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Krishna Pandey
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Ganesh Chandra Sahoo
- Department of Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Sanjiva Bimal
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Pradeep Das
- Department of Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India.,Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| |
Collapse
|
14
|
Abstract
The leishmaniases are diseases caused by pathogenic protozoan parasites of the genus Leishmania. Infections are initiated when a sand fly vector inoculates Leishmania parasites into the skin of a mammalian host. Leishmania causes a spectrum of inflammatory cutaneous disease manifestations. The type of cutaneous pathology is determined in part by the infecting Leishmania species, but also by a combination of inflammatory and anti-inflammatory host immune response factors resulting in different clinical outcomes. This review discusses the distinct cutaneous syndromes described in humans, and current knowledge of the inflammatory responses associated with divergent cutaneous pathologic responses to different Leishmania species. The contribution of key hematopoietic cells in experimental cutaneous leishmaniasis in mouse models are also reviewed and compared with those observed during human infection. We hypothesize that local skin events influence the ensuing adaptive immune response to Leishmania spp. infections, and that the balance between inflammatory and regulatory factors induced by infection are critical for determining cutaneous pathology and outcome of infection.
Collapse
|
15
|
Immunization with Leishmania donovani protein disulfide isomerase DNA construct induces Th1 and Th17 dependent immune response and protection against experimental visceral leishmaniasis in Balb/c mice. Mol Immunol 2017; 82:104-113. [DOI: 10.1016/j.molimm.2016.12.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 11/20/2022]
|
16
|
Duarte MC, Lage DP, Martins VT, Costa LE, Carvalho AMRS, Ludolf F, Santos TTDO, Vale DL, Roatt BM, Menezes-Souza D, Fernandes AP, Tavares CAP, Coelho EAF. A vaccine composed of a hypothetical protein and the eukaryotic initiation factor 5a from Leishmania braziliensis cross-protection against Leishmania amazonensis infection. Immunobiology 2017; 222:251-260. [PMID: 27693018 DOI: 10.1016/j.imbio.2016.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 12/18/2022]
Abstract
In the present study, two proteins cloned from Leishmania braziliensis species, a hypothetical protein (LbHyp) and the eukaryotic initiation factor 5a (EiF5a), were evaluated to protect BALB/c mice against L. amazonensis infection. The animals were immunized with the antigens, either separately or in combination, using saponin as an immune adjuvant in both cases. Spleen cells from vaccinated and later infected mice produced significantly higher levels of protein and parasite-specific IFN-γ, IL-12, and GM-CSF, in addition to low levels of IL-4 and IL-10. Evaluating the parasite load by means of a limiting dilution technique and quantitative Real-Time PCR, vaccinated animals presented significant reductions in the parasite load in both infected tissues and organs, as well as lower footpad swelling, when compared to the control (saline and saponin) groups. The best results regarding the protection of the animals were achieved when the combined vaccine was administered into the animals. Protection was associated with an IFN-γ production against parasite antigens, which was mediated by both CD4+ and CD8+ T cells and correlated with antileishmanial nitrite production. In conclusion, data from the present study show that this polyprotein vaccine, which combines two L. braziliensis proteins, can induce protection against L. amazonensis infection.
Collapse
Affiliation(s)
- Mariana Costa Duarte
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Pampulha, Belo Horizonte, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela Pagliara Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Vívian Tamietti Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Lourena Emanuele Costa
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Maria Ravena Severino Carvalho
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Ludolf
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Thaís Teodoro de Oliveira Santos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Danniele Luciana Vale
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno Mendes Roatt
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Menezes-Souza
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Pampulha, Belo Horizonte, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Alberto Pereira Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo Antonio Ferraz Coelho
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Pampulha, Belo Horizonte, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
17
|
Chaudhary R, Amit A, Kumar A, Dikhit MR, Pandey K, Das P, Bimal S. A New Vaccine Strategy of Dendritic Cell Presented Kinetoplastid Membrane (KMP-11) as Immunogen for Control against Experimental Visceral Leishmaniasis. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/mri.2017.63003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Pratti JES, Ramos TD, Pereira JC, da Fonseca-Martins AM, Maciel-Oliveira D, Oliveira-Silva G, de Mello MF, Chaves SP, Gomes DCO, Diaz BL, Rossi-Bergmann B, de Matos Guedes HL. Efficacy of intranasal LaAg vaccine against Leishmania amazonensis infection in partially resistant C57Bl/6 mice. Parasit Vectors 2016; 9:534. [PMID: 27716449 PMCID: PMC5052793 DOI: 10.1186/s13071-016-1822-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 09/29/2016] [Indexed: 12/12/2022] Open
Abstract
Background We have previously demonstrated that intranasal vaccination of highly susceptible BALB/c mice with whole Leishmania amazonensis antigens (LaAg) leads to protection against murine cutaneous leishmaniasis. Here, we evaluate the response of partially resistant C57BL/6 mice to vaccination as a more representative experimental model of human cutaneous leishmaniasis. Methods C57BL/6 mice from different animal facilities were infected with L. amazonensis (Josefa strain) to establish the profile of infection. Intranasal vaccination was performed before the infection challenge with two doses of 10 μg of LaAg alone or associated with the adjuvant ADDAVAX® by instillation in the nostrils. The lesion progression was measured with a dial caliper and the parasite load by limited dilution assay in the acute and chronic phases of infection. Cytokines were quantified by ELISA in the homogenates of infected footpads. Results C57BL/6 mice from different animal facilities presented the same L. amazonensis infection profile, displaying a progressive acute phase followed by a controlled chronic phase. Parasites cultured in M199 and Schneider’s media were equally infective. Intranasal vaccination with LaAg led to milder acute and chronic phases of the disease. The mechanism of protection was associated with increased production of IFN-gamma in the infected tissue as measured in the acute phase. Association with the ADDAVAX® adjuvant did not improve the efficacy of intranasal LaAg vaccination. Rather, ADDAVAX® reduced vaccination efficacy. Conclusion This study demonstrates that the efficacy of adjuvant-free intranasal vaccination with LaAg is extendable to the more resistant C57Bl/6 mouse model of infection with L. amazonensis, and is thus not exclusive to the susceptible BALB/c model. These results imply that mucosal immunomodulation by LaAg leads to peripheral protection irrespective of the genetic background of the host. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1822-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juliana Elena Silveira Pratti
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tadeu Diniz Ramos
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Joyce Carvalho Pereira
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Diogo Maciel-Oliveira
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gabriel Oliveira-Silva
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mirian França de Mello
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Suzana Passos Chaves
- Laboratório Integrado de Imunoparasitologia, Campus Macaé-Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Daniel Claudio Oliveira Gomes
- Laboratório de Imunobiologia, Núcleo de Doenças Infecciosas/Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Bruno Lourenço Diaz
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bartira Rossi-Bergmann
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Herbert Leonel de Matos Guedes
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,Núcleo Multidisciplinar de Pesquisa UFRJ-Xerém em Biologia (NUMPEX-BIO), Polo Avançado de Xerém-Universidade Federal do Rio de Janeiro, Duque de Caxias, Rio de Janeiro, Brazil.
| |
Collapse
|
19
|
Figueiredo ABD, Souza-Testasicca MC, Afonso LCC. Purinergic signaling and infection by Leishmania: A new approach to evasion of the immune response. Biomed J 2016; 39:244-250. [PMID: 27793266 PMCID: PMC6139394 DOI: 10.1016/j.bj.2016.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/18/2016] [Accepted: 08/02/2016] [Indexed: 12/20/2022] Open
Abstract
Infection by protozoan parasites is part of the most common Tropical Neglected Diseases. In the case of leishmaniasis, several millions of people are at risk of contracting the disease. In spite of innumerous studies that elucidated the immune response capable of killing the parasite, the understanding of the evasion mechanisms utilized by the parasite to survive within the very cell responsible for its destruction is still incomplete. In this review, we offer a new approach to the control of the immune response against the parasite. The ability of the parasite to modulate the levels of extracellular ATP and adenosine either by directly acting on the levels of these molecules or by inducing the expression of CD39 and CD73 on the infected cell may influence the magnitude of the immune response against the parasite contributing to its growth and survival.
