1
|
Sharma A, Sanduja P, Anand A, Mahajan P, Guzman CA, Yadav P, Awasthi A, Hanski E, Dua M, Johri AK. Advanced strategies for development of vaccines against human bacterial pathogens. World J Microbiol Biotechnol 2021; 37:67. [PMID: 33748926 PMCID: PMC7982316 DOI: 10.1007/s11274-021-03021-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 02/17/2021] [Indexed: 12/18/2022]
Abstract
Infectious diseases are one of the main grounds of death and disabilities in human beings globally. Lack of effective treatment and immunization for many deadly infectious diseases and emerging drug resistance in pathogens underlines the need to either develop new vaccines or sufficiently improve the effectiveness of currently available drugs and vaccines. In this review, we discuss the application of advanced tools like bioinformatics, genomics, proteomics and associated techniques for a rational vaccine design.
Collapse
Affiliation(s)
- Abhinay Sharma
- School of Life Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Vaccinology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Pooja Sanduja
- School of Life Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Aparna Anand
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Pooja Mahajan
- School of Life Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Carlos A Guzman
- Department of Vaccinology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Puja Yadav
- Department of Microbiology, Central University of Haryana, Mahendragarh, Harayana, India
| | - Amit Awasthi
- Translational Health Science and Technology Institute, Faridabad-Gurgaon Expressway, PO box #04, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, 121001, India
| | - Emanuel Hanski
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Meenakshi Dua
- School of Environmental Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
2
|
Mtshali SA, Adeleke MA. A review of adaptive immune responses to Eimeria tenella and Eimeria maxima challenge in chickens. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1833693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- S. A. Mtshali
- Discipline of Genetics, School of Life Sciences, University of Kwa-Zulu Natal, Durban, South Africa
| | - M. A. Adeleke
- Discipline of Genetics, School of Life Sciences, University of Kwa-Zulu Natal, Durban, South Africa
| |
Collapse
|
3
|
Schreeg ME, Marr HS, Tarigo JL, Sherrill MK, Outi HK, Scholl EH, Bird DM, Vigil A, Hung C, Nakajima R, Liang L, Trieu A, Doolan DL, Thomas JE, Levy MG, Reichard MV, Felgner PL, Cohn LA, Birkenheuer AJ. Identification of Cytauxzoon felis antigens via protein microarray and assessment of expression library immunization against cytauxzoonosis. Clin Proteomics 2018; 15:44. [PMID: 30618510 PMCID: PMC6310948 DOI: 10.1186/s12014-018-9218-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/14/2018] [Indexed: 01/17/2023] Open
Abstract
Background Cytauxzoonosis is a disease of felids in North America caused by the tick-transmitted apicomplexan parasite Cytauxzoon felis. Cytauxzoonosis is particularly virulent for domestic cats, but no vaccine currently exists. The parasite cannot be cultivated in vitro, presenting a significant limitation for vaccine development. Methods Recent sequencing of the C. felis genome has identified over 4300 putative protein-encoding genes. From this pool we constructed a protein microarray containing 673 putative C. felis proteins. This microarray was probed with sera from C. felis-infected and naïve cats to identify differentially reactive antigens which were incorporated into two expression library vaccines, one polyvalent and one monovalent. We assessed the efficacy of these vaccines to prevent of infection and/or disease in a tick-challenge model. Results Probing of the protein microarray resulted in identification of 30 differentially reactive C. felis antigens that were incorporated into the two expression library vaccines. However, expression library immunization failed to prevent infection or disease in cats challenged with C. felis. Conclusions Protein microarray facilitated high-throughput identification of novel antigens, substantially increasing the pool of characterized C. felis antigens. These antigens should be considered for development of C. felis vaccines, diagnostics, and therapeutics. Electronic supplementary material The online version of this article (10.1186/s12014-018-9218-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Megan E Schreeg
