1
|
Pathira Kankanamge L, Mora A, Ondrechen MJ, Beuning PJ. Biochemical Activity of 17 Cancer-Associated Variants of DNA Polymerase Kappa Predicted by Electrostatic Properties. Chem Res Toxicol 2023; 36:1789-1803. [PMID: 37883788 PMCID: PMC10664756 DOI: 10.1021/acs.chemrestox.3c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023]
Abstract
DNA damage and repair have been widely studied in relation to cancer and therapeutics. Y-family DNA polymerases can bypass DNA lesions, which may result from external or internal DNA damaging agents, including some chemotherapy agents. Overexpression of the Y-family polymerase human pol kappa can result in tumorigenesis and drug resistance in cancer. This report describes the use of computational tools to predict the effects of single nucleotide polymorphism variants on pol kappa activity. Partial Order Optimum Likelihood (POOL), a machine learning method that uses input features from Theoretical Microscopic Titration Curve Shapes (THEMATICS), was used to identify amino acid residues most likely involved in catalytic activity. The μ4 value, a metric obtained from POOL and THEMATICS that serves as a measure of the degree of coupling between one ionizable amino acid and its neighbors, was then used to identify which protein mutations are likely to impact the biochemical activity. Bioinformatic tools SIFT, PolyPhen-2, and FATHMM predicted most of these variants to be deleterious to function. Along with computational and bioinformatic predictions, we characterized the catalytic activity and stability of 17 cancer-associated DNA pol kappa variants. We identified pol kappa variants R48I, H105Y, G147D, G154E, V177L, R298C, E362V, and R470C as having lower activity relative to wild-type pol kappa; the pol kappa variants T102A, H142Y, R175Q, E210K, Y221C, N330D, N338S, K353T, and L383F were identified as being similar in catalytic efficiency to WT pol kappa. We observed that POOL predictions can be used to predict which variants have decreased activity. Predictions from bioinformatic tools like SIFT, PolyPhen-2, and FATHMM are based on sequence comparisons and therefore are complementary to POOL but are less capable of predicting biochemical activity. These bioinformatic and computational tools can be used to identify SNP variants with deleterious effects and altered biochemical activity from a large data set.
Collapse
Affiliation(s)
- Lakindu
S. Pathira Kankanamge
- Department
of Chemistry and Chemical Biology and Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Alexandra Mora
- Department
of Chemistry and Chemical Biology and Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Mary Jo Ondrechen
- Department
of Chemistry and Chemical Biology and Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Penny J. Beuning
- Department
of Chemistry and Chemical Biology and Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Schmaltz LF, Koag MC, Kou Y, Zhang L, Lee S. Genotoxic effects of the major alkylation damage N7-methylguanine and methyl formamidopyrimidine. Biochem J 2023; 480:573-585. [PMID: 37078496 PMCID: PMC11061863 DOI: 10.1042/bcj20220460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/29/2023] [Accepted: 04/19/2023] [Indexed: 04/21/2023]
Abstract
Various alkylating agents are known to preferentially modify guanine in DNA, resulting in the formation of N7-alkylguanine (N7-alkylG) and the imidazole ring opened alkyl-formamidopyrimidine (alkyl-FapyG) lesions. Evaluating the mutagenic effects of N7-alkylG has been challenging due to the instability of the positively charged N7-alkylG. To address this issue, we developed a 2'-fluorine-mediated transition-state destabilization approach, which stabilizes N7-alkylG and prevents spontaneous depurination. We also developed a postsynthetic conversion of 2'-F-N7-alkylG DNA into 2'-F-alkyl-FapyG DNA. Using these methods, we incorporated site-specific N7-methylG and methyl-FapyG into pSP189 plasmid and determined their mutagenic properties in bacterial cells using the supF-based colony screening assay. The mutation frequency of N7-methylG was found to be less than 0.5%. Our crystal structure analysis revealed that N7-methylation did not significantly alter base pairing properties, as evidenced by a correct base pairing between 2'-F-N7-methylG and dCTP in Dpo4 polymerase catalytic site. In contrast, the mutation frequency of methyl-FapyG was 6.3%, highlighting the mutagenic nature of this secondary lesion. Interestingly, all mutations arising from methyl-FapyG in the 5'-GGT(methyl-FapyG)G-3' context were single nucleotide deletions at the 5'-G of the lesion. Overall, our results demonstrate that 2'-fluorination technology is a useful tool for studying the chemically labile N7-alkylG and alkyl-FapyG lesions.