Collapse
Affiliation(s)
- Amanda Braga de Figueiredo
- Immunoparasitology Laboratory, Department of Biological Sciences, ICEB/NUPEB, Federal University of Ouro Preto, Brazil
| | | | - Luis Carlos Crocco Afonso
- Immunoparasitology Laboratory, Department of Biological Sciences, ICEB/NUPEB, Federal University of Ouro Preto, Brazil.
| |
Collapse
|
20
|
Deslyper G, Colgan TJ, Cooper AJR, Holland CV, Carolan JC. A Proteomic Investigation of Hepatic Resistance to Ascaris in a Murine Model. PLoS Negl Trop Dis 2016; 10:e0004837. [PMID: 27490109 PMCID: PMC4974003 DOI: 10.1371/journal.pntd.0004837] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/20/2016] [Indexed: 12/15/2022] Open
Abstract
The helminth Ascaris causes ascariasis in both humans and pigs. Humans, especially children, experience significant morbidity including respiratory complications, growth deficits and intestinal obstruction. Given that 800 million people worldwide are infected by Ascaris, this represents a significant global public health concern. The severity of the symptoms and associated morbidity are related to the parasite burden and not all hosts are infected equally. While the pathology of the disease has been extensively examined, our understanding of the molecular mechanisms underlying resistance and susceptibility to this nematode infection is poor. In order to investigate host differences associated with heavy and light parasite burden, an experimental murine model was developed utilising Ascaris-susceptible and -resistant mice strains, C57BL/6J and CBA/Ca, respectively, which experience differential burdens of migratory Ascaris larvae in the host lungs. Previous studies identified the liver as the site where this difference in susceptibility occurs. Using a label free quantitative proteomic approach, we analysed the hepatic proteomes of day four post infection C57BL/6J and CBA/Ca mice with and without Ascaris infection to identify proteins changes potentially linked to both resistance and susceptibility amongst the two strains, respectively. Over 3000 proteins were identified in total and clear intrinsic differences were elucidated between the two strains. These included a higher abundance of mitochondrial proteins, particularly those associated with the oxidative phosphorylation pathway and reactive oxygen species (ROS) production in the relatively resistant CBA/Ca mice. We hypothesise that the increased ROS levels associated with higher levels of mitochondrial activity results in a highly oxidative cellular environment that has a dramatic effect on the nematode's ability to successfully sustain a parasitic association with its resistant host. Under infection, both strains had increased abundances in proteins associated with the oxidative phosphorylation pathway, as well as the tricarboxylic acid cycle, with respect to their controls, indicating a general stress response to Ascaris infection. Despite the early stage of infection, some immune-associated proteins were identified to be differentially abundant, providing a novel insight into the host response to Ascaris. In general, the susceptible C57BL/6J mice displayed higher abundances in immune-associated proteins, most likely signifying a more active nematode cohort with respect to their CBA/Ca counterparts. The complement component C8a and S100 proteins, S100a8 and S100a9, were highly differentially abundant in both infected strains, signifying a potential innate immune response and the importance of the complement pathway in defence against macroparasite infection. In addition, the signatures of an early adaptive immune response were observed through the presence of proteins, such as plastin-2 and dipeptidyl peptidase 1. A marked decrease in proteins associated with translation was also observed in both C57BL/6J and CBA/Ca mice under infection, indicative of either a general response to Ascaris or a modulatory effect by the nematode itself. Our research provides novel insights into the in vivo host-Ascaris relationship on the molecular level and provides new research perspectives in the development of Ascaris control and treatment strategies.
Collapse
Affiliation(s)
- Gwendoline Deslyper
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Thomas J. Colgan
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Andrew J. R. Cooper
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Celia V. Holland
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - James C. Carolan
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| |
Collapse
|
21
|
De Luca PM, Macedo ABB. Cutaneous Leishmaniasis Vaccination: A Matter of Quality. Front Immunol 2016; 7:151. [PMID: 27148270 PMCID: PMC4838622 DOI: 10.3389/fimmu.2016.00151] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/07/2016] [Indexed: 11/25/2022] Open
Abstract
There have been exhaustive efforts to develop an efficient vaccine against leishmaniasis. Factors like host and parasite genetic characteristics, virulence, epidemiological scenarios, and, mainly, diverse immune responses triggered by Leishmania species make the achievement of this aim a complex task. It is already clear that the induction of a Th1, pro-inflammatory response, is important in the protection against Leishmania infection. However, many questions must still be answered to fully understand Leishmania immunopathology, especially regarding Leishmania-specific Th1 response induction, regulation, and persistence. A large number of Leishmania antigens able to induce pro-inflammatory response have been selected so far, but none of them demonstrated efficiency in protection assays. A possible explanation is that CD4 T cells display marked heterogeneity at a single-cell level especially regarding the production of Th1-defining cytokines and multifunctionality. It has been established in the literature that Th1 cells undergo a differentiation process, which can generate cells with diverse phenotypes and survival capabilities. Despite that, only a few studies evaluate this heterogenic response and the amount of multifunctional CD4 T cells induced by Leishmania vaccine candidates, missing what can be a crucial point in defining a correlate of protection after vaccination. Moreover, most of the knowledge involving the development of cutaneous leishmaniasis (CL) vaccines comes from the mouse model of infection with Leishmania major, which cannot be fully applied to New World Leishmaniasis. For this reason, the immune response triggered by infection with New World Leishmania species, as well as vaccine candidates, need further studies. In this review, we will reinforce the importance of evaluating the quality of immune response against Leishmania, using a multiparametric analysis in order to understand better this complex host-parasite interaction, discussing the differences in the responses triggered by different New World Leishmania species, as well as the impact on the development of an effective vaccine against CL.
Collapse
Affiliation(s)
- Paula Mello De Luca
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, FIOCRUZ , Rio de Janeiro , Brazil
| | - Amanda Beatriz Barreto Macedo
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine , Salt Lake City, UT , USA
| |
Collapse
|
22
|
Impact of reactive oxygen species (ROS) on the control of parasite loads and inflammation in Leishmania amazonensis infection. Parasit Vectors 2016; 9:193. [PMID: 27056545 PMCID: PMC4825088 DOI: 10.1186/s13071-016-1472-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/23/2016] [Indexed: 01/22/2023] Open
Abstract
Background Reactive oxygen species (ROS) protect the host against a large number of pathogenic microorganisms. ROS have different effects on parasites of the genus Leishmania: some parasites are susceptible to their action, while others seem to be resistant. The role of ROS in L. amazonensis infection in vivo has not been addressed to date. Methods In this study, C57BL/6 wild-type mice (WT) and mice genetically deficient in ROS production by phagocytes (gp91phox−/−) were infected with metacyclic promastigotes of L. amazonensis to address the effect of ROS in parasite control. Inflammatory cytokines, parasite loads and myeloperoxidase (MPO) activity were evaluated. In parallel, in vitro infection of peritoneal macrophages was assessed to determine parasite killing, cytokine, NO and ROS production. Results In vitro results show induction of ROS production by infected peritoneal macrophages, but no effect in parasite killing. Also, ROS do not seem to be important to parasite killing in vivo, but they control lesion sizes at early stages of infection. IFN-γ, TNF-α and IL-10 production did not differ among mouse strains. Myeloperoxidase assay showed augmented neutrophils influx 6 h and 72 h post - infection in gp91phox−/− mice, indicating a larger inflammatory response in gp91phox−/− even at early time points. At later time points, neutrophil numbers in lesions correlated with lesion size: larger lesions in gp91phox−/− at earlier times of infection corresponded to larger neutrophil infiltrates, while larger lesions in WT mice at the later points of infection also displayed larger numbers of neutrophils. Conclusion ROS do not seem to be important in L. amazonensis killing, but they regulate the inflammatory response probably by controlling neutrophils numbers in lesions.