- 1College of Veterinary Medicine, North Carolina State University, Research Building Room 464, 1060 William Moore Drive, Raleigh, NC 27607 USA
| | - Henry S Marr
- 1College of Veterinary Medicine, North Carolina State University, Research Building Room 464, 1060 William Moore Drive, Raleigh, NC 27607 USA
| | - Jaime L Tarigo
- 1College of Veterinary Medicine, North Carolina State University, Research Building Room 464, 1060 William Moore Drive, Raleigh, NC 27607 USA.,2College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602 USA
| | - Meredith K Sherrill
- 3College of Veterinary Medicine, University of Missouri, 1600 East Rollins, Columbia, MO 65211 USA
| | - Hilton K Outi
- 3College of Veterinary Medicine, University of Missouri, 1600 East Rollins, Columbia, MO 65211 USA
| | - Elizabeth H Scholl
- 4College of Agriculture and Life Sciences, North Carolina State University, 2501 Founders Dr, Raleigh, NC 27607 USA
| | - David M Bird
- 4College of Agriculture and Life Sciences, North Carolina State University, 2501 Founders Dr, Raleigh, NC 27607 USA
| | - Adam Vigil
- 5School of Medicine, University of California Irvine, 1001 Health Sciences Rd, Irvine, CA 92617 USA
| | - Chris Hung
- 5School of Medicine, University of California Irvine, 1001 Health Sciences Rd, Irvine, CA 92617 USA
| | - Rie Nakajima
- 5School of Medicine, University of California Irvine, 1001 Health Sciences Rd, Irvine, CA 92617 USA
| | - Li Liang
- 5School of Medicine, University of California Irvine, 1001 Health Sciences Rd, Irvine, CA 92617 USA
| | - Angela Trieu
- 6QIMR Berghofer Medical Research Institute, 300 Herston Rd, Brisbane City, QLD 4006 Australia
| | - Denise L Doolan
- 6QIMR Berghofer Medical Research Institute, 300 Herston Rd, Brisbane City, QLD 4006 Australia.,7Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Dr, Douglas, QLD 4814 Australia
| | - Jennifer E Thomas
- 8Center for Veterinary Health Sciences, Oklahoma State University, 208 S McFarland St, Stillwater, OK 74078 USA
| | - Michael G Levy
- 1College of Veterinary Medicine, North Carolina State University, Research Building Room 464, 1060 William Moore Drive, Raleigh, NC 27607 USA
| | - Mason V Reichard
- 8Center for Veterinary Health Sciences, Oklahoma State University, 208 S McFarland St, Stillwater, OK 74078 USA
| | - Philip L Felgner
- 5School of Medicine, University of California Irvine, 1001 Health Sciences Rd, Irvine, CA 92617 USA
| | - Leah A Cohn
- 3College of Veterinary Medicine, University of Missouri, 1600 East Rollins, Columbia, MO 65211 USA
| | - Adam J Birkenheuer
- 1College of Veterinary Medicine, North Carolina State University, Research Building Room 464, 1060 William Moore Drive, Raleigh, NC 27607 USA
| |
Collapse
|
4
|
Rathore JS, Wang Y. Protective role of Th17 cells in pulmonary infection. Vaccine 2016; 34:1504-1514. [PMID: 26878294 DOI: 10.1016/j.vaccine.2016.02.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 01/14/2023]
Abstract
Th17 cells are characterized as preferential producer of interleukins including IL-17A, IL-17F, IL-21 and IL-22. Corresponding receptors of these cytokines are expressed on number of cell types found in the mucosa, including epithelial cells and fibroblasts which constitute the prime targets of the Th17-associated cytokines. Binding of IL-17 family members to their corresponding receptors lead to modulation of antimicrobial functions of target cells including alveolar epithelial cells. Stimulated alveolar epithelial cells produce antimicrobial peptides and are involved in granulepoesis, neutrophil recruitment and tissue repair. Mucosal immunity mediated by Th17 cells is protective against numerous pulmonary pathogens including extracellular bacterial and fungal pathogens. This review focuses on the protective role of Th17 cells during pulmonary infection, highlighting subset differentiation, effector cytokines production, followed by study of the binding of these cytokines to their corresponding receptors, the subsequent signaling pathway they engender and their effector role in host defense.