Collapse
Affiliation(s)
- Lillian F Schmaltz
- From the Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, U.S.A
| | - Myong-Chul Koag
- From the Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, U.S.A
| | - Yi Kou
- From the Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, U.S.A
| | - Louis Zhang
- From the Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, U.S.A
| | - Seongmin Lee
- From the Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, U.S.A
| |
Collapse
|
3
|
Structural and Molecular Kinetic Features of Activities of DNA Polymerases. Int J Mol Sci 2022; 23:ijms23126373. [PMID: 35742812 PMCID: PMC9224347 DOI: 10.3390/ijms23126373] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023] Open
Abstract
DNA polymerases catalyze DNA synthesis during the replication, repair, and recombination of DNA. Based on phylogenetic analysis and primary protein sequences, DNA polymerases have been categorized into seven families: A, B, C, D, X, Y, and RT. This review presents generalized data on the catalytic mechanism of action of DNA polymerases. The structural features of different DNA polymerase families are described in detail. The discussion highlights the kinetics and conformational dynamics of DNA polymerases from all known polymerase families during DNA synthesis.
Collapse
|
4
|
Huang QY, Song D, Wang WW, Peng L, Chen HF, Xiao X, Liu XP. Mechanism Underlying the Bypass of Apurinic/Pyrimidinic Site Analogs by Sulfolobus acidocaldarius DNA Polymerase IV. Int J Mol Sci 2022; 23:ijms23052729. [PMID: 35269871 PMCID: PMC8910976 DOI: 10.3390/ijms23052729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/10/2022] Open
Abstract
The spontaneous depurination of genomic DNA occurs frequently and generates apurinic/pyrimidinic (AP) site damage that is mutagenic or lethal to cells. Error-prone DNA polymerases are specifically responsible for the translesion synthesis (TLS) of specific DNA damage, such as AP site damage, generally with relatively low fidelity. The Y-family DNA polymerases are the main error-prone DNA polymerases, and they employ three mechanisms to perform TLS, including template-skipping, dNTP-stabilized misalignment, and misincorporation-misalignment. The bypass mechanism of the dinB homolog (Dbh), an archaeal Y-family DNA polymerase from Sulfolobus acidocaldarius, is unclear and needs to be confirmed. In this study, we show that the Dbh primarily uses template skipping accompanied by dNTP-stabilized misalignment to bypass AP site analogs, and the incorporation of the first nucleotide across the AP site is the most difficult. Furthermore, based on the reported crystal structures, we confirmed that three conserved residues (Y249, R333, and I295) in the little finger (LF) domain and residue K78 in the palm subdomain of the catalytic core domain are very important for TLS. These results deepen our understanding of how archaeal Y-family DNA polymerases deal with intracellular AP site damage and provide a biochemical basis for elucidating the intracellular function of these polymerases.
Collapse
Affiliation(s)
- Qin-Ying Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China; (Q.-Y.H.); (D.S.); (W.-W.W.); (L.P.); (H.-F.C.)
| | - Dong Song
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China; (Q.-Y.H.); (D.S.); (W.-W.W.); (L.P.); (H.-F.C.)
| | - Wei-Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China; (Q.-Y.H.); (D.S.); (W.-W.W.); (L.P.); (H.-F.C.)
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 239 Zhangheng Road, Shanghai 201204, China
| | - Li Peng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China; (Q.-Y.H.); (D.S.); (W.-W.W.); (L.P.); (H.-F.C.)
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China; (Q.-Y.H.); (D.S.); (W.-W.W.); (L.P.); (H.-F.C.)
