1
|
Glew MD, Veith PD, Chen D, Seers CA, Chen YY, Reynolds EC. Blue native-PAGE analysis of membrane protein complexes in Porphyromonas gingivalis. J Proteomics 2014; 110:72-92. [DOI: 10.1016/j.jprot.2014.07.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/01/2014] [Accepted: 07/20/2014] [Indexed: 11/30/2022]
|
2
|
Han X, LaRosa KB, Kawai T, Taubman MA. DNA-based adaptive immunity protect host from infection-associated periodontal bone resorption via recognition of Porphyromonas gingivalis virulence component. Vaccine 2013; 32:297-303. [PMID: 24051159 DOI: 10.1016/j.vaccine.2013.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 08/12/2013] [Accepted: 09/06/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Porphyromonas gingivalis (Pg) is one of a constellation of oral organisms associated with human chronic periodontitis. While adaptive immunity to periodontal pathogen proteins has been investigated and is an important component of periodontal bone resorption, the effect of periodontal pathogen DNA in eliciting systemic and mucosal antibody and modulating immune responses has not been investigated. METHODS Rowett rats were locally injected with whole genomic Pg DNA in alum. Escherichia coli (Ec) genomic DNA, Fusobacterium nucleatum (Fn) genomic DNA, and saline/alum injected rats served as controls. After various time points, serum IgG and salivary IgA antibody to Ec, Fn or Pg were detected by ELISA. Serum and salivary antibody reactions with Pg surface antigens were determined by Western blot analyses and the specific antigen was identified by mass spectrometry. Effects of genomic DNA immunization on Pg bacterial colonization and experimental periodontal bone resorption were also evaluated. RESULTS Sera from Pg DNA, Ec DNA and Fn DNA-injected rats did not react with Ec or Fn bacteria. Serum IgG antibody levels to Pg and Pg surface extracts were significantly higher in animals immunized with Pg DNA as compared to the control groups. Rats injected with Pg DNA demonstrated a strong serum IgG and salivary IgA antibody reaction solely to Pg fimbrillin (41kDa), the major protein component of Pg fimbriae. In the Pg DNA-immunized group, the numbers of Pg bacteria in oral cavity and the extent of periodontal bone resorption were significantly reduced after Pg infection. CONCLUSIONS This study suggests that infected hosts may select specific genes from whole genomic DNA of the periodontal pathogen for transcription and presentation. The results indicate that the unique gene selected can initiate a host protective immune response to the parent bacterium.
Collapse
Affiliation(s)
- Xiaozhe Han
- The Forsyth Institute, Department of Immunology and Infectious Diseases, 245 First Street, Cambridge, MA, United States.
| | - Karen B LaRosa
- The Forsyth Institute, Department of Immunology and Infectious Diseases, 245 First Street, Cambridge, MA, United States
| | - Toshihisa Kawai
- The Forsyth Institute, Department of Immunology and Infectious Diseases, 245 First Street, Cambridge, MA, United States
| | - Martin A Taubman
- The Forsyth Institute, Department of Immunology and Infectious Diseases, 245 First Street, Cambridge, MA, United States
| |
Collapse
|
3
|
Nagano K. FimA Fimbriae of the Periodontal Disease-associated Bacterium Porphyromonas gingivalis. YAKUGAKU ZASSHI 2013; 133:963-74. [DOI: 10.1248/yakushi.13-00177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University
| |
Collapse
|
4
|
OxyR activation in Porphyromonas gingivalis in response to a hemin-limited environment. Infect Immun 2012; 80:3471-80. [PMID: 22825453 DOI: 10.1128/iai.00680-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis is a Gram-negative obligately anaerobic bacterium associated with several forms of periodontal disease, most closely with chronic periodontitis. Previous studies demonstrated that OxyR plays an important role in the aerotolerance of P. gingivalis by upregulating the expression of oxidative-stress genes. Increases in oxygen tension and in H(2)O(2) both induce activation of OxyR. It is also known that P. gingivalis requires hemin as an iron source for its growth. In this study, we found that a hemin-limited growth environment significantly enhanced OxyR activity in P. gingivalis. As a result, expression of sod, dps, and ahpC was also upregulated. Using a chromatin immunoprecipitation quantitative PCR (qPCR) analysis, DNA binding of activated OxyR to the promoter of the sod gene was enhanced in P. gingivalis grown under hemin-limited conditions compared to excess-hemin conditions. Cellular tolerance of H(2)O(2) was also enhanced when hemin was limited in the growth medium of P. gingivalis. Our work supports a model in which hemin serves as a signal for the regulation of OxyR activity and indicates that P. gingivalis coordinately regulates expression of oxidative-stress-related genes by this hemin concentration-dependent pathway.