Collapse
Affiliation(s)
- Jitendra Singh Rathore
- University of Pennsylvania, Perelman School of Medicine, Department of Microbiology, Philadelphia, PA, USA; Gautam Buddha University, School of Biotechnology, Greater Noida, Yamuna Expressway, Uttar Pradesh, India.
| | - Yan Wang
- University of Pennsylvania, Perelman School of Medicine, Department of Microbiology, Philadelphia, PA, USA
| |
Collapse
|
5
|
Abstract
Vaccination has a proven record as one of the most effective medical approaches to prevent the spread of infectious diseases. Traditional vaccine approaches involve the administration of whole killed or weakened microorganisms to stimulate protective immune responses. Such approaches deliver many microbial components, some of which contribute to protective immunity, and assist in guiding the type of immune response that is elicited. Despite their impeccable record, these approaches have failed to yield vaccines for many important infectious organisms. This has prompted a move towards more defined vaccines ('subunit vaccines'), where individual protective components are administered. This unit provides an overview of the components that are used for the development of modern vaccines including: an introduction to different vaccine types (whole organism, protein/peptide, polysaccharide, conjugate, and DNA vaccines); techniques for identifying subunit antigens; vaccine delivery systems; and immunostimulatory agents ('adjuvants'), which are fundamental for the development of effective subunit vaccines.
Collapse
|
6
|
Expression library immunization can confer protection against lethal challenge with African swine fever virus. J Virol 2014; 88:13322-32. [PMID: 25210179 DOI: 10.1128/jvi.01893-14] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED African swine fever is one of the most devastating pig diseases, against which there is no vaccine available. Recent work from our laboratory has demonstrated the protective potential of DNA vaccines encoding three African swine fever viral antigens (p54, p30, and the hemagglutinin extracellular domain) fused to ubiquitin. Partial protection was afforded in the absence of detectable antibodies prior to virus challenge, and survival correlated with the presence of a large number of hemagglutinin-specific CD8(+) T cells in blood. Aiming to demonstrate the presence of additional CD8(+) T-cell determinants with protective potential, an expression library containing more than 4,000 individual plasmid clones was constructed, each one randomly containing a Sau3AI restriction fragment of the viral genome (p54, p30, and hemagglutinin open reading frames [ORFs] excluded) fused to ubiquitin. Immunization of farm pigs with the expression library yielded 60% protection against lethal challenge with the virulent E75 strain. These results were further confirmed by using specific-pathogen-free pigs after challenging them with 10(4) hemadsorbing units (HAU) of the cell culture-adapted strain E75CV1. On this occasion, 50% of the vaccinated pigs survived the lethal challenge, and 2 out of the 8 immunized pigs showed no viremia or viral excretion at any time postinfection. In all cases, protection was afforded in the absence of detectable specific antibodies prior to challenge and correlated with the detection of specific T-cell responses at the time of sacrifice. In summary, our results clearly demonstrate the presence of additional protective determinants within the African swine fever virus (ASFV) genome and open up the possibility for their future identification. IMPORTANCE African swine fever is a highly contagious disease of domestic and wild pigs that is endemic in many sub-Saharan countries, where it causes important economic losses and is currently in continuous expansion across Europe. Unfortunately, there is no treatment nor an available vaccine. Early attempts using attenuated vaccines demonstrated their potential to protect pigs against experimental infection. However, their use in the field remains controversial due to safety issues. Although inactive and subunit vaccines did not confer solid protection against experimental ASFV infection, our DNA vaccination results have generated new expectations, confirming the key role of T-cell responses in protection and the existence of multiple ASFV antigens with protective potential, more of which are currently being identified. Thus, the future might bring complex and safe formulations containing more than a single viral determinant to obtain broadly protective vaccines. We believe that obtaining the optimal vaccine formulation it is just a matter of time, investment, and willingness.