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China; (Q.-Y.H.); (D.S.); (W.-W.W.); (L.P.); (H.-F.C.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences (Ministry of Education), Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
- Correspondence: (X.X.); (X.-P.L.)
| | - Xi-Peng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China; (Q.-Y.H.); (D.S.); (W.-W.W.); (L.P.); (H.-F.C.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences (Ministry of Education), Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
- Correspondence: (X.X.); (X.-P.L.)
| |
Collapse
|
5
|
Stalling of Eukaryotic Translesion DNA Polymerases at DNA-Protein Cross-Links. Genes (Basel) 2022; 13:genes13020166. [PMID: 35205211 PMCID: PMC8872012 DOI: 10.3390/genes13020166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 02/05/2023] Open
Abstract
DNA-protein cross-links (DPCs) are extremely bulky adducts that interfere with replication. In human cells, they are processed by SPRTN, a protease activated by DNA polymerases stuck at DPCs. We have recently proposed the mechanism of the interaction of DNA polymerases with DPCs, involving a clash of protein surfaces followed by the distortion of the cross-linked protein. Here, we used a model DPC, located in the single-stranded template, the template strand of double-stranded DNA, or the displaced strand, to study the eukaryotic translesion DNA polymerases ζ (POLζ), ι (POLι) and η (POLη). POLι demonstrated poor synthesis on the DPC-containing substrates. POLζ and POLη paused at sites dictated by the footprints of the polymerase and the cross-linked protein. Beyond that, POLζ was able to elongate the primer to the cross-link site when a DPC was in the template. Surprisingly, POLη was not only able to reach the cross-link site but also incorporated 1–2 nucleotides past it, which makes POLη the most efficient DNA polymerase on DPC-containing substrates. However, a DPC in the displaced strand was an insurmountable obstacle for all polymerases, which stalled several nucleotides before the cross-link site. Overall, the behavior of translesion polymerases agrees with the model of protein clash and distortion described above.
Collapse
|
6
|
Promutagenic bypass of 7,8-dihydro-8-oxoadenine by translesion synthesis DNA polymerase Dpo4. Biochem J 2021; 477:2859-2871. [PMID: 32686822 DOI: 10.1042/bcj20200449] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 01/28/2023]
Abstract
Reactive oxygen species induced by ionizing radiation and metabolic pathways generate 7,8-dihydro-8-oxoguanine (oxoG) and 7,8-dihydro-8-oxoadenine (oxoA) as two major forms of oxidative damage. The mutagenicity of oxoG, which promotes G to T transversions, is attributed to the lesion's conformational flexibility that enables Hoogsteen base pairing with dATP in the confines of DNA polymerases. The mutagenesis mechanism of oxoA, which preferentially causes A to C transversions, remains poorly characterized. While structures for oxoA bypass by human DNA polymerases are available, that of prokaryotic DNA polymerases have not been reported. Herein, we report kinetic and structural characterizations of Sulfolobus solfataricus Dpo4 incorporating a nucleotide opposite oxoA. Our kinetic studies show oxoA at the templating position reduces the replication fidelity by ∼560-fold. The catalytic efficiency of the oxoA:dGTP insertion is ∼300-fold greater than that of the dA:dGTP insertion, highlighting the promutagenic nature of oxoA. The relative efficiency of the oxoA:dGTP misincorporation is ∼5-fold greater than that of the oxoG:dATP misincorporation, suggesting the mutagenicity of oxoA is comparable to that of oxoG. In the Dpo4 replicating base pair site, oxoA in the anti-conformation forms a Watson-Crick base pair with an incoming dTTP, while oxoA in the syn-conformation assumes Hoogsteen base pairing with an incoming dGTP, displaying the dual coding potential of the lesion. Within the Dpo4 active site, the oxoA:dGTP base pair adopts a Watson-Crick-like geometry, indicating Dpo4 influences the oxoA:dGTP base pair conformation. Overall, the results reported here provide insights into the miscoding properties of the major oxidative adenine lesion during translesion synthesis.
