1
|
Parrish KM, Gestal MC. Eosinophils as drivers of bacterial immunomodulation and persistence. Infect Immun 2024; 92:e0017524. [PMID: 39007622 PMCID: PMC11385729 DOI: 10.1128/iai.00175-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Traditionally, eosinophils have been linked to parasitic infections and pathological disease states. However, emerging literature has unveiled a more nuanced and intricate role for these cells, demonstrating their key functions in maintaining mucosal homeostasis. Eosinophils exhibit diverse phenotypes and exert multifaceted effects during infections, ranging from promoting pathogen persistence to triggering allergic reactions. Our investigations primarily focus on Bordetella spp., with particular emphasis on Bordetella bronchiseptica, a natural murine pathogen that induces diseases in mice akin to pertussis in humans. Recent findings from our published work have unveiled a striking interaction between B. bronchiseptica and eosinophils, facilitated by the btrS-mediated mechanism. This interaction serves to enhance pathogen persistence while concurrently delaying adaptive immune responses. Notably, this role of eosinophils is only noted in the absence of a functional btrS signaling pathway, indicating that wild-type B. bronchiseptica, and possibly other Bordetella spp., possess such adeptness in manipulating eosinophils that the true function of these cells remains obscured during infection. In this review, we present the mounting evidence pointing toward eosinophils as targets of bacterial exploitation, facilitating pathogen persistence and fostering chronic infections in diverse mucosal sites, including the lungs, gut, and skin. We underscore the pivotal role of the master regulator of Bordetella pathogenesis, the sigma factor BtrS, in orchestrating eosinophil-dependent immunomodulation within the context of pulmonary infection. These putative convergent strategies of targeting eosinophils offer promising avenues for the development of novel therapeutics targeting respiratory and other mucosal pathogens.
Collapse
Affiliation(s)
- Katelyn M. Parrish
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Monica C. Gestal
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
2
|
Wang P, Ramadan S, Dubey P, Deora R, Huang X. Development of carbohydrate based next-generation anti-pertussis vaccines. Bioorg Med Chem 2022; 74:117066. [PMID: 36283250 PMCID: PMC9925305 DOI: 10.1016/j.bmc.2022.117066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 02/04/2023]
Abstract
Pertussis is a highly contagious respiratory disease caused by the Gram-negative bacterial pathogen, Bordetella pertussis. Despite high global vaccination rates, pertussis is resurging worldwide. Here we discuss the development of current pertussis vaccines and their limitations, which highlight the need for new vaccines that can protect against the disease and prevent development of the carrier state, thereby reducing transmission. The lipo-oligosaccharide of Bp is an attractive antigen for vaccine development as the anti-glycan antibodies could have bactericidal activities. The structure of the lipo-oligosaccharide has been determined and its immunological properties analyzed. Strategies enabling the expression, isolation, and bioconjugation have been presented. However, obtaining the saccharide on a large scale with high purity remains one of the main obstacles. Chemical synthesis provides a complementary approach to accessing the carbohydrate epitopes in a pure and structurally well-defined form. The first total synthesis of the non-reducing end pertussis pentasaccharide is discussed. The conjugate of the synthetic glycan with a powerful immunogenic carrier, bacteriophage Qβ, results in high levels and long-lasting anti-glycan IgG antibodies, paving the way for the development of a new generation of anti-pertussis vaccines with high bactericidal activities and biocompatibilities.
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| | - Sherif Ramadan
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA; Chemistry Department, Faculty of Science, Benha University, Benha, Qaliobiya 13518, Egypt
| | - Purnima Dubey
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Rajendar Deora
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA; Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
3
|
Silva RP, DiVenere AM, Amengor D, Maynard JA. Antibodies binding diverse pertactin epitopes protect mice from B. pertussis infection. J Biol Chem 2022; 298:101715. [PMID: 35151691 PMCID: PMC8931430 DOI: 10.1016/j.jbc.2022.101715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 11/27/2022] Open
Abstract
Infection by the bacterium Bordetella pertussis continues to cause considerable morbidity and mortality worldwide. Many current acellular pertussis vaccines include the antigen pertactin, which has presumptive adhesive and immunomodulatory activities, but is rapidly lost from clinical isolates after the introduction of these vaccines. To better understand the contributions of pertactin antibodies to protection and pertactin's role in pathogenesis, we isolated and characterized recombinant antibodies binding four distinct epitopes on pertactin. We demonstrate that four of these antibodies bind epitopes that are conserved across all three classical Bordetella strains, and competition assays further showed that antibodies binding these epitopes are also elicited by B. pertussis infection of baboons. Surprisingly, we found that representative antibodies binding each epitope protected mice against experimental B. pertussis infection. A cocktail of antibodies from each epitope group protected mice against a subsequent lethal dose of B. pertussis and greatly reduced lung colonization levels after sublethal challenge. Each antibody reduced B. pertussis lung colonization levels up to 100-fold when administered individually, which was significantly reduced when antibody effector functions were impaired, with no antibody mediating antibody-dependent complement-induced lysis. These data suggest that antibodies binding multiple pertactin epitopes protect primarily by the same bactericidal mechanism, which overshadows contributions from blockade of other pertactin functions. These antibodies expand the available tools to further dissect pertactin's role in infection and understand the impact of antipertactin antibodies on bacterial fitness.
Collapse
|
4
|
Age and Primary Vaccination Background Influence the Plasma Cell Response to Pertussis Booster Vaccination. Vaccines (Basel) 2022; 10:vaccines10020136. [PMID: 35214595 PMCID: PMC8878388 DOI: 10.3390/vaccines10020136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/08/2023] Open
Abstract
Pertussis is a vaccine-preventable disease caused by the bacterium Bordetella pertussis. Over the past years, the incidence and mortality of pertussis increased significantly. A possible cause is the switch from whole-cell to acellular pertussis vaccines, although other factors may also contribute. Here, we applied high-dimensional flow cytometry to investigate changes in B cells in individuals of different ages and distinct priming backgrounds upon administration of an acellular pertussis booster vaccine. Participants were divided over four age cohorts. We compared longitudinal kinetics within each cohort and between the different cohorts. Changes in the B-cell compartment were correlated to numbers of vaccine-specific B- and plasma cells and serum Ig levels. Expansion and maturation of plasma cells 7 days postvaccination was the most prominent cellular change in all age groups and was most pronounced for more mature IgG1+ plasma cells. Plasma cell responses were stronger in individuals primed with whole-cell vaccine than in individuals primed with acellular vaccine. Moreover, IgG1+ and IgA1+ plasma cell expansion correlated with FHA-, Prn-, or PT- specific serum IgG or IgA levels. Our study indicates plasma cells as a potential early cellular marker of an immune response and contributes to understanding differences in immune responses between age groups and primary vaccination backgrounds.
Collapse
|
5
|
Prygiel M, Mosiej E, Wdowiak K, Górska P, Polak M, Lis K, Krysztopa-Grzybowska K, Zasada AA. Effectiveness of experimental and commercial pertussis vaccines in the elimination of Bordetella pertussis isolates with different genetic profiles in murine model. Med Microbiol Immunol 2021; 210:251-262. [PMID: 34338880 PMCID: PMC8326312 DOI: 10.1007/s00430-021-00718-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
The aim of this study was to compare the elimination of Bordetella pertussis clinical isolates, representing different genotypes in relation to alleles encoding virulence factors (MLST-multi-locus antigen sequence typing), MLVA type (multi-locus variable-number tandem repeat analysis) and PFGE group (pulsed-field gel electrophoresis) from the lungs of naive mice or mice were immunised with the commercial whole-cell pertussis vaccine, the acellular pertussis vaccine and the experimental whole-cell pertussis vaccine. Molecular data indicate that the resurgence of pertussis in populations with high vaccine coverage is associated with genomic adaptation of B. pertussis, to vaccine selection pressure. Pertactin-negative B. pertussis isolates were suspected to contribute to the reduced vaccine effectiveness. It was shown that one of the isolates used is PRN deficient. The mice were intranasally challenged with bacterial suspension containing approximately 5 × 10 7 CFU/ml B. pertussis. The immunogenicity of the tested vaccines against PT (pertussis toxin), PRN (pertactin), FHA (filamentous haemagglutinin) and FIM (fimbriae types 2 and 3) was examined. The commercial whole-cell and acellular pertussis vaccines induced an immunity effective at eliminating the genetically different B. pertussis isolates from the lungs. However, the elimination of the PRN-deficient isolate from the lungs of mice vaccinated with commercial vaccines was delayed as compared to the PRN ( +) isolate, suggesting phenotypic differences with the circulating isolates and vaccine strains. The most effective vaccine was the experimental vaccine with the composition identical to that of the strains used for infection.
Collapse
Affiliation(s)
- Marta Prygiel
- Department of Vaccines and Sera Evaluation, National Institute of Public Health, National Institute of Hygiene, Warsaw, Poland.
| | - Ewa Mosiej
- Department of Vaccines and Sera Evaluation, National Institute of Public Health, National Institute of Hygiene, Warsaw, Poland
| | - Karol Wdowiak
- Department of Vaccines and Sera Evaluation, National Institute of Public Health, National Institute of Hygiene, Warsaw, Poland
| | - Paulina Górska
- Department of Vaccines and Sera Evaluation, National Institute of Public Health, National Institute of Hygiene, Warsaw, Poland
| | - Maciej Polak
- Department of Vaccines and Sera Evaluation, National Institute of Public Health, National Institute of Hygiene, Warsaw, Poland
| | - Klaudia Lis
- Department of Vaccines and Sera Evaluation, National Institute of Public Health, National Institute of Hygiene, Warsaw, Poland
| | - Katarzyna Krysztopa-Grzybowska
- Department of Vaccines and Sera Evaluation, National Institute of Public Health, National Institute of Hygiene, Warsaw, Poland
| | - Aleksandra Anna Zasada
- Department of Vaccines and Sera Evaluation, National Institute of Public Health, National Institute of Hygiene, Warsaw, Poland
| |
Collapse
|
6
|
Saso A, Kampmann B, Roetynck S. Vaccine-Induced Cellular Immunity against Bordetella pertussis: Harnessing Lessons from Animal and Human Studies to Improve Design and Testing of Novel Pertussis Vaccines. Vaccines (Basel) 2021; 9:877. [PMID: 34452002 PMCID: PMC8402596 DOI: 10.3390/vaccines9080877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
Pertussis ('whooping cough') is a severe respiratory tract infection that primarily affects young children and unimmunised infants. Despite widespread vaccine coverage, it remains one of the least well-controlled vaccine-preventable diseases, with a recent resurgence even in highly vaccinated populations. Although the exact underlying reasons are still not clear, emerging evidence suggests that a key factor is the replacement of the whole-cell (wP) by the acellular pertussis (aP) vaccine, which is less reactogenic but may induce suboptimal and waning immunity. Differences between vaccines are hypothesised to be cell-mediated, with polarisation of Th1/Th2/Th17 responses determined by the composition of the pertussis vaccine given in infancy. Moreover, aP vaccines elicit strong antibody responses but fail to protect against nasal colonisation and/or transmission, in animal models, thereby potentially leading to inadequate herd immunity. Our review summarises current knowledge on vaccine-induced cellular immune responses, based on mucosal and systemic data collected within experimental animal and human vaccine studies. In addition, we describe key factors that may influence cell-mediated immunity and how antigen-specific responses are measured quantitatively and qualitatively, at both cellular and molecular levels. Finally, we discuss how we can harness this emerging knowledge and novel tools to inform the design and testing of the next generation of improved infant pertussis vaccines.
Collapse
Affiliation(s)
- Anja Saso
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| | - Beate Kampmann
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| | - Sophie Roetynck
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| |
Collapse
|
7
|
Structure and Immunogenicity of the Bordetella pertussis LOS-Derived Oligosaccharides in the Endosomal-Like Pre-Processing Mice Model. Vaccines (Basel) 2021; 9:vaccines9060645. [PMID: 34199173 PMCID: PMC8231563 DOI: 10.3390/vaccines9060645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 11/17/2022] Open
Abstract
Glycoproteins are processed endosomally prior to presentation to T cells and subsequent induction of specific antibodies. The sugar part of glycoconjugate may be degraded while the type of the process depends on the features of the particular structure. The generated carbohydrate epitopes may differ from native structures and influence immunogenicity of the antigens. We have devised a model of endosomal-like pre-processing of Bordetella pertussis 186 oligosaccharides (OSs) to verify how it affects the immunogenicity of their conjugates. The glycoconjugates of structurally defined forms of the dodecasaccharide OS were synthesized and their immunogenicity was assessed using immunochemical methods. The structural features of the oligosaccharides and their sensitivity to deamination were analyzed by NMR spectroscopy. The distal trisaccharide-comprising pentasaccharide conjugated to a protein was the most effective in inducing immune response against the B. pertussis 186 LOS and the immune response to the complete OS conjugates was significantly lower. This could be explained by the loss of the distal trisaccharide during the in-cell deamination process suggesting that the native structure is not optimal for a vaccine antigen. Consequently, our research has shown that designing of new glycoconjugate vaccines requires the antigen structures to be verified in context of possible endosomal reactions beforehand.
Collapse
|
8
|
Wanlapakorn N, Maertens K, Vongpunsawad S, Puenpa J, Tran TMP, Hens N, Van Damme P, Thiriard A, Raze D, Locht C, Poovorawan Y, Leuridan E. Quantity and Quality of Antibodies After Acellular Versus Whole-cell Pertussis Vaccines in Infants Born to Mothers Who Received Tetanus, Diphtheria, and Acellular Pertussis Vaccine During Pregnancy: A Randomized Trial. Clin Infect Dis 2020; 71:72-80. [PMID: 31418814 DOI: 10.1093/cid/ciz778] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The blunting effect of pertussis immunization during pregnancy on infant antibody responses induced by whole-cell pertussis (wP) vaccination is not well-defined. METHODS This randomized controlled trial (NCT02408926) followed term infants born to mothers vaccinated with tetanus, diphtheria, and acellular pertussis (Tdap) vaccine during pregnancy in Thailand. Infants received either acellular pertussis (aP)- or wP-containing vaccine at 2, 4, 6, and 18 months of age. A comparison group comprised wP-vaccinated children born to mothers not vaccinated during pregnancy. Antibodies against pertussis toxin (PT), filamentous hemagglutinin (FHA), and pertactin (PRN) were evaluated using commercial enzyme-linked immunosorbent assays. Functionality of antibodies against Bordetella pertussis was measured using Bordetella pertussis growth inhibition assay. RESULTS After maternal Tdap vaccination, 158 infants vaccinated with aP-containing vaccines possessed higher antibody levels (P < .001) against all tested B. pertussis antigens postpriming compared to 157 infants receiving wP-containing vaccines. At 1 month postbooster, only anti-FHA and anti-PRN antibodies were still significantly higher (P < .001) in the aP group. Significantly higher anti-PT and anti-FHA (P < .001), but not anti-PRN immunoglobulin G, were observed among 69 wP-vaccinated infants born to control mothers compared with wP-vaccinated infants of Tdap-vaccinated mothers after primary and booster vaccination. The antibody functionality was higher in all wP-vaccinated infants at all times. CONCLUSIONS Maternal Tdap vaccination inhibited more pertussis-specific responses in wP-vaccinated infants compared to aP-vaccinated infants, and the control group of unvaccinated women had highest PT-specific responses, persisting until after the booster dose. Antibody functionality was better in the wP groups. CLINICAL TRIALS REGISTRATION NCT02408926.Infant whole-cell pertussis (wP) vaccine responses are blunted after maternal Tdap vaccination. Pertussis antibody titers are higher in acellular pertussis (aP)- than wP-vaccinated infants of immunized mothers, yet quality of antibodies, measured as serum-mediated bacterial growth inhibition, is better after wP than aP vaccination.
Collapse
Affiliation(s)
- Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Academic Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kirsten Maertens
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jiratchaya Puenpa
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thao Mai Phuong Tran
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Belgium
| | - Niel Hens
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Belgium
- Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, Belgium
| | - Pierre Van Damme
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium
| | - Anaïs Thiriard
- Université de Lille, Centre National de la Recherche Scientifique , Inserm, Centre Hospitalier Régional Universitaire Lille, Institut Pasteur de Lille, U1019-UMR8204, Center for Infection and Immunity of Lille, France
| | - Dominique Raze
- Université de Lille, Centre National de la Recherche Scientifique , Inserm, Centre Hospitalier Régional Universitaire Lille, Institut Pasteur de Lille, U1019-UMR8204, Center for Infection and Immunity of Lille, France
| | - Camille Locht
- Université de Lille, Centre National de la Recherche Scientifique , Inserm, Centre Hospitalier Régional Universitaire Lille, Institut Pasteur de Lille, U1019-UMR8204, Center for Infection and Immunity of Lille, France
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Elke Leuridan
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium
| |
Collapse
|
9
|
Gestal MC, Johnson HM, Harvill ET. Immunomodulation as a Novel Strategy for Prevention and Treatment of Bordetella spp. Infections. Front Immunol 2019; 10:2869. [PMID: 31921136 PMCID: PMC6923730 DOI: 10.3389/fimmu.2019.02869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
Well-adapted pathogens have evolved to survive the many challenges of a robust immune response. Defending against all host antimicrobials simultaneously would be exceedingly difficult, if not impossible, so many co-evolved organisms utilize immunomodulatory tools to subvert, distract, and/or evade the host immune response. Bordetella spp. present many examples of the diversity of immunomodulators and an exceptional experimental system in which to study them. Recent advances in this experimental system suggest strategies for interventions that tweak immunity to disrupt bacterial immunomodulation, engaging more effective host immunity to better prevent and treat infections. Here we review advances in the understanding of respiratory pathogens, with special focus on Bordetella spp., and prospects for the use of immune-stimulatory interventions in the prevention and treatment of infection.
Collapse
Affiliation(s)
- Monica C Gestal
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| | - Hannah M Johnson
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| | - Eric T Harvill
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
10
|
PERISCOPE: road towards effective control of pertussis. THE LANCET. INFECTIOUS DISEASES 2018; 19:e179-e186. [PMID: 30503084 DOI: 10.1016/s1473-3099(18)30646-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/02/2018] [Accepted: 10/12/2018] [Indexed: 12/28/2022]
Abstract
The resurgence and changing epidemiology of pertussis in high-income countries, the high infant mortality caused by pertussis in low-income countries, and the increasing morbidity in all age groups worldwide call for a concerted effort to both improve the current vaccines and develop new vaccines and vaccination strategies against pertussis. In this Personal View, we identify several key obstacles on the path to developing a durable solution for global control of pertussis. To systematically address these obstacles, the PERtussIS Correlates Of Protection Europe (PERISCOPE) Consortium was established in March, 2016. The objectives of this consortium are to increase scientific understanding of immunity to pertussis in humans induced by vaccines and infections, to identify biomarkers of protective immunity, and to generate technologies and infrastructure for the future development of improved pertussis vaccines. By working towards the accelerated licensure and implementation of novel, well tolerated, and effective pertussis vaccines, we hope to strengthen and stimulate further collaboration and transparency between the key stakeholders, including the public, the scientific community, public health institutes, regulatory authorities, and vaccine manufacturers.
Collapse
|
11
|
Acquaye-Seedah E, Huang Y, Sutherland JN, DiVenere AM, Maynard JA. Humanised monoclonal antibodies neutralise pertussis toxin by receptor blockade and reduced retrograde trafficking. Cell Microbiol 2018; 20:e12948. [PMID: 30152075 PMCID: PMC6519169 DOI: 10.1111/cmi.12948] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 08/02/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022]
Abstract
Pertussis toxin (PTx) is a major protective antigen produced by Bordetella pertussis that is included in all current acellular vaccines. Of several well‐characterized monoclonal antibodies binding this toxin, the humanised hu1B7 and hu11E6 antibodies are highly protective in multiple in vitro and in vivo assays. In this study, we determine the molecular mechanisms of protection mediated by these antibodies. Neither antibody directly binds the B. pertussis bacterium nor supports antibody‐dependent complement cytotoxicity. Both antibodies, either individually or as a cocktail, form multivalent complexes with soluble PTx that bind the FcγRIIb receptor more tightly than antibody alone, suggesting that the antibodies may accelerate PTx clearance via immune complex formation. However, a receptor binding assay and cellular imaging indicate that the main mechanism used by hu11E6 is competitive inhibition of PTx binding to its cellular receptor. In contrast, the main hu1B7 neutralising mechanism appears to be inhibition of PTx internalisation and retrograde trafficking. We assessed the effects of hu1B7 on PTx retrograde trafficking in CHO‐K1 cells using quantitative immunofluorescence microscopy. In the absence of hu1B7 or after incubation with an isotype control antibody, PTx colocalizes to organelles in a manner consistent with retrograde transport. However, after preincubation with hu1B7, PTx appears restricted to the membrane surface with colocalization to organelles associated with retrograde transport significantly reduced. Together, these data support a model whereby hu11E6 and hu1B7 interfere with PTx receptor binding and PTx retrograde trafficking, respectively.
Collapse
Affiliation(s)
- Edith Acquaye-Seedah
- Department of Biochemistry, The University of Texas at Austin, Austin, Texas.,Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas
| | - Yimin Huang
- Department of Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas.,Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas
| | - Jamie N Sutherland
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas
| | - Andrea M DiVenere
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas
| | - Jennifer A Maynard
- Department of Biochemistry, The University of Texas at Austin, Austin, Texas.,Department of Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas.,Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
12
|
Brookes C, Freire-Martin I, Cavell B, Alexander F, Taylor S, Persaud R, Fry N, Preston A, Diavatopoulos D, Gorringe A. Bordetella pertussis isolates vary in their interactions with human complement components. Emerg Microbes Infect 2018; 7:81. [PMID: 29739922 PMCID: PMC5940884 DOI: 10.1038/s41426-018-0084-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 12/16/2022]
Abstract
Whooping cough is a re-emerging respiratory tract infection. It has become clear that there is a need for better understanding of protective immune responses and variation between Bordetella pertussis strains to aid the development of improved vaccines. In order to survive in the host, B. pertussis has evolved mechanisms to evade complement-mediated killing, including the ability to bind complement-regulatory proteins. Here we evaluate the variation in interactions with the complement system among recently isolated strains. Isolates whose genomes appear highly similar and cluster together on a SNP-based dendrogram were found to vary significantly in resistance to complement-mediated killing and in the deposition of C3b/iC3b, C5b-9 and C1 esterase inhibitor (C1-INH). The key role of Vag8 as a receptor for C1-INH was confirmed and its expression was shown to vary in a panel of isolates. A Vag8 knockout mutant showed increased sensitivity to complement-mediated killing. Antibodies in convalescent sera blocked C1-INH binding to B. pertussis and may play an important role in natural immunity.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruby Persaud
- Public Health England, Porton Down, Salisbury, UK
| | - Norman Fry
- Public Health England, 61 Colindale Avenue, London, UK
| | - Andrew Preston
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, UK
| | - Dimitri Diavatopoulos
- Laboratory of Medical immunology, Nijmegen Medical Centre, Radboud University, Nijmegen, The Netherlands
| | | |
Collapse
|
13
|
Thiriard A, Raze D, Locht C. Diversion of complement-mediated killing by Bordetella. Microbes Infect 2018; 20:512-520. [PMID: 29454132 DOI: 10.1016/j.micinf.2018.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 01/06/2023]
Abstract
The complement cascade participates in protection against bacterial infections, and pathogens, including Bordetella pertussis, have developed complement-evading strategies. Here we discuss current knowledge on B. pertussis complement evasion strategies and the role of antibody-dependent complement-mediated killing in protection against B. pertussis infection pointing out important knowledge gaps for further research to improve current pertussis vaccines.
Collapse
Affiliation(s)
- Anaïs Thiriard
- Université de Lille, CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille, Centre for Infection and Immunity of Lille, F-59000 Lille, France
| | - Dominique Raze
- Université de Lille, CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille, Centre for Infection and Immunity of Lille, F-59000 Lille, France
| | - Camille Locht
- Université de Lille, CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille, Centre for Infection and Immunity of Lille, F-59000 Lille, France.
| |
Collapse
|
14
|
Diavatopoulos DA, Edwards KM. What Is Wrong with Pertussis Vaccine Immunity? Why Immunological Memory to Pertussis Is Failing. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a029553. [PMID: 28289059 DOI: 10.1101/cshperspect.a029553] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Memory responses seen after whole-cell pertussis (wP) and acellular pertussis (aP) vaccine priming are different and reflect better long-term protection against pertussis disease seen with the whole-cell vaccines. Although acellular vaccines generate higher levels of antigen-specific IgG to the antigens included in the aP vaccines, there are many more pertussis antigens included in whole-cell vaccines. Acellular vaccine priming is associated with skewing of the immune response to a more Th2-like response, whereas whole-cell priming is associated with a Th1/Th17 response. Repeated booster doses of acellular vaccine in children primed with acellular vaccine has been shown to result in progressively shorter duration of protection against disease. This may be explained by the generation of higher levels of antigen-specific IgG4, which does not bind complement and leads to a suboptimal inflammatory response and impaired phagocytosis and antimicrobial defense. In contrast, whole-cell priming followed by aP vaccine boosters results in better opsonization, phagocytosis, and complement mediated killing through the preferential induction of IgG1.
Collapse
Affiliation(s)
- Dimitri A Diavatopoulos
- Laboratory of Pediatric Infectious Diseases, Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Kathryn Margaret Edwards
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232.,Vanderbilt Vaccine Research Program, Vanderbilt University, Nashville, Tennessee 37332
| |
Collapse
|
15
|
Abstract
Pertussis is a highly infectious vaccine-preventable cough illness that continues to be a significant source of morbidity and mortality around the world. The majority of human illness is caused by Bordetella pertussis, and some is caused by Bordetella parapertussis. Bordetella is a Gram-negative, pleomorphic, aerobic coccobacillus. In the past several years, even countries with high immunization rates in early childhood have experienced rises in pertussis cases. Reasons for the resurgence of reported pertussis may include molecular changes in the organism and increased awareness and diagnostic capabilities, as well as lessened vaccine efficacy and waning immunity. The most morbidity and mortality with pertussis infection is seen in infants too young to benefit from immunization. Severe infection requiring hospitalization, including in an intensive care setting, is mostly seen in those under 3 months of age. As a result, research and public health actions have been aimed at better understanding and reducing the spread of Bordetella pertussis. Studies comparing the cost benefit of cocooning strategies versus immunization of pregnant women have been favorable towards immunizing pregnant women. This strategy is expected to prevent a larger number of pertussis cases, hospitalizations, and deaths in infants <1 year old while also being cost-effective. Studies have demonstrated that the source of infection in infants usually is a family member. Efforts to immunize children and adults, in particular pregnant women, need to remain strong.
Collapse
|
16
|
Single Amino Acid Polymorphisms of Pertussis Toxin Subunit S2 (PtxB) Affect Protein Function. PLoS One 2015; 10:e0137379. [PMID: 26375454 PMCID: PMC4573519 DOI: 10.1371/journal.pone.0137379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 08/17/2015] [Indexed: 11/19/2022] Open
Abstract
Whooping cough due to Bordetella pertussis is increasing in incidence, in part due to accumulation of mutations which increase bacterial fitness in highly vaccinated populations. Polymorphisms in the pertussis toxin, ptxA and ptxB genes, and the pertactin, prn genes of clinical isolates of Bordetella pertussis collected in Cincinnati from 1989 through 2005 were examined. While the ptxA and prn genotypes were variable, all 48 strains had the ptxB2 genotype; ptxB1 encodes glycine at amino acid 18 of the S2 subunit of pertussis toxin, while ptxB2 encodes serine. We investigated antigenic and functional differences of PtxB1 and PtxB2. The S2 protein was not very immunogenic. Only a few vaccinated or individuals infected with B. pertussis developed antibody responses to the S2 subunit, and these sera recognized both polymorphic forms equally well. Amino acid 18 of S2 is in a glycan binding domain, and the PtxB forms displayed differences in receptor recognition and toxicity. PtxB1 bound better to the glycoprotein, fetuin, and Jurkat T cells in vitro, but the two forms were equally effective at promoting CHO cell clustering. To investigate in vivo activity of Ptx, one μg of Ptx was administered to DDY mice and blood was collected on 4 days after injection. PtxB2 was more effective at promoting lymphocytosis in mice.
Collapse
|
17
|
Serum reactome induced by Bordetella pertussis infection and Pertussis vaccines: qualitative differences in serum antibody recognition patterns revealed by peptide microarray analysis. BMC Immunol 2015; 16:40. [PMID: 26129684 PMCID: PMC4487959 DOI: 10.1186/s12865-015-0090-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 03/31/2015] [Indexed: 12/21/2022] Open
Abstract
Background Pertussis (whooping cough) remains a public health problem despite extensive vaccination strategies. Better understanding of the host-pathogen interaction and the detailed B. pertussis (Bp) target recognition pattern will help in guided vaccine design. We characterized the specific epitope antigen recognition profiles of serum antibodies (‘the reactome’) induced by whooping cough and B. pertussis (Bp) vaccines from a case–control study conducted in 1996 in infants enrolled in a Bp vaccine trial in Sweden (Gustafsson, NEJM, 1996, 334, 349–355). Methods Sera from children with whooping cough, vaccinated with Diphtheria Tetanus Pertussis (DTP) whole-cell (wc), acellular 5 (DPTa5), or with the 2 component (a2) vaccines and from infants receiving only DT (n = 10 for each group) were tested with high-content peptide microarrays containing 17 Bp proteins displayed as linear (n = 3175) peptide stretches. Slides were incubated with serum and peptide-IgG complexes detected with Cy5-labeled goat anti-human IgG and analyzed using a GenePix 4000B microarray scanner, followed by statistical analysis, using PAM (Prediction Analysis for Microarrays) and the identification of uniquely recognized peptide epitopes. Results 367/3,085 (11.9%) peptides were recognized in 10/10 sera from children with whooping cough, 239 (7.7%) in DTPwc, 259 (8.4%) in DTPa5, 105 (3.4%) DTPa2, 179 (5.8%) in the DT groups. Recognition of strongly recognized peptides was similar between whooping cough and DPTwc, but statistically different between whooping cough vs. DTPa5 (p < 0.05), DTPa2 and DT (p < 0.001 vs. both) vaccines. 6/3,085 and 2/3,085 peptides were exclusively recognized in (10/10) sera from children with whooping cough and DTPa2 vaccination, respectively. DTPwc resembles more closely the whooping cough reactome as compared to acellular vaccines. Conclusion We could identify a unique recognition signature common for each vaccination group (10/10 children). Peptide microarray technology allows detection of subtle differences in epitope signature responses and may help to guide rational vaccine development by the objective description of a clinically relevant immune response that confers protection against infectious pathogens. Electronic supplementary material The online version of this article (doi:10.1186/s12865-015-0090-3) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
The History of Pertussis (Whooping Cough); 1906–2015: Facts, Myths, and Misconceptions. CURR EPIDEMIOL REP 2015. [DOI: 10.1007/s40471-015-0041-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
19
|
Ellis J, Rhodes C, Lacoste S, Krakowka S. Antibody responses to Bordetella bronchiseptica in vaccinated and infected dogs. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2014; 55:857-864. [PMID: 25183893 PMCID: PMC4137927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bordetella bronchiseptica (Bb) whole cell bacterins have been replaced with acelluar vaccines. We evaluated the response to the acellular Bb vaccines in Bb-seropositive commingled laboratory beagles and client-owned dogs with various lifestyles and vaccination histories. A single parenteral dose of the acellular Bb vaccine resulted in consistent anamnestic IgG, and to a lesser, but notable extent, IgA, Bb-reactive antibody responses in the seropositive beagles. Associated with the increase in antibodies measured by enzyme-linked immunosorbent assay (ELISA) was an increase in the complement (C)-dependent IgG antibody mediated bactericidal effect on Bb in vitro. Antibody responses in client-owned dogs were more variable and were dependent upon the vaccination history and serological evidence of previous Bb exposure. Antibodies from vaccinated dogs recognized several Bb proteins, notably P68 (pertactin) and P220 (fimbrial hemagglutinin), the response to which has been shown to be disease-sparing in Bp infections. These antibody responses were similar to those in experimentally infected dogs and in dogs that had received a widely used whole cell bacterin.
Collapse
Affiliation(s)
- John Ellis
- Address all correspondence to Dr. John Ellis; e-mail:
| | | | | | | |
Collapse
|
20
|
Geurtsen J, Fae KC, van den Dobbelsteen GPJM. Importance of (antibody-dependent) complement-mediated serum killing in protection against Bordetella pertussis. Expert Rev Vaccines 2014; 13:1229-40. [PMID: 25081731 DOI: 10.1586/14760584.2014.944901] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pertussis is a highly contagious respiratory disease that is caused by Bordetella pertussis. Despite being vaccine preventable, pertussis rates have been rising steadily over the last decades, even in areas with high vaccine uptake. Recently, experiments with infant baboons indicated that although vaccination with acellular pertussis vaccines prevented disease, no apparent effect was observed on infection and transmission. One explanation may be that current acellular pertussis vaccines do not induce high levels of opsonophagocytic and/or bactericidal activity, implying that engineering of vaccines that promote bacterial killing may improve efficacy. Here, we discuss the importance of complement-mediated killing in vaccine-induced protection against B. pertussis. We first examine how B. pertussis may have evolved different complement evasion strategies. Second, we explore the benefits of opsonophagocytic and/or bactericidal killing in vaccine-induced protection and discuss whether or not inclusion of new opsonophagocytic or bactericidal target antigens in pertussis vaccines may benefit efficacy.
Collapse
Affiliation(s)
- Jeroen Geurtsen
- Crucell Holland B.V, one of the Janssen Pharmaceutical Companies of Johnson & Johnson - Bacterial Vaccines Research and Development, PO Box 2048, Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | | | | |
Collapse
|
21
|
Abstract
To overcome the limitations of the current pertussis vaccines, those of limited duration of action and failure to induce direct killing of Bordetella pertussis, a synthetic scheme was devised for preparing a conjugate vaccine composed of the Bordetella bronchiseptica core oligosaccharide with one terminal trisaccharide to aminooxylated BSA via their terminal ketodeoxyoctanate residues. Conjugate-induced antibodies, by a fraction of an estimated human dose injected into young outbred mice as a saline solution, were bactericidal against B. pertussis, and their titers correlated with their ELISA values. The carrier protein is planned to be genetically altered pertussis toxoid. Such conjugates are easy to prepare, stable, and should add both to the level and duration of immunity induced by current vaccine-induced pertussis antibodies and reduce the circulation of B. pertussis.
Collapse
|
22
|
Affiliation(s)
- James D Cherry
- Pediatric Infectious Diseases, Mattel Children's Hospital, Los Angeles, California, United States of America.
| |
Collapse
|
23
|
Affiliation(s)
- James D. Cherry
- Pediatric Infectious Diseases, Mattel Children's Hospital University of California Los Angeles, and the Department of Pediatrics, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California
| |
Collapse
|
24
|
Aase A, Herstad TK, Merino S, Brandsdal KT, Berdal BP, Aleksandersen EM, Aaberge IS. Opsonophagocytic activity and other serological indications of Bordetella pertussis infection in military recruits in Norway. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:855-62. [PMID: 17507542 PMCID: PMC1951054 DOI: 10.1128/cvi.00081-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bordetella pertussis is the causative agent of pertussis (whooping cough). Despite high vaccination coverage, pertussis remains a significant disease in many countries. Besides vaccination, transient carriage of Bordetella spp. or other cross-reacting organisms adds to the immunity against pertussis. However, the various immunological mechanisms conferring protection remain largely unknown. In this study, paired serum samples from 464 healthy Norwegian military recruits were collected, the first at enrolment and the second about 8 months later. The prevalence of pertussis during military service was examined by comparing the paired serum samples for immunoglobulin G (IgG) antibodies against pertussis toxin (PT) by enzyme-linked immunosorbent assay (ELISA). Seventy-eight percent of the recruits had low levels of IgG antibodies against PT in both samples. Conversely, 8.4% of the recruits demonstrated high anti-PT IgG levels in the first sample, indicative of recent pertussis prior to enrolment. One recruit experienced seroconversion, indicating pertussis during service. A subset of 248 serum samples with low, medium, and high anti-PT IgG titers were analyzed by a different ELISA kit for IgG and IgA antibodies against PT and filamentous hemagglutinin (FHA) and for opsonophagocytic activity (OPA), for induction of C3b deposition products, and for IgG binding with live B. pertussis as the antigen. We observed high correlations between OPA and IgG against live bacteria (r = 0.83), between OPA and IgG anti-FHA (r = 0.79), between OPA and anti-PT IgG (r = 0.68), and between OPA and C3b binding (r = 0.70) (P < 0.0001 for all). Anti-PT IgA did not correlate closely with the other assays.
Collapse
Affiliation(s)
- Audun Aase
- Division of Infectious Disease Control, Department of Bacteriology and Immunology, Norwegian Institute of Public Health, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
25
|
Stefanelli P, Sanguinetti M, Fazio C, Posteraro B, Fadda G, Mastrantonio P. Differential in vitro expression of the brkA gene in Bordetella pertussis and Bordetella parapertussis clinical isolates. J Clin Microbiol 2006; 44:3397-400. [PMID: 16954284 PMCID: PMC1594684 DOI: 10.1128/jcm.00247-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we set up a real-time reverse transcriptase PCR assay to measure the relative amounts of brkA transcripts in 50 Bordetella isolates. The results suggested that brkA expression is strain dependent and its level may play a role in determining the serum resistance or susceptibility phenotype. Pertussis immunocompetent sera were unable to kill Bordetella parapertussis via complement deposition.
Collapse
Affiliation(s)
- Paola Stefanelli
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, V. le Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | | | |
Collapse
|