Collapse
|
23
|
Carneiro MBH, Lopes MEDM, Vaz LG, Sousa LMA, dos Santos LM, de Souza CC, Campos ACDA, Gomes DA, Gonçalves R, Tafuri WL, Vieira LQ. IFN-γ-Dependent Recruitment of CD4(+) T Cells and Macrophages Contributes to Pathogenesis During Leishmania amazonensis Infection. J Interferon Cytokine Res 2015; 35:935-47. [PMID: 26401717 PMCID: PMC4683564 DOI: 10.1089/jir.2015.0043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/09/2015] [Indexed: 12/21/2022] Open
Abstract
Interferon gamma (IFN-γ) is a key factor in the protection of hosts against intracellular parasites. This cytokine induces parasite killing through nitric oxide and reactive oxygen species production by phagocytes. Surprisingly, during Leishmania amazonensis infection, IFN-γ plays controversial roles. During in vitro infections, IFN-γ induces the proliferation of the amastigote forms of L. amazonensis. However, this cytokine is not essential at the beginning of an in vivo infection. It is not clear why IFN-γ does not mediate protection during the early stages of infection. Thus, the aim of our study was to investigate the role of IFN-γ during L. amazonensis infection. We infected IFN-γ(-/-) mice in the footpad and followed the development of leishmaniasis in these mice compared with that in WT mice. CD4(+) T lymphocytes and macrophages migrated earlier to the site of infection in the WT mice, and the earlier migration of these 2 cell types was associated with lesion development and parasite growth, respectively. These differences in the infiltrate populations were explained by the increased expression of chemokines in the lesions of the WT mice. Thus, we propose that IFN-γ plays a dual role during L. amazonensis infection; it is an important inducer of effector mechanisms, particularly through inducible nitric oxide synthase expression, and conversely, it is a mediator of inflammation and pathogenesis through the induction of the expression of chemokines. Our data provided evidence for a pathogenic effect of IFN-γ production during leishmaniasis that was previously unknown.
Collapse
Affiliation(s)
- Matheus Batista Heitor Carneiro
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mateus Eustáquio de Moura Lopes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leonardo Gomes Vaz
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Louisa Maria Andrade Sousa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Liliane Martins dos Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carolina Carvalho de Souza
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Carolina de Angelis Campos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Dawidson Assis Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Gonçalves
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Wagner Luiz Tafuri
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leda Quercia Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
24
|
Bockenstedt MM, Boggiatto PM, Jones DE. Characterization of the B cell response to Leishmania infection after anti-CD20 B cell depletion. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:6192-6202. [PMID: 26261496 PMCID: PMC4525830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/25/2015] [Indexed: 06/04/2023]
Abstract
Anti-CD20 depletion therapies targeting B cells are commonly used in malignant B cell disease and autoimmune diseases. There are concerns about the ability of B cells to respond to infectious diseases acquired either before or after B cell depletion. There is evidence that the B cell response to existing or acquired viral infections is compromised during treatment, as well as the antibody response to vaccination. Our laboratory has an experimental system using co-infection of C3H mice with both Leishmania major and Leishmania amazonensis that suggests that the B cell response is important to healing infected mice. We tested if anti-CD20 treatment would completely restrict the B cell response to these intracellular pathogens. Infected mice that received anti-CD20 B cell depletion therapy had a significant decrease in CD19(+) cells within their lymph nodes and spleens. However, splenic B cells were detected in depleted mice and an antigen-specific antibody response was produced. These results indicate that an antigen-specific B cell response towards intracellular pathogens can be generated during anti-CD20 depletion therapy.
Collapse
Affiliation(s)
- Marie M Bockenstedt
- Department of Veterinary Pathology and Preventive Medicine, Iowa State University1600 S 16th St, Ames, IA 50011, USA
| | - Paola M Boggiatto
- Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University1600 S 16th St, Ames, IA 50011, USA
| | - Douglas E Jones
- Department of Veterinary Pathology and Preventive Medicine, Iowa State University1600 S 16th St, Ames, IA 50011, USA
| |
Collapse
|
25
|
E-NTPDase (ecto-nucleoside triphosphate diphosphohydrolase) of Leishmania amazonensis inhibits macrophage activation. Microbes Infect 2015; 17:295-303. [DOI: 10.1016/j.micinf.2014.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 12/24/2022]
|
26
|
Das P, Amit A, Singh SK, Chaudhary R, Dikhit MR, yadav A, Pandey K, Das VNR, Sundram S, Das P, Bimal S. Leishmania donovani phosphoproteins pp41 and pp29 re-establishes host protective immune response in visceral leishmaniasis. Parasitol Int 2015; 64:18-25. [DOI: 10.1016/j.parint.2014.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 08/07/2014] [Accepted: 08/30/2014] [Indexed: 10/24/2022]
|
27
|
Pirdel L, Zavaran Hosseini A, Rasouli M. Immune response in susceptible BALB/c mice immunized with DNA encoding Lipophosphoglycan 3 ofLeishmania infantum. Parasite Immunol 2014; 36:700-7. [DOI: 10.1111/pim.12147] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 09/16/2014] [Indexed: 01/10/2023]
Affiliation(s)
- L. Pirdel
- Department of Immunology; Faculty of Medical Sciences; Tarbiat Modares University; Tehran Iran
| | - A. Zavaran Hosseini
- Department of Immunology; Faculty of Medical Sciences; Tarbiat Modares University; Tehran Iran
| | - M. Rasouli
- Department of Immunology; Clinical Microbiology Research Centre; Shiraz University of Medical Sciences; Shiraz Iran
| |
Collapse
|
28
|
Gibson-Corley KN, Bockenstedt MM, Li H, Boggiatto PM, Phanse Y, Petersen CA, Bellaire BH, Jones DE. An in vitro model of antibody-enhanced killing of the intracellular parasite Leishmania amazonensis. PLoS One 2014; 9:e106426. [PMID: 25191842 PMCID: PMC4156363 DOI: 10.1371/journal.pone.0106426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/30/2014] [Indexed: 11/21/2022] Open
Abstract
Footpad infection of C3HeB/FeJ mice with Leishmania amazonensis leads to chronic lesions accompanied by large parasite loads. Co-infecting these animals with L. major leads to induction of an effective Th1 immune response that can resolve these lesions. This cross-protection can be recapitulated in vitro by using immune cells from L. major-infected animals to effectively activate L. amazonensis-infected macrophages to kill the parasite. We have shown previously that the B cell population and their IgG2a antibodies are required for effective cross-protection. Here we demonstrate that, in contrast to L. major, killing L. amazonensis parasites is dependent upon FcRγ common-chain and NADPH oxidase-generated superoxide from infected macrophages. Superoxide production coincided with killing of L. amazonensis at five days post-activation, suggesting that opsonization of the parasites was not a likely mechanism of the antibody response. Therefore we tested the hypothesis that non-specific immune complexes could provide a mechanism of FcRγ common-chain/NADPH oxidase dependent parasite killing. Macrophage activation in response to soluble IgG2a immune complexes, IFN-γ and parasite antigen was effective in significantly reducing the percentage of macrophages infected with L. amazonensis. These results define a host protection mechanism effective during Leishmania infection and demonstrate for the first time a novel means by which IgG antibodies can enhance killing of an intracellular pathogen.