Collapse
|
7
|
Cranford MT, Kaszubowski JD, Trakselis MA. A hand-off of DNA between archaeal polymerases allows high-fidelity replication to resume at a discrete intermediate three bases past 8-oxoguanine. Nucleic Acids Res 2020; 48:10986-10997. [PMID: 32997110 PMCID: PMC7641752 DOI: 10.1093/nar/gkaa803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/22/2020] [Accepted: 09/16/2020] [Indexed: 01/12/2023] Open
Abstract
During DNA replication, the presence of 8-oxoguanine (8-oxoG) lesions in the template strand cause the high-fidelity (HiFi) DNA polymerase (Pol) to stall. An early response to 8-oxoG lesions involves ‘on-the-fly’ translesion synthesis (TLS), in which a specialized TLS Pol is recruited and replaces the stalled HiFi Pol for lesion bypass. The length of TLS must be long enough for effective bypass, but it must also be regulated to minimize replication errors by the TLS Pol. The exact position where the TLS Pol ends and the HiFi Pol resumes (i.e. the length of the TLS patch) has not been described. We use steady-state and pre-steady-state kinetic assays to characterize lesion bypass intermediates formed by different archaeal polymerase holoenzyme complexes that include PCNA123 and RFC. After bypass of 8-oxoG by TLS PolY, products accumulate at the template position three base pairs beyond the lesion. PolY is catalytically poor for subsequent extension from this +3 position beyond 8-oxoG, but this inefficiency is overcome by rapid extension of HiFi PolB1. The reciprocation of Pol activities at this intermediate indicates a defined position where TLS Pol extension is limited and where the DNA substrate is handed back to the HiFi Pol after bypass of 8-oxoG.
Collapse
Affiliation(s)
- Matthew T Cranford
- Baylor University, Department of Chemistry and Biochemistry, One Bear Place, #97348, Waco, TX 76798, USA
| | - Joseph D Kaszubowski
- Baylor University, Department of Chemistry and Biochemistry, One Bear Place, #97348, Waco, TX 76798, USA
| | - Michael A Trakselis
- Baylor University, Department of Chemistry and Biochemistry, One Bear Place, #97348, Waco, TX 76798, USA
| |
Collapse
|
8
|
Wu Y, Jaremko WJ, Wilson RC, Pata JD. Heterotrimeric PCNA increases the activity and fidelity of Dbh, a Y-family translesion DNA polymerase prone to creating single-base deletion mutations. DNA Repair (Amst) 2020; 96:102967. [PMID: 32961405 DOI: 10.1016/j.dnarep.2020.102967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 11/15/2022]
Abstract
Dbh is a Y-family translesion DNA polymerase from Sulfolobus acidocaldarius, an archaeal species that grows in harsh environmental conditions. Biochemically, Dbh displays a distinctive mutational profile, creating single-base deletion mutations at extraordinarily high frequencies (up to 50 %) in specific repeat sequences. In cells, however, Dbh does not appear to contribute significantly to spontaneous frameshifts in these same sequence contexts. This suggests that either the error-prone DNA synthesis activity of Dbh is reduced in vivo and/or Dbh is restricted from replicating these sequences. Here, we test the hypothesis that the propensity for Dbh to make single base deletion mutations is reduced through interaction with the S. acidocaldarius heterotrimeric sliding clamp processivity factor, PCNA-123. We first confirm that Dbh physically interacts with PCNA-123, with the interaction requiring both the PCNA-1 subunit and the C-terminal 10 amino acids of Dbh, which contain a predicted PCNA-interaction peptide (PIP) motif. This interaction stimulates the polymerase activity of Dbh, even on short, linear primer-template DNA, by increasing the rate of nucleotide incorporation. This stimulation requires an intact PCNA-123 heterotrimer and a DNA duplex length of at least 18 basepairs, the minimal length predicted from structural data to bind to both the polymerase and the clamp. Finally, we find that PCNA-123 increases the fidelity of Dbh on a single-base deletion hotspot sequence 3-fold by promoting an increase in the rate of correct, but not incorrect, nucleotide addition and propose that PCNA-123 induces Dbh to adopt a more active conformation that is less prone to creating deletions during DNA synthesis.