Collapse
|
7
|
Grubaugh D, Flechtner JB, Higgins DE. Proteins as T cell antigens: Methods for high-throughput identification. Vaccine 2013; 31:3805-10. [DOI: 10.1016/j.vaccine.2013.06.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/03/2013] [Accepted: 06/13/2013] [Indexed: 12/22/2022]
|
8
|
Tekiel V, Alba-Soto CD, González Cappa SM, Postan M, Sánchez DO. Identification of novel vaccine candidates for Chagas' disease by immunization with sequential fractions of a trypomastigote cDNA expression library. Vaccine 2009; 27:1323-32. [PMID: 19162108 DOI: 10.1016/j.vaccine.2008.12.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 12/23/2008] [Accepted: 12/28/2008] [Indexed: 12/20/2022]
Abstract
The protozoan Trypanosoma cruzi is the etiological agent of Chagas' disease, a major chronic infection in Latin America. Currently, there are neither effective drugs nor vaccines for the treatment or prevention of the disease. Several T. cruzi surface antigens are being tested as vaccines but none of them proved to be completely protective, probably because they represent only a limited repertoire of all the possible T. cruzi target molecules. Taking into account that the trypomastigote stage of the parasite must express genes that allow the parasite to disseminate into the tissues and invade cells, we reasoned that genes preferentially expressed in trypomastigotes represent potential targets for immunization. Here we screened an epimastigote-subtracted trypomastigote cDNA expression library by genetic immunization, in order to find new vaccine candidates for Chagas' disease. After two rounds of immunization and challenge with trypomastigotes, this approach led to the identification of a pool of 28 gene fragments that improved in vivo protection. Sequence analysis of these putative candidates revealed that 19 out of 28 (67.85%) of the genes were hypothetical proteins or unannotated T. cruzi open reading frames, which certainly would not have been identified by other methods of vaccine discovery.
Collapse
Affiliation(s)
- Valeria Tekiel
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, CONICET, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
9
|
Kaushik DK, Sehgal D. Developing Antibacterial Vaccines in Genomics and Proteomics Era. Scand J Immunol 2008; 67:544-52. [DOI: 10.1111/j.1365-3083.2008.02107.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Yero D, Pajón R, Caballero E, González S, Cobas K, Fariñas M, Lopez Y, Acosta A. A novel method to screen genomic libraries that combines genomic immunization with the prime-boost strategy. ACTA ACUST UNITED AC 2007; 50:430-3. [PMID: 17537176 DOI: 10.1111/j.1574-695x.2007.00265.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We employed a prime-boost regimen in combination with the expression library immunization protocol to improve the protective effectiveness of a genomic library used as immunogen. To demonstrate the feasibility of this novel strategy, we used as a prime a serogroup B Neisseria meningitidis random genomic library constructed in a eukaryotic expression vector. Mice immunized with different fractions of this library and boosted with a single dose of meningococcal outer membrane vesicles elicited higher bactericidal antibody titers compared with mice primed with the empty vector. After the boost, passive administration of sera from mice primed with two of these fractions significantly reduced the number of viable bacteria in the blood of infant rats challenged with live N. meningitidis. The method proposed could be applied to the identification of subimmunogenic antigens during vaccine candidate screening by employing expression library immunization.
Collapse
Affiliation(s)
- Daniel Yero
- Department of Molecular Biology, Division of Biotechnology, Finlay Institute, Havana, Cuba.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Yero D, Pajón R, Pérez Y, Fariñas M, Cobas K, Diaz D, Solis RL, Acosta A, Brookes C, Taylor S, Gorringe A. Identification by genomic immunization of a pool of DNA vaccine candidates that confer protective immunity in mice against Neisseria meningitidis serogroup B. Vaccine 2007; 25:5175-88. [PMID: 17544180 DOI: 10.1016/j.vaccine.2007.04.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 04/26/2007] [Accepted: 04/28/2007] [Indexed: 11/19/2022]
Abstract
We have shown previously that expression library immunization is viable alternative approach to induce protective immunity against Neisseria meningitidis serogroup B. In this study we report that few rounds of library screening allow identification of protective pools of defined antigens. A previously reported protective meningococcal library (L8, with 600 clones) was screened and two sub-libraries of 95 clones each were selected based on the induction of bactericidal and protective antibodies in BALB/c mice. After sequence analysis of each clone within these sub-libraries, we identified a pool of 20 individual antigens that induced protective immune responses in mice against N. meningitidis infection, and the observed protection was associated with the induction of bactericidal antibodies. Our studies demonstrate for the first time that ELI combined with sequence analysis is a powerful and efficient tool for identification of candidate antigens for use in a meningococcal vaccine.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Bacteremia/immunology