Collapse
|
5
|
Mukherjee S, Yakhnin H, Kysela D, Sokoloski J, Babitzke P, Kearns DB. CsrA-FliW interaction governs flagellin homeostasis and a checkpoint on flagellar morphogenesis in Bacillus subtilis. Mol Microbiol 2011; 82:447-61. [PMID: 21895793 DOI: 10.1111/j.1365-2958.2011.07822.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
CsrA is a widely distributed RNA binding protein that regulates translation initiation and/or mRNA stability of target transcripts. CsrA activity is antagonized by sRNA(s) containing multiple CsrA binding sites in several Gram-negative bacterial species. Here we discover FliW, the first protein antagonist of CsrA activity that constitutes a partner switching mechanism to control flagellin synthesis in the Gram-positive organism Bacillus subtilis. Following the flagellar assembly checkpoint of hook completion, secretion of flagellin (Hag) releases FliW protein from a FliW-Hag complex. FliW then binds to CsrA and relieves CsrA-mediated translational repression of hag for flagellin synthesis concurrent with filament assembly. Thus, flagellin homeostatically restricts its own translation. Homeostatic autoregulation may be a general mechanism to precisely control structural subunits required at specific times and in finite amounts such as those involved in the assembly of flagella, type III secretion machines and pili. Finally, phylogenetic analysis suggests that CsrA, a highly pleiotropic virulence regulator in many bacterial pathogens, had an ancestral role in flagellar assembly and evolved to co-regulate various cellular processes with motility.
Collapse
|
6
|
Role of arginine deiminase of Streptococcus cristatus in Porphyromonas gingivalis colonization. Antimicrob Agents Chemother 2010; 54:4694-8. [PMID: 20660674 DOI: 10.1128/aac.00284-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability to attach to a variety of oral surfaces is an important characteristic of Porphyromonas gingivalis. Previous studies have demonstrated that expression and production of FimA, a major subunit protein of the long fimbriae, is required for P. gingivalis colonization. Here we report that a surface protein, arginine deiminase (ArcA) of Streptococcus cristatus, represses FimA production and inhibits biofilm formation of P. gingivalis. This inhibitory function of ArcA is also observed in the formation of heterotypic P. gingivalis-Streptococcus gordonii biofilms. P. gingivalis is released from streptococcal substrates in the presence of ArcA, likely due to an inhibition of FimA production. This work suggests that ArcA may have the potential to be a specific antibiofilm agent to fight P. gingivalis infections.
Collapse
|
7
|
|
8
|
Negative correlation of distributions of Streptococcus cristatus and Porphyromonas gingivalis in subgingival plaque. J Clin Microbiol 2009; 47:3902-6. [PMID: 19846640 DOI: 10.1128/jcm.00072-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis is one of the major causative agents of adult periodontitis. One of the features of this periodontal pathogen is its ability to attach to a variety of oral bacterial surfaces and to colonize subgingival dental plaque. We have shown that Streptococcus cristatus CC5A inhibits expression of fimA, a gene encoding the major protein subunit of long fimbriae in P. gingivalis; as a result, S. cristatus interrupts formation of P. gingivalis biofilms. Here we further demonstrate that the inhibitory activity of S. cristatus affects multiple strains of P. gingivalis and that optimal inhibitory activity correlates with levels of arginine deiminase expression in S. cristatus. More strikingly, the impact of S. cristatus on P. gingivalis colonization was revealed by comparing levels of P. gingivalis and S. cristatus in subgingival dental plaque. Spearman correlation analysis indicated a negative correlation between the distributions of S. cristatus and P. gingivalis (r = -0.57; P < 0.05). These data suggest that some early colonizers of dental plaque, such as S. cristatus, may be beneficial to the host by antagonizing the colonization and accumulation of periodontal pathogens such as P. gingivalis.
Collapse
|
9
|
Xie H, Lin X, Wang BY, Wu J, Lamont RJ. Identification of a signalling molecule involved in bacterial intergeneric communication. MICROBIOLOGY-SGM 2007; 153:3228-3234. [PMID: 17906122 PMCID: PMC2885614 DOI: 10.1099/mic.0.2007/009050-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The development of complex multispecies communities such as biofilms is controlled by interbacterial communication systems. We have previously reported an intergeneric communication between two oral bacteria, Streptococcus cristatus and Porphyromonas gingivalis, that results in inhibition of fimA expression. Here, we demonstrate that a surface protein, arginine deiminase (ArcA), of S. cristatus serves as a signal that initiates intergeneric communication. An ArcA-deficient mutant of S. cristatus is unable to communicate with P. gingivalis. Furthermore, arginase activity is not essential for the communication, and ArcA retains the ability to repress expression of fimA in the presence of arginine deiminase inhibitors. These results present a novel mechanism by which intergeneric communication in dental biofilms is accomplished.