Collapse
Affiliation(s)
- Yifeng Wu
- Wadsworth Center, New York State Department of Health, Albany, NY, United States; Department of Biomedical Sciences, University at Albany, Albany, NY, United States
| | - William J Jaremko
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Ryan C Wilson
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Janice D Pata
- Wadsworth Center, New York State Department of Health, Albany, NY, United States; Department of Biomedical Sciences, University at Albany, Albany, NY, United States.
| |
Collapse
|
9
|
Feng X, Liu X, Xu R, Zhao R, Feng W, Liao J, Han W, She Q. A Unique B-Family DNA Polymerase Facilitating Error-Prone DNA Damage Tolerance in Crenarchaeota. Front Microbiol 2020; 11:1585. [PMID: 32793138 PMCID: PMC7390963 DOI: 10.3389/fmicb.2020.01585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
Sulfolobus islandicus codes for four DNA polymerases: three are of the B-family (Dpo1, Dpo2, and Dpo3), and one is of the Y-family (Dpo4). Western analysis revealed that among the four polymerases, only Dpo2 exhibited DNA damage-inducible expression. To investigate how these DNA polymerases could contribute to DNA damage tolerance in S. islandicus, we conducted genetic analysis of their encoding genes in this archaeon. Plasmid-borne gene expression revealed that Dpo2 increases cell survival upon DNA damage at the expense of mutagenesis. Gene deletion studies showed although dpo1 is essential, the remaining three genes are dispensable. Furthermore, although Dpo4 functions in housekeeping translesion DNA synthesis (TLS), Dpo2, a B-family DNA polymerase once predicted to be inactive, functions as a damage-inducible TLS enzyme solely responsible for targeted mutagenesis, facilitating GC to AT/TA conversions in the process. Together, our data indicate that Dpo2 is the main DNA polymerase responsible for DNA damage tolerance and is the primary source of targeted mutagenesis. Given that crenarchaea encoding a Dpo2 also have a low-GC composition genome, the Dpo2-dependent DNA repair pathway may be conserved in this archaeal lineage.
Collapse
Affiliation(s)
- Xu Feng
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiaotong Liu
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ruyi Xu
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ruiliang Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenqian Feng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianglan Liao
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wenyuan Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
10
|
de Paz AM, Cybulski TR, Marblestone AH, Zamft BM, Church GM, Boyden ES, Kording KP, Tyo KEJ. High-resolution mapping of DNA polymerase fidelity using nucleotide imbalances and next-generation sequencing. Nucleic Acids Res 2019; 46:e78. [PMID: 29718339 PMCID: PMC6061839 DOI: 10.1093/nar/gky296] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/12/2018] [Indexed: 02/06/2023] Open
Abstract
DNA polymerase fidelity is affected by both intrinsic properties and environmental conditions. Current strategies for measuring DNA polymerase error rate in vitro are constrained by low error subtype sensitivity, poor scalability, and lack of flexibility in types of sequence contexts that can be tested. We have developed the Magnification via Nucleotide Imbalance Fidelity (MagNIFi) assay, a scalable next-generation sequencing assay that uses a biased deoxynucleotide pool to quantitatively shift error rates into a range where errors are frequent and hence measurement is robust, while still allowing for accurate mapping to error rates under typical conditions. This assay is compatible with a wide range of fidelity-modulating conditions, and enables high-throughput analysis of sequence context effects on base substitution and single nucleotide deletion fidelity using a built-in template library. We validate this assay by comparing to previously established fidelity metrics, and use it to investigate neighboring sequence-mediated effects on fidelity for several DNA polymerases. Through these demonstrations, we establish the MagNIFi assay for robust, high-throughput analysis of DNA polymerase fidelity.