- Bacteremia/prevention & control
- Blotting, Western
- DNA, Bacterial/genetics
- DNA, Bacterial/immunology
- Enzyme-Linked Immunosorbent Assay
- Genomic Library
- Immune Sera/administration & dosage
- Immune Sera/immunology
- Male
- Meningococcal Infections/immunology
- Meningococcal Infections/prevention & control
- Meningococcal Vaccines/administration & dosage
- Meningococcal Vaccines/immunology
- Mice
- Mice, Inbred BALB C
- Microbial Viability/drug effects
- Neisseria meningitidis, Serogroup B/drug effects
- Neisseria meningitidis, Serogroup B/genetics
- Neisseria meningitidis, Serogroup B/immunology
- Plasmids/genetics
- Rats
- Survival Analysis
- Vaccination/methods
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Daniel Yero
- Department of Molecular Biology, Division of Biotechnology, Finlay Institute, Ave 27, La Lisa, Habana 11600, Cuba
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
McNeilly CL, Beagley KW, Moore RJ, Haring V, Timms P, Hafner LM. Expression library immunization confers partial protection against Chlamydia muridarum genital infection. Vaccine 2007; 25:2643-55. [PMID: 17239501 DOI: 10.1016/j.vaccine.2006.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 11/30/2006] [Accepted: 12/10/2006] [Indexed: 01/27/2023]
Abstract
Protective sequences of Chlamydia muridarum were identified as potential vaccine candidates by screening a genomic DNA expression library and assessing the immune responses of mice immunized with individual library clones following vaginal challenge with live Chlamydia. Groups of female BALB/c mice were immunized intra-abdominally by gene gun delivery of DNA three times at three-weekly intervals with individual library clones expressing chlamydial protein fragments and humoral and cell-mediated immune responses were evaluated. Chlamydia-specific cytokines including tumour necrosis factor-alpha (TNF-alpha) interleukin-10 (IL-10), interleukin-4 (IL-4), interleukin-12 (IL-12) and interferon-gamma (IFN-gamma) were detected in mice immunized either with selected DNA clones in spleen cells (0.2-135.2 pg/mL) or lymph nodes (0.15-84.9 pg/mL). The most protective antigen identified was TC0512, a putative outer membrane protein (OMP). Immunization of mice with this clone elicited T-helper type-1 (Th-1) and T-helper type-2 (Th-2) cytokines as well as and IgG1 and IgG2a in sera of these animals. Ten days after the last immunization, animals were challenged intra-vaginally with 5 x 10(4) inclusion-forming units (IFUs) of C. muridarum. At 9 days following challenge TC0512 showed a 73% reduction in the number of recoverable Chlamydia compared with vector only immunized controls. Six additional clones were identified that also conferred varying degrees of protection against live chlamydial challenge. Significant protection against the initial stages of infection was shown by two DNA clones (encoding hypothetical proteins) and five clones showed enhanced clearance of chlamydial infection following DNA immunization and live chlamydial challenge. These results demonstrate that the C. muridarum genome can be screened for individual vaccine candidates by genetic immunization and that the screen produces novel and partially protective vaccine candidates.
Collapse
Affiliation(s)
- Celia L McNeilly
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford GU 7XH, Surrey, UK
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Severe acute respiratory syndrome (SARS) is caused by a coronavirus (CoV), SARSCoV. SARS-CoV belongs to the family Coronaviridae, which are enveloped RNA viruses in the order Nidovirales. Global research efforts are continuing to increase the understanding of the virus, the pathogenesis of the disease it causes (SARS), and the “heterogeneity of individual infectiousness” as well as shedding light on how to prepare for other emerging viral diseases. Promising drugs and vaccines have been identified. The milestones achieved have resulted from a truly international effort. Molecular studies dissected the adaptation of this virus as it jumped from an intermediary animal, the civet, to humans, thus providing valuable insights into processes of molecular emergence.
Collapse
Affiliation(s)
- Tommy R Tong
- Department of Pathology, Princess Margaret Hospital, Laichikok, Kowloon, Hong Kong, China
| |
Collapse
|