Collapse
Affiliation(s)
- Katherine N. Gibson-Corley
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Marie M. Bockenstedt
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Huijuan Li
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Paola M. Boggiatto
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Yashdeep Phanse
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Christine A. Petersen
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Bryan H. Bellaire
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Douglas E. Jones
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
29
|
Souza-Silva F, Pereira BAS, Finkelstein LC, Zucolotto V, Caffarena ER, Alves CR. Dynamic identification of H2 epitopes from Leishmania (Leishmania) amazonensis cysteine proteinase B with potential immune activity during murine infection. J Mol Recognit 2014; 27:98-105. [PMID: 24436127 DOI: 10.1002/jmr.2334] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 10/09/2013] [Accepted: 10/12/2013] [Indexed: 11/11/2022]
Abstract
Peptides from the COOH-terminal extension of cysteine proteinase B from Leishmania (Leishmania) amazonensis (cyspep) can modulate immune responses in vertebrate hosts. With this hypothesis as base, we used the online analysis tool SYFPEITHI to predict seven epitopes from this region with potential to bind H2 proteins. We performed proliferation tests and quantified reactive T lymphocytes applying a cytometry analysis, using samples from draining lymph node of lesions from L. (L.) amazonensis-infected mice. To define reactivity of T cells, we used complexes of DimerX (H2 D(b):Ig and H2 L(d):Ig) and the putative epitopes. Additionally, we applied surface plasmon resonance to verify real time interactions between the putative epitopes and DimerX proteins. Five peptides induced blastogenesis in BALB/c cells, while only two presented the same property in C57BL/6 mouse cells. In addition, our data indicate the existence of CD8+ T lymphocyte populations able to recognize each tested peptide in both murine strains. We observed an overlapping of results between the peptides that induced lymphocyte proliferation and those capable of binding to the DimerX in the surface plasmon resonance assays thus indicating that using these recombinant proteins in biosensing analyses is a promising tool to study real time molecular interactions in the context of major histocompatibility complex epitopes. The data gathered in this study reinforce the hypothesis that cyspep-derived peptides are important factors in the murine host infection by L. (L.) amazonensis.
Collapse
Affiliation(s)
- Franklin Souza-Silva
- Laboratório de Biologia Molecular e Doenças Endêmicas, IOC-Fundação Oswaldo Cruz, Rio de Janeiro, CEP, 21040-360, Brazil
| | | | | | | | | | | |
Collapse
|
30
|
Carneiro MBH, de Andrade e Sousa LM, Vaz LG, Dos Santos LM, Vilela L, de Souza CC, Gonçalves R, Tafuri WL, Afonso LCC, Côrtes DF, Vieira LQ. Short-term protection conferred by Leishvacin® against experimental Leishmania amazonensis infection in C57BL/6 mice. Parasitol Int 2014; 63:826-34. [PMID: 25102355 DOI: 10.1016/j.parint.2014.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/09/2014] [Accepted: 07/25/2014] [Indexed: 01/21/2023]
Abstract
To date, there is no vaccine available against human leishmaniasis. Although some vaccination protocols can induce immunity in murine models, they fail to induce protection in humans. The reasons for that remain unclear. The aim of the present study was to characterize the changes in the pattern of the immune response during subcutaneous vaccination with Leishvacin® in mice. We also investigated whether IFN-γ and nitric oxide synthase are indispensable for the protection elicited by the vaccine. C57BL/6 WT vaccinated mice showed smaller lesions and fewer numbers of parasites in footpads until 8 weeks post-infection. Up to this time, they produced higher levels of IFN-γ, IL-2, IL-4, IL-17A and IL-10 and higher specific antibody response than control non-vaccinated mice. Moreover, we showed that IFN-γ, most likely by induction of iNOS expression, is essential for immunity. However, after 12 weeks of infection, we observed loss of difference in lesion size and parasite burden between the groups. Loss of resistance was associated with the disappearance of differences in cytokine patterns between vaccinated and control mice, but not of antibody response, which remained different until a later time of infection. The reversal of resistance to L. amazonensis could not be explained by upregulation of regulatory cytokines. Our data point to a subversion of the host immune response by L. amazonensis even when a protective response was previously induced.
Collapse
Affiliation(s)
- Matheus Batista Heitor Carneiro
- Laboratório de Gnotobiologia e Imunologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Louisa Maria de Andrade e Sousa
- Laboratório de Gnotobiologia e Imunologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leonardo Gomes Vaz
- Laboratório de Gnotobiologia e Imunologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Liliane Martins Dos Santos
- Laboratório de Gnotobiologia e Imunologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luciano Vilela
- Centro de Pesquisas, Biomm S/A, Montes Claros, MG 39400-307, Brazil
| | - Carolina Carvalho de Souza
- Departamento de Patologia Geral, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minhas Gerais, Brazil
| | - Ricardo Gonçalves
- Departamento de Patologia Geral, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minhas Gerais, Brazil
| | - Wagner Luis Tafuri
- Departamento de Patologia Geral, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minhas Gerais, Brazil
| | | | - Denise Fonseca Côrtes
- Laboratório de Gnotobiologia e Imunologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Departamento de Ciências Biológicas, ICEB/NUPEB, Universidade Federal de Ouro Preto, Brazil
| | - Leda Quercia Vieira
- Laboratório de Gnotobiologia e Imunologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Departamento de Ciências Biológicas, ICEB/NUPEB, Universidade Federal de Ouro Preto, Brazil.
| |
Collapse
|
31
|
Loría-Cervera EN, Andrade-Narváez FJ. Animal models for the study of leishmaniasis immunology. Rev Inst Med Trop Sao Paulo 2014; 56:1-11. [PMID: 24553602 PMCID: PMC4085833 DOI: 10.1590/s0036-46652014000100001] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/28/2013] [Indexed: 12/18/2022] Open
Abstract
Leishmaniasis remains a major public health problem worldwide and is
classified as Category I by the TDR/WHO, mainly due to the absence of control. Many
experimental models like rodents, dogs and monkeys have been developed, each with
specific features, in order to characterize the immune response to
Leishmania species, but none reproduces the pathology observed in
human disease. Conflicting data may arise in part because different parasite strains
or species are being examined, different tissue targets (mice footpad, ear, or base
of tail) are being infected, and different numbers (“low” 1×102 and “high”
1×106) of metacyclic promastigotes have been inoculated. Recently, new
approaches have been proposed to provide more meaningful data regarding the host
response and pathogenesis that parallels human disease. The use of sand fly saliva
and low numbers of parasites in experimental infections has led to mimic natural
transmission and find new molecules and immune mechanisms which should be considered
when designing vaccines and control strategies. Moreover, the use of wild rodents as
experimental models has been proposed as a good alternative for studying the
host-pathogen relationships and for testing candidate vaccines. To date, using
natural reservoirs to study Leishmania infection has been
challenging because immunologic reagents for use in wild rodents are lacking. This
review discusses the principal immunological findings against
Leishmania infection in different animal models highlighting the
importance of using experimental conditions similar to natural transmission and
reservoir species as experimental models to study the immunopathology of the
disease.
Collapse
Affiliation(s)
- Elsy Nalleli Loría-Cervera
- Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", MéridaYucatán, México, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Mérida, Yucatán, México
| | - Fernando José Andrade-Narváez
- Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", MéridaYucatán, México, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Mérida, Yucatán, México
| |
Collapse
|
32
|
Sousa LMA, Carneiro MBH, Resende ME, Martins LS, Dos Santos LM, Vaz LG, Mello PS, Mosser DM, Oliveira MAP, Vieira LQ. Neutrophils have a protective role during early stages of Leishmania amazonensis infection in BALB/c mice. Parasite Immunol 2014; 36:13-31. [PMID: 24102495 DOI: 10.1111/pim.12078] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 08/05/2013] [Indexed: 01/13/2023]
Abstract
Neutrophils are involved in the early stages of immune responses to pathogens. Here, we investigated the role of neutrophils during the establishment of Leishmania amazonensis infection in BALB/c and C57BL/6 mice. First, we showed an accumulation of neutrophils between 6 and 24 h post-infection, followed by a reduction in neutrophil numbers after 72 h. Next, we depleted neutrophils prior to infection using RB6-8C5 or 1A8 mAb. Neutrophil depletion led to faster lesion development, increased parasite numbers and higher arginase activity during the first week of infection in BALB/c mice, but not in C57BL/6 mice. Increased susceptibility was accompanied by augmented levels of anti-L. amazonensis IgG and increased production of IL-10 and IL-17. Because IL-10 is a mediator of susceptibility to Leishmania infection, we blocked IL-10 signalling in neutrophil-depleted mice using anti-IL-10R. Interestingly, inhibition of IL-10 signalling abrogated the increase in parasite loads observed in neutrophil-depleted mice, suggesting that parasite proliferation is at least partially mediated by IL-10. Additionally, we tested the effect of IL-17 in inflammatory macrophages and observed that IL-17 increased arginase activity and favoured parasite growth. Taken together, our data indicate that neutrophils control parasite numbers and limit lesion development during the first week of infection in BALB/c mice.
Collapse
Affiliation(s)
- L M A Sousa
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Boggiatto PM, Martinez PA, Pullikuth A, Jones DE, Bellaire B, Catling A, Petersen C. Targeted extracellular signal-regulated kinase activation mediated by Leishmania amazonensis requires MP1 scaffold. Microbes Infect 2014; 16:328-36. [PMID: 24463270 DOI: 10.1016/j.micinf.2013.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 12/27/2013] [Accepted: 12/30/2013] [Indexed: 10/25/2022]
Abstract
Leishmania amazonensis infection promotes alteration of host cellular signaling and intracellular parasite survival, but specific mechanisms are poorly understood. We previously demonstrated that L. amazonensis infection of dendritic cells (DC) activated extracellular signal-regulated kinase (ERK), an MAP-kinase kinase kinase, leading to altered DC maturation and non-healing cutaneous leishmaniasis. Studies using growth factors and cell lines have shown that targeted, robust, intracellular phosphorylation of ERK1/2 from phagolysosomes required recruitment and association with scaffolding proteins, including p14/MP1 and MORG1, on the surface of late endosomes. Based on the intracellular localization of L. amazonensis within a parasitophorous vacuole with late endosome characteristics, we speculated that scaffolding proteins would be important for intracellular parasite-mediated ERK signaling. Our findings demonstrate that MP1, MORG1, and ERK all co-localized on the surface of parasite-containing LAMP2-positive phagolysosomes. Infection of MEK1 mutant fibroblasts unable to bind MP1 demonstrated dramatically reduced ERK1/2 phosphorylation following L. amazonensis infection but not following positive control EGF treatment. This novel mechanism for localization of intracellular L. amazonensis-mediated ERK1/2 phosphorylation required the endosomal scaffold protein MP1 and localized to L. amazonensis parasitophorous vacuoles. Understanding how L. amazonensis parasites hijack host cell scaffold proteins to modulate signaling cascades provides targets for antiprotozoal drug development.
Collapse
Affiliation(s)
- Paola M Boggiatto
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| | - Pedro A Martinez
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| | - Ashok Pullikuth
- Department of Pharmacology, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Douglas E Jones
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| | - Bryan Bellaire
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| | - Andrew Catling
- Department of Pharmacology, LSU Health Sciences Center, New Orleans, LA 70112, USA; Stanley S. Scott Cancer Center, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Christine Petersen
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA; Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
34
|
Lezama-Dávila CM, Pan L, Isaac-Márquez AP, Terrazas C, Oghumu S, Isaac-Márquez R, Pech-Dzib MY, Barbi J, Calomeni E, Parinandi N, Kinghorn AD, Satoskar AR. Pentalinon andrieuxii root extract is effective in the topical treatment of cutaneous leishmaniasis caused by Leishmania mexicana. Phytother Res 2013; 28:909-16. [PMID: 24347110 DOI: 10.1002/ptr.5079] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 09/24/2013] [Accepted: 10/07/2013] [Indexed: 02/03/2023]
Abstract
Cutaneous leishmaniasis (CL) manifests as localized skin lesions, which lead to significant tissue destruction and disfigurement. In the Yucatan Peninsula, Mayan traditional healers use Pentalinon andrieuxii Muell.-Arg. (Apocynaceae) roots for the topical treatment of CL. Here, we studied the effect of P. andrieuxii root hexane extract (PARE) on the parasites and host cells in vitro and examined its efficacy in the topical treatment of CL caused by Leishmania mexicana. PARE exhibited potent antiparasitic activity in vitro against promastigotes as well as amastigotes residing in macrophages. Electron microscopy of PARE-treated parasites revealed direct membrane damage. PARE also activated nuclear factor kappaB and enhanced interferon-γ receptor and MHC class II expression and TNF-α production in macrophages. In addition, PARE induced production of the Th1 promoting cytokine IL-12 in dendritic cells as well as enhanced expression of the co-stimulatory molecules CD40, CD80, and CD86. In vivo studies showed that L. mexicana-infected mice treated by topical application of PARE resulted in the significant reduction in lesion size and parasite burden compared to controls. These findings indicate that PARE could be used as an alternative therapy for the topical treatment of CL.
Collapse
Affiliation(s)
- Claudio M Lezama-Dávila
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Charret KS, Lagrota-Cândido J, Carvalho-Pinto CE, Hottz CF, Lira MLF, Rodrigues RF, Gomes AO, Bernardino AM, Canto-Cavalheiro MM, Leon LL, Amaral VF. The histopathological and immunological pattern of CBA mice infected with Leishmania amazonensis after treatment with pyrazole carbohydrazide derivatives. Exp Parasitol 2013; 133:201-10. [DOI: 10.1016/j.exppara.2012.11.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 11/23/2012] [Accepted: 11/24/2012] [Indexed: 11/15/2022]
|
36
|
Okwor I, Mou Z, Liu D, Uzonna J. Protective immunity and vaccination against cutaneous leishmaniasis. Front Immunol 2012; 3:128. [PMID: 22661975 PMCID: PMC3361738 DOI: 10.3389/fimmu.2012.00128] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 05/03/2012] [Indexed: 11/21/2022] Open
Abstract
Although a great deal of knowledge has been gained from studies on the immunobiology of leishmaniasis, there is still no universally acceptable, safe, and effective vaccine against the disease. This strongly suggests that we still do not completely understand the factors that control and/or regulate the development and sustenance of anti-Leishmania immunity, particularly those associated with secondary (memory) immunity. Such an understanding is critically important for designing safe, effective, and universally acceptable vaccine against the disease. Here we review the literature on the correlate of protective anti-Leishmania immunity and vaccination strategies against leishmaniasis with a bias emphasis on experimental cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Ifeoma Okwor
- Department of Medical Microbiology, University of Manitoba Winnipeg, MB, Canada
| | | | | | | |
Collapse
|
37
|
Macedo ABB, Sánchez-Arcila JC, Schubach AO, Mendonça SCF, Marins-Dos-Santos A, de Fatima Madeira M, Gagini T, Pimentel MIF, De Luca PM. Multifunctional CD4⁺ T cells in patients with American cutaneous leishmaniasis. Clin Exp Immunol 2012; 167:505-13. [PMID: 22288594 DOI: 10.1111/j.1365-2249.2011.04536.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Leishmaniasis is a group of important parasitic diseases affecting millions worldwide. To understand more clearly the quality of T helper type 1 (Th1) response stimulated after Leishmania infection, we applied a multiparametric flow cytometry protocol to evaluate multifunctional T cells induced by crude antigen extracts obtained from promastigotes of Leishmania braziliensis (LbAg) and Leishmania amazonensis (LaAg) in peripheral blood mononuclear cells from healed cutaneous leishmaniasis patients. Although no significant difference was detected in the percentage of total interferon (IFN)-γ-producing CD4(+) T cells induced by both antigens, multiparametric flow cytometry analysis revealed clear differences in the quality of Th1 responses. LbAg induced an important proportion of multifunctional CD4(+) T cells (28% of the total Th1 response evaluated), whereas LaAg induced predominantly single-positive cells (68%), and 57% of those were IFN-γ single-positives. Multifunctional CD4(+) T cells showed the highest mean fluorescence intensity (MFI) for the three Th1 cytokines assessed and MFIs for IFN-γ and interleukin-2 from those cells stimulated with LbAg were significantly higher than those obtained after LaAg stimulation. These major differences observed in the generation of multifunctional CD4(+) T cells suggest that the quality of the Th1 response induced by L. amazonensis antigens can be involved in the mechanisms responsible for the high susceptibility observed in L. amazonensis-infected individuals. Ultimately, our results call attention to the importance of studying a Th1 response regarding its quality, not just its magnitude, and indicate that this kind of evaluation might help understanding of the complex and diverse immunopathogenesis of American tegumentary leishmaniasis.
Collapse
Affiliation(s)
- A B B Macedo
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gibson-Corley KN, Boggiatto PM, Bockenstedt MM, Petersen CA, Waldschmidt TJ, Jones DE. Promotion of a functional B cell germinal center response after Leishmania species co-infection is associated with lesion resolution. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2009-17. [PMID: 22429963 DOI: 10.1016/j.ajpath.2012.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 01/12/2012] [Accepted: 01/24/2012] [Indexed: 12/23/2022]
Abstract
Co-infection of C3HeB/FeJ (C3H) mice with both Leishmania major and Leishmania amazonensis leads to a healed footpad lesion, whereas co-infection of C57BL/6 (B6) mice leads to non-healing lesions. This inability to heal corresponds to a deficiency in B cell stimulation of the macrophage-mediated killing of L. amazonensis in vitro and a less robust antibody response. The mechanism that leads to healing of these lesions is not completely known, although our studies implicate the B cell response as having an important effector function in killing L. amazonensis. To understand more completely this disparate clinical outcome to the same infection, we analyzed the draining lymph node germinal center B cell response between co-infected C3H and B6 mice. There were more germinal center B cells, more antibody isotype-switched germinal center B cells, more memory B cells, and more antigen-specific antibody-producing cells in co-infected C3H mice compared to B6 mice as early as 2 weeks postinfection. Interleukin (IL)-21 production and IL-21 receptor expression in both mouse strains, however, were similar at 2 weeks, suggesting that the difference in the anti-Leishmania response in these mouse strains may be due to differences in T follicular cell commitment or intrinsic B cell differences. These data support the idea that functional B cells are important for healing L. amazonensis in this infectious disease model.
Collapse
Affiliation(s)
- Katherine N Gibson-Corley
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Lacerda DI, Cysne-Finkelstein L, Nunes MP, De-Luca PM, Genestra MDS, Leon LLP, Berrêdo-Pinho M, Mendonça-Lima L, Matos DCDS, Medeiros MA, Mendonça SCFD. Kinetoplastid membrane protein-11 exacerbates infection with Leishmania amazonensis in murine macrophages. Mem Inst Oswaldo Cruz 2012; 107:238-45. [DOI: 10.1590/s0074-02762012000200014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 12/07/2011] [Indexed: 11/22/2022] Open
|
40
|
Probst CM, Silva RA, Menezes JPB, Almeida TF, Gomes IN, Dallabona AC, Ozaki LS, Buck GA, Pavoni DP, Krieger MA, Veras PST. A comparison of two distinct murine macrophage gene expression profiles in response to Leishmania amazonensis infection. BMC Microbiol 2012; 12:22. [PMID: 22321871 PMCID: PMC3313874 DOI: 10.1186/1471-2180-12-22] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 02/09/2012] [Indexed: 12/17/2022] Open
Abstract
Background The experimental murine model of leishmaniasis has been widely used to characterize the immune response against Leishmania. CBA mice develop severe lesions, while C57BL/6 present small chronic lesions under L. amazonensis infection. Employing a transcriptomic approach combined with biological network analysis, the gene expression profiles of C57BL/6 and CBA macrophages, before and after L. amazonensis infection in vitro, were compared. These strains were selected due to their different degrees of susceptibility to this parasite. Results The genes expressed by C57BL/6 and CBA macrophages, before and after infection, differ greatly, both with respect to absolute number as well as cell function. Uninfected C57BL/6 macrophages express genes involved in the deactivation pathway of macrophages at lower levels, while genes related to the activation of the host immune inflammatory response, including apoptosis and phagocytosis, have elevated expression levels. Several genes that participate in the apoptosis process were also observed to be up-regulated in C57BL/6 macrophages infected with L. amazonensis, which is very likely related to the capacity of these cells to control parasite infection. By contrast, genes involved in lipid metabolism were found to be up-regulated in CBA macrophages in response to infection, which supports the notion that L. amazonensis probably modulates parasitophorous vacuoles in order to survive and multiply in host cells. Conclusion The transcriptomic profiles of C57BL/6 macrophages, before and after infection, were shown to be involved in the macrophage pathway of activation, which may aid in the control of L. amazonensis infection, in contrast to the profiles of CBA cells.
Collapse
Affiliation(s)
- Christian M Probst
- Laboratório de Genômica Funcional, Instituto Carlos Chagas, ICC-FIOCRUZ,Paraná, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Subversion of Immunity by Leishmania amazonensis Parasites: Possible Role of Phosphatidylserine as a Main Regulator. J Parasitol Res 2012; 2012:981686. [PMID: 22518276 PMCID: PMC3306939 DOI: 10.1155/2012/981686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/26/2011] [Indexed: 12/18/2022] Open
Abstract
Leishmania amazonensis parasites cause progressive disease in most inbred mouse strains and are associated with the development of diffuse cutaneous leishmaniasis in humans. The poor activation of an effective cellular response is correlated with the ability of these parasites to infect mononuclear phagocytic cells without triggering their activation or actively suppressing innate responses of these cells. Here we discuss the possible role of phosphatidylserine exposure by these parasites as a main regulator of the mechanism underlying subversion of the immune system at different steps during the infection.
Collapse
|
42
|
Felizardo TC, Gaspar-Elsas MI, Lima GM, Abrahamsohn IA. Lack of signaling by IL-4 or by IL-4/IL-13 has more attenuating effects on Leishmania amazonensis dorsal skin – than on footpad-infected mice. Exp Parasitol 2012; 130:48-57. [DOI: 10.1016/j.exppara.2011.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 09/27/2011] [Accepted: 09/30/2011] [Indexed: 10/16/2022]
|
43
|
The Effect of Aqueous Garlic Extract on Interleukin-12 and 10 Levels in Leishmania major (MRHO/IR/75/ER) Infected Macrophages. IRANIAN JOURNAL OF PUBLIC HEALTH 2011; 40:105-11. [PMID: 23113109 PMCID: PMC3481747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 11/19/2011] [Indexed: 11/25/2022]
Abstract
BACKGROUND The aim of the present study was to investigate the immunomodulation effects of aqueous garlic extract (AGE) in the cultured macrophages infected by Leishmania major. METHODS After J774 macrophages proliferation in RPMI1640 and incubation with Leishmania for 72 hours, AGE was added in doses of 9.25, 18.5, 37, 74 and 148 mg/ml for 18, 24 and 48 hours and cell culture supernatants were harvested. The Leishmania infected J774 cells to assess the cell viability was examined using trypan blue and methylthiazol tetrazolium assay (MTT). An enzyme-linked immunosorbent assay (ELISA) was performed on cell culture supernatants for measurement of interleukin IL-10 and IL-12. RESULTS Dose of 37 mg/ml for 48 hours of garlic extract was the most potent dose for activation of amastigotes infected macrophages. In addition, AGE increased the level of IL-12 in Leishmania infected cell lines significantly. CONCLUSIONS AGE treated cell is effective against parasitic pathogens, and AGE induced IL-12 differentially affected the immune response to invading Leishmania parasites.
Collapse
|
44
|
Cortez M, Huynh C, Fernandes MC, Kennedy KA, Aderem A, Andrews NW. Leishmania promotes its own virulence by inducing expression of the host immune inhibitory ligand CD200. Cell Host Microbe 2011; 9:463-71. [PMID: 21669395 PMCID: PMC3118640 DOI: 10.1016/j.chom.2011.04.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 04/01/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
Abstract
Leishmania parasites infect macrophages, cells normally involved in innate defense against pathogens. Leishmania amazonensis and Leishmania major cause severe or mild disease, respectively, consistent with each parasite's ability to survive within activated macrophages. The mechanisms underlying increased virulence of L. amazonensis are mostly unknown. We show that L. amazonensis promotes its own survival by inducing expression of CD200, an immunoregulatory molecule that inhibits macrophage activation. L. amazonensis does not form typical nonhealing lesions in CD200(-/-) mice and cannot replicate in CD200(-/-) macrophages, an effect reversed by exogenous administration of soluble CD200-Fc. The less virulent L. major does not induce CD200 expression and forms small, self-healing lesions in both wild-type and CD200(-/-) mice. Notably, CD200-Fc injection transforms the course of L. major infection to one resembling L. amazonensis, with large, nonhealing lesions. CD200-dependent iNOS inhibition allows parasite growth in macrophages, identifying a mechanism for the increased virulence of L. amazonensis.
Collapse
Affiliation(s)
- Mauro Cortez
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT
| | - Chau Huynh
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT
| | | | | | | | - Norma W. Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
45
|
Xin L, Wanderley JL, Wang Y, Vargas-Inchaustegui DA, Soong L. The magnitude of CD4(+) T-cell activation rather than TCR diversity determines the outcome of Leishmania infection in mice. Parasite Immunol 2011; 33:170-80. [PMID: 21306400 DOI: 10.1111/j.1365-3024.2010.01268.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
CD4(+) T cells play a critical role in determining the disease outcome in murine cutaneous leishmaniasis, and selective usage of T-cell receptor (TCR) is implied in promoting Leishmania major infection. However, little information is available on TCR usage in Leishmania-specific, IFN-γ-producing CD4(+) T cells. In this study, we investigated the TCR diversity and activation of CD4(+) T cells in a nonhealing model associated with L. amazonensis (La) infection and a self-healing model associated with L. braziliensis (Lb) infection. While marked expansion in the absolute number of several subsets was observed in Lb-infected mice, the percentages of TCR Vβ(+) CD4(+) -cell subsets were comparable in draining LN- and lesion-derived T cells in two infection models. We found that multiple TCR Vβ CD4(+) T cells contributed collectively and comparably to IFN-γ production and that the overall levels of IFN-γ production positively correlated with the control of Lb infection. Moreover, pre-infection with Lb parasites provided cross-protection against secondary La infection, owing to an enhanced magnitude of T-cell activation and IFN-γ production. Collectively, this study suggests that the magnitude of CD4(+) T-cell activation, rather than the TCR diversity, is the major determining factor for the outcome of Leishmania infection.
Collapse
Affiliation(s)
- L Xin
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-107, USA
| | | | | | | | | |
Collapse
|
46
|
Boggiatto PM, Gibson-Corley KN, Metz K, Gallup JM, Hostetter JM, Mullin K, Petersen CA. Transplacental transmission of Leishmania infantum as a means for continued disease incidence in North America. PLoS Negl Trop Dis 2011; 5:e1019. [PMID: 21532741 PMCID: PMC3075227 DOI: 10.1371/journal.pntd.0001019] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 02/16/2011] [Indexed: 11/18/2022] Open
Abstract
Background Dogs are the predominant domestic reservoir for human L. infantum infection. Zoonotic visceral leishmaniasis (ZVL) is an emerging problem in some U.S. dog breeds, with an annual quantitative PCR prevalence of greater than 20% within an at-risk Foxhound population. Although classically Leishmania is transmitted by infected sand flies and phlebotomine sand flies exist in the United States, means of ongoing L. infantum transmission in U.S. dogs is currently unknown. Possibilities include vertical (transplacental/transmammary) and horizontal/venereal transmission. Several reports have indicated that endemic ZVL may be transmitted vertically. Aims Our aims for this present study were to establish whether vertical/transplacental transmission was occurring in this population of Leishmania-infected US dogs and determine the effect that this means of transmission has on immune recognition of Leishmania. Methodology A pregnant L. infantum-infected dam donated to Iowa State University gave birth in-house to 12 pups. Eight pups humanely euthanized at the time of birth and four pups and the dam humanely euthanized three months post-partum were studied via L. infantum-kinetoplast specific quantitative PCR (kqPCR), gross and histopathological assessment and CD4+ T cell proliferation assay. Key Results This novel report describes disseminated L. infantum parasites as identified by kqPCR in 8 day old pups born to a naturally-infected, seropositive U.S. dog with no travel history. This is the first report of vertical transmission of L. infantum in naturally-infected dogs in North America, emphasizing that this novel means of transmission could possibly sustain infection within populations. Major Conclusions Evidence that vertical transmission of ZVL may be a driving force for ongoing disease in an otherwise non-endemic region has significant implications on current control strategies for ZVL, as at present parasite elimination efforts in endemic areas are largely focused on vector-borne transmission between canines and people. Determining frequency of vertical transmission and incorporating canine sterilization with vector control may have a more significant impact on ZVL transmission to people in endemic areas than current control efforts. Dogs are a favored feeding source for sand flies that transmit human L. infantum infection. Zoonotic visceral leishmaniasis (ZVL) is an emerging problem in some U.S. dog breeds, with over 20% of at-risk Foxhounds infected. Although classically Leishmania is transmitted by infected sand flies which exist in the United States, no role has yet been determined for vector-borne transmission. Means of ongoing L. infantum transmission in U.S. dogs is unknown. Possibilities include transplacental and horizontal/venereal transmission. Aims for this study were to establish whether transplacental transmission occurred in Leishmania-infected U.S. dogs and determine the effect of this transmission on immune recognition of Leishmania. This novel report describes wide-spread infection as identified by kqPCR in 8 day-old pups born to a naturally-infected, seropositive U.S. dog with no travel history. This is the first report of transplacental transmission of L. infantum in naturally-infected dogs in North America. Evidence that mom-to-pup transmission of ZVL may continue disease in an otherwise non-endemic region has significant implications on current control strategies for ZVL. Determining frequency of vertical transmission and incorporating canine sterilization with vector control may have a more significant impact on ZVL transmission to people in endemic areas than current control efforts.
Collapse
Affiliation(s)
- Paola Mercedes Boggiatto
- Immunobiology Program, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Katherine Nicole Gibson-Corley
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Kyle Metz
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Jack Michael Gallup
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Jesse Michael Hostetter
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Kathleen Mullin
- Laboratory Animal Resources, Iowa State University, Ames, Iowa, United States of America
| | - Christine Anne Petersen
- Immunobiology Program, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
47
|
Ramer-Tait AE, Petersen CA, Jones DE. IL-2 limits IL-12 enhanced lymphocyte proliferation during Leishmania amazonensis infection. Cell Immunol 2011; 270:32-9. [PMID: 21481338 PMCID: PMC3129441 DOI: 10.1016/j.cellimm.2011.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 02/04/2011] [Accepted: 03/21/2011] [Indexed: 10/18/2022]
Abstract
C3H mice infected with Leishmania amazonensis develop persistent, localized lesions with high parasite loads. During infection, memory/effector CD44(hi)CD4(+) T cells proliferate and produce IL-2, but do not polarize to a known effector phenotype. Previous studies have demonstrated IL-12 is insufficient to skew these antigen-responsive T cells to a functional Th1 response. To determine the mechanism of this IL-12 unresponsiveness, we used an in vitro assay of repeated antigen activation. Memory/effector CD44(hi)CD4(+) T cells did not increase proliferation in response to either IL-2 or IL-12, although these cytokines upregulated CD25 expression. Neutralization of IL-2 enhanced CD4(+) T cell proliferation in response to IL-12. This cross-regulation of IL-12 responsiveness by IL-2 was confirmed in vivo by treatment with anti-IL-2 antibodies and IL-12 during antigen challenge of previously infected mice. These results suggest that during chronic infection with L. amazonensis, IL-2 plays a dominant, immunosuppressive role independent of identifiable conventional T(reg) cells.
Collapse
Affiliation(s)
- Amanda E Ramer-Tait
- Immunobiology Program and Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA.
| | | | | |
Collapse
|
48
|
Kückelhaus CS, Kückelhaus SAS, Muniz-Junqueira MI. Influence of long-term treatment with pravastatin on the survival, evolution of cutaneous lesion and weight of animals infected by Leishmania amazonensis. Exp Parasitol 2011; 127:658-64. [DOI: 10.1016/j.exppara.2010.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 11/16/2010] [Accepted: 12/14/2010] [Indexed: 11/24/2022]
|
49
|
Côrtes DF, Carneiro MBH, Santos LM, Souza TCDO, Maioli TU, Duz ALC, Ramos-Jorge ML, Afonso LCC, Carneiro C, Vieira LQ. Low and high-dose intradermal infection with Leishmania majorand Leishmania amazonensis in C57BL/6 mice. Mem Inst Oswaldo Cruz 2010; 105:736-45. [DOI: 10.1590/s0074-02762010000600002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 07/13/2010] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Leda Quercia Vieira
- Instituto de Ciências Biológicas; Universidade Federal de Ouro Preto, Brasil
| |
Collapse
|
50
|
Delineation of diverse macrophage activation programs in response to intracellular parasites and cytokines. PLoS Negl Trop Dis 2010; 4:e648. [PMID: 20361029 PMCID: PMC2846935 DOI: 10.1371/journal.pntd.0000648] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 02/11/2010] [Indexed: 12/29/2022] Open
Abstract
Background The ability to reside and proliferate in macrophages is characteristic of several infectious agents that are of major importance to public health, including the intracellular parasites Trypanosoma cruzi (the etiological agent of Chagas disease) and Leishmania species (etiological agents of Kala-Azar and cutaneous leishmaniasis). Although recent studies have elucidated some of the ways macrophages respond to these pathogens, the relationships between activation programs elicited by these pathogens and the macrophage activation programs elicited by bacterial pathogens and cytokines have not been delineated. Methodology/Principal Findings To provide a global perspective on the relationships between macrophage activation programs and to understand how certain pathogens circumvent them, we used transcriptional profiling by genome-wide microarray analysis to compare the responses of mouse macrophages following exposure to the intracellular parasites T. cruzi and Leishmania mexicana, the bacterial product lipopolysaccharide (LPS), and the cytokines IFNG, TNF, IFNB, IL-4, IL-10, and IL-17. We found that LPS induced a classical activation state that resembled macrophage stimulation by the Th1 cytokines IFNG and TNF. However, infection by the protozoan pathogen L. mexicana produced so few transcriptional changes that the infected macrophages were almost indistinguishable from uninfected cells. T. cruzi activated macrophages produced a transcriptional signature characterized by the induction of interferon-stimulated genes by 24 h post-infection. Despite this delayed IFN response by T. cruzi, the transcriptional response of macrophages infected by the kinetoplastid pathogens more closely resembled the transcriptional response of macrophages stimulated by the cytokines IL-4, IL-10, and IL-17 than macrophages stimulated by Th1 cytokines. Conclusions/Significance This study provides global gene expression data for a diverse set of biologically significant pathogens and cytokines and identifies the relationships between macrophage activation states induced by these stimuli. By comparing macrophage activation programs to pathogens and cytokines under identical experimental conditions, we provide new insights into how macrophage responses to kinetoplastids correlate with the overall range of macrophage activation states. Macrophages are a type of immune cell that engulf and digest microorganisms. Despite their role in protecting the host from infection, many pathogens have developed ways to hijack the macrophage and use the cell for their own survival and proliferation. This includes the parasites Trypanosoma cruzi and Leishmania mexicana. In order to gain further understanding of how these pathogens interact with the host macrophage, we compared macrophages that have been infected with these parasites to macrophages that have been stimulated in a number of different ways. Macrophages can be activated by a wide variety of stimuli, including common motifs found on pathogens (known as pathogen associated molecular patterns or PAMPs) and cytokines secreted by other immune cells. In this study, we have delineated the relationships between the macrophage activation programs elicited by a number of cytokines and PAMPs. Furthermore, we have placed the macrophage responses to T. cruzi and L. mexicana into the context of these activation programs, providing a better understanding of the interactions between these pathogens and macrophages.
Collapse
|