Collapse
Affiliation(s)
- Alexandra M de Paz
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
| | - Thaddeus R Cybulski
- Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL 60611, USA
| | - Adam H Marblestone
- Biophysics Program, Harvard University, Boston, MA 02115, USA.,Wyss Institute, Harvard University, Boston, MA 02115, USA
| | - Bradley M Zamft
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - George M Church
- Biophysics Program, Harvard University, Boston, MA 02115, USA.,Wyss Institute, Harvard University, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Edward S Boyden
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Konrad P Kording
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keith E J Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
11
|
DNA binding strength increases the processivity and activity of a Y-Family DNA polymerase. Sci Rep 2017; 7:4756. [PMID: 28684739 PMCID: PMC5500549 DOI: 10.1038/s41598-017-02578-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/12/2017] [Indexed: 11/09/2022] Open
Abstract
DNA polymerase (pol) processivity, i.e., the bases a polymerase extends before falling off the DNA, and activity are important for copying difficult DNA sequences, including simple repeats. Y-family pols would be appealing for copying difficult DNA and incorporating non-natural dNTPs, due to their low fidelity and loose active site, but are limited by poor processivity and activity. In this study, the binding between Dbh and DNA was investigated to better understand how to rationally design enhanced processivity in a Y-family pol. Guided by structural simulation, a fused pol Sdbh with non-specific dsDNA binding protein Sso7d in the N-terminus was designed. This modification increased in vitro processivity 4-fold as compared to the wild-type Dbh. Additionally, bioinformatics was used to identify amino acid mutations that would increase stabilization of Dbh bound to DNA. The variant SdbhM76I further improved the processivity of Dbh by 10 fold. The variant SdbhKSKIP241–245RVRKS showed higher activity than Dbh on the incorporation of dCTP (correct) and dATP (incorrect) opposite the G (normal) or 8-oxoG(damaged) template base. These results demonstrate the capability to rationally design increases in pol processivity and catalytic efficiency through computational DNA binding predictions and the addition of non-specific DNA binding domains.
Collapse
|
12
|
Brenlla A, Rueda D, Romano LJ. Mechanism of aromatic amine carcinogen bypass by the Y-family polymerase, Dpo4. Nucleic Acids Res 2015; 43:9918-27. [PMID: 26481355 PMCID: PMC4787768 DOI: 10.1093/nar/gkv1067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/05/2015] [Indexed: 01/16/2023] Open
Abstract
Bulky DNA damage inhibits DNA synthesis by replicative polymerases and often requires the action of error prone bypass polymerases. The exact mechanism governing adduct-induced mutagenesis and its dependence on the DNA sequence context remains unclear. In this work, we characterize Dpo4 binding conformations and activity with DNA templates modified with the carcinogenic DNA adducts, 2-aminofluoene (AF) or N-acetyl-2-aminofluorene (AAF), using single-molecule FRET (smFRET) analysis and DNA synthesis extension assays. We find that in the absence of dNTPs, both adducts alter polymerase binding as measured by smFRET, but the addition of dNTPs induces the formation of a ternary complex having what appears to be a conformation similar to the one observed with an unmodified DNA template. We also observe that the misincorporation pathways for each adduct present significant differences: while an AF adduct induces a structure consistent with the previously observed primer-template looped structure, its acetylated counterpart uses a different mechanism, one consistent with a dNTP-stabilized misalignment mechanism.
Collapse
Affiliation(s)
- Alfonso Brenlla
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - David Rueda
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA Department of Medicine, Section of Virology, Imperial College London, London, UK Single Molecule Imaging Group, MRC Clinical Sciences Centre, Imperial College London, London, UK
| | - Louis J Romano
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
13
|
Kardashliev T, Ruff AJ, Zhao J, Schwaneberg U. A high-throughput screening method to reengineer DNA polymerases for random mutagenesis. Mol Biotechnol 2014; 56:274-83. [PMID: 24122281 DOI: 10.1007/s12033-013-9706-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A screening system for directed evolution of DNA polymerases employing a fluorescent Scorpion probe as a reporter has been developed. The screening system has been validated in a directed evolution experiment of a distributive polymerase from the Y-polymerase family (Dpo4 from Sulfolobus solfataricus) which was improved in elongation efficiency of consecutive mismatches. The engineering campaign yielded improved Dpo4 polymerase variants one of which was successfully benchmarked in a sequence saturation mutagenesis experiment especially with regard to the desirable consecutive transversion mutations ([2.5-fold increase in frequency relative to a reference library prepared with Dpo4 WT). The Scorpion probe screening system enables to reengineer polymerases with low processivity and fidelity, and no secondary activities (i.e. exonuclease activity or strand displacement activity) to match demands in diversity generation for directed protein evolution.
Collapse
|
14
|
Maxwell BA, Suo Z. Recent insight into the kinetic mechanisms and conformational dynamics of Y-Family DNA polymerases. Biochemistry 2014; 53:2804-14. [PMID: 24716482 PMCID: PMC4018064 DOI: 10.1021/bi5000405] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
The
kinetic mechanisms by which DNA polymerases catalyze DNA replication
and repair have long been areas of active research. Recently discovered
Y-family DNA polymerases catalyze the bypass of damaged DNA bases
that would otherwise block replicative DNA polymerases and stall replication
forks. Unlike DNA polymerases from the five other families, the Y-family
DNA polymerases have flexible, solvent-accessible active sites that
are able to tolerate various types of damaged template bases and allow
for efficient lesion bypass. Their promiscuous active sites, however,
also lead to fidelities that are much lower than those observed for
other DNA polymerases and give rise to interesting mechanistic properties.
Additionally, the Y-family DNA polymerases have several other unique
structural features and undergo a set of conformational changes during
substrate binding and catalysis different from those observed for
replicative DNA polymerases. In recent years, pre-steady-state kinetic
methods have been extensively employed to reveal a wealth of information
about the catalytic properties of these fascinating noncanonical DNA
polymerases. Here, we review many of the recent findings on the kinetic
mechanisms of DNA polymerization with undamaged and damaged DNA substrates
by the Y-family DNA polymerases, and the conformational dynamics employed
by these error-prone enzymes during catalysis.
Collapse
Affiliation(s)
- Brian A Maxwell
- Ohio State Biophysics Program and ‡Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | | |
Collapse
|
15
|
Yang W. An overview of Y-Family DNA polymerases and a case study of human DNA polymerase η. Biochemistry 2014; 53:2793-803. [PMID: 24716551 PMCID: PMC4018060 DOI: 10.1021/bi500019s] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Y-Family
DNA polymerases specialize in translesion synthesis, bypassing
damaged bases that would otherwise block the normal progression of
replication forks. Y-Family polymerases have unique structural features
that allow them to bind damaged DNA and use a modified template base
to direct nucleotide incorporation. Each Y-Family polymerase is unique
and has different preferences for lesions to bypass and for dNTPs
to incorporate. Y-Family polymerases are also characterized by a low
catalytic efficiency, a low processivity, and a low fidelity on normal
DNA. Recruitment of these specialized polymerases to replication forks
is therefore regulated. The catalytic center of the Y-Family polymerases
is highly conserved and homologous to that of high-fidelity and high-processivity
DNA replicases. In this review, structural differences between Y-Family
and A- and B-Family polymerases are compared and correlated with their
functional differences. A time-resolved X-ray crystallographic study
of the DNA synthesis reaction catalyzed by the Y-Family DNA polymerase
human polymerase η revealed transient elements that led to the
nucleotidyl-transfer reaction.
Collapse
Affiliation(s)
- Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| |
Collapse
|
16
|
Mukherjee P, Wilson RC, Lahiri I, Pata JD. Three residues of the interdomain linker determine the conformation and single-base deletion fidelity of Y-family translesion polymerases. J Biol Chem 2014; 289:6323-6331. [PMID: 24415763 DOI: 10.1074/jbc.m113.537860] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dpo4 and Dbh are from two closely related Sulfolobus species and are well studied archaeal homologues of pol IV, an error prone Y-family polymerase from Escherichia coli. Despite sharing 54% amino acid identity, these polymerases display distinct mutagenic and translesion specificities. Structurally, Dpo4 and Dbh adopt different conformations because of the difference in relative orientation of their N-terminal catalytic and C-terminal DNA binding domains. Using chimeric constructs of these two polymerases, we have previously demonstrated that the interdomain linker is a major determinant of polymerase conformation, base-substitution fidelity, and abasic-site translesion synthesis. Here we find that the interdomain linker also affects the single-base deletion frequency and the mispair extension efficiency of these polymerases. Exchanging just three amino acids in the linkers of Dbh and Dpo4 is sufficient to change the fidelity by up to 30-fold, predominantly by altering the rate of correct (but not incorrect) nucleotide incorporation. Additionally, from a 2.4 Å resolution crystal structure, we have found that the three linker amino acids from Dpo4 are sufficient to allow Dbh to adopt the standard conformation of Dpo4. Thus, a small region of the interdomain linker, located more than 11 Å away from the catalytic residues, determines