Collapse
Affiliation(s)
- Hua Xie
- School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA
| | - Xinghua Lin
- School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA
| | - Bing-Yan Wang
- Department of Periodontics and Endodontics, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Jie Wu
- School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA
| | - Richard J. Lamont
- Department of Oral Biology, University of Florida, Gainesville, FL 32610-0424, USA
| |
Collapse
|
10
|
Park Y, Xie H, Lamont RJ. Transcriptional organization of the Porphyromonas gingivalis fimA locus. FEMS Microbiol Lett 2007; 273:103-8. [PMID: 17559391 DOI: 10.1111/j.1574-6968.2007.00782.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Two different transcriptional start sites, as well as promoter regions and translational starts, have been proposed for the fimA gene encoding a long fimbriae subunit protein of Porphyromonas gingivalis. In this study, the fimA promoter regions and organization of the fimA operon were characterized. The two putative promoter regions for fimA were fused with a lacZ reporter gene, cloned into the shuttle plasmid vector pT-COW, and the recombinant plasmids were introduced to P. gingivalis 33277. Reverse transcriptase-polymerase chain reaction demonstrated mRNA production from the promoter proximal to the translational start. LacZ activities of P. gingivalis containing the recombinant plasmids showed that maximal expression of fimA was promoted by the proximal promoter in combination with distal regulatory sequences. A polycistronic message spanning PG2130, PG2131 and fimA (PG2132) was observed, thus fimA transcripts may also be generated by processing of the polycistronic message.
Collapse
Affiliation(s)
- Yoonsuk Park
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA.
| | | | | |
Collapse
|
11
|
Wu J, Lin X, Xie H. Porphyromonas gingivalis short fimbriae are regulated by a FimS/FimR two-component system. FEMS Microbiol Lett 2007; 271:214-21. [PMID: 17451448 PMCID: PMC1974823 DOI: 10.1111/j.1574-6968.2007.00722.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Porphyromonas gingivalis possesses two distinct fimbriae. The long (FimA) fimbriae have been extensively studied. Expression of the fimA gene is tightly controlled by a two-component system (FimS/FimR) through a cascade regulation. The short (Mfa1) fimbriae are less understood. The authors have recently demonstrated that both fimbriae are required for formation of P. gingivalis biofilms. Here, the novel finding that FimR, a member of the two-component regulatory system, is a transcriptional activator of the mfa1 gene is promoted. Unlike the regulatory mechanism of FimA by FimR, this regulation of the mfa1 gene is accomplished by FimR directly binding to the promoter region of mfa1.
Collapse
Affiliation(s)
- Jie Wu
- School of Dentistry, Meharry Medical College, Nashville, TN, USA
| | | | | |
Collapse
|
12
|
Abstract
Previous work suggested that the FlgE (flagellar hook subunit) protein in Salmonella enterica serovar Typhimurium was posttranscriptionally regulated in response to the stage of flagellar assembly. Specifically, the FlgE protein could be detected in flagellar mutants defective at the stages of assembly before or after rod assembly but not in rod assembly mutants, yet flgE mRNA levels were unaffected. To elucidate posttranscriptional mechanisms involved in the coupling of flgE gene expression to hook assembly, the RNA sequences at the 5' and 3' ends of the flgE-containing mRNA processed from the large flgBCDEFGHIJKL operon were determined by rapid amplification of cDNA ends, and secretion of the FlgE protein in different flagellar assembly mutant strains was analyzed. The sequences 5' and 3' of the flgE gene where RNA processing occurred was within 15 bases upstream of the flgD stop codon and at bases 145 to 147 downstream of the flgF start codon, respectively. The ribosome binding site of the flgD gene was found to be inhibitory to flgE translation in strains deleted for the upstream flgD gene, unless the region 15 bases upstream of the flgD stop codon was present. Secretion of FlgE into the periplasm was monitored using beta-lactamase (Bla) fusions as a periplasm-specific reporter, which conferred resistance to ampicillin when FlgE-Bla was secreted into the periplasm. Using this assay, we found that the effect of rod assembly mutants on FlgE levels was due to FlgE turnover in the periplasm and that the FliE rod component protein was required for efficient FlgE-Bla secretion.
Collapse
Affiliation(s)
- Hee Jung Lee
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
13
|
Nishikawa K, Yoshimura F, Duncan MJ. A regulation cascade controls expression of Porphyromonas gingivalis fimbriae via the FimR response regulator. Mol Microbiol 2005; 54:546-60. [PMID: 15469523 DOI: 10.1111/j.1365-2958.2004.04291.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Little is known about how Porphyromonas gingivalis, a Gram-negative oral anaerobe, senses environmental changes, and how such information is transmitted to the cell. The production of P. gingivalis surface fimbriae is regulated by FimS-FimR, a two component signal transduction system. Expression of fimA, encoding the fimbrilin protein subunit of fimbriae, is positively regulated by the FimR response regulator. In this study we investigated the molecular mechanisms of FimR regulation of fimA expression. Comparative transcription profiling of fimR wild-type and mutant strains shows that FimR controls the expression of several genes including five clustered around the fimA locus. Chromatin immunoprecipitation assays and electrophoretic mobility shift assays identify and confirm that FimR binds to the promoter region of the first gene in the fimA cluster. Gene expression analyses of mutant strains reveal a transcriptional cascade involving multiple steps, with FimR activating expression of the first gene of the cluster that encodes a key regulatory protein.
Collapse
Affiliation(s)
- Kiyoshi Nishikawa
- Department of Molecular Genetics, The Forsyth Institute, Boston, MA 02115, USA
| | | | | |
Collapse
|
14
|
Olsen I, Dahlen G. Salient virulence factors in anaerobic bacteria, with emphasis on their importance in endodontic infections. ACTA ACUST UNITED AC 2004. [DOI: 10.1111/j.1601-1546.2004.00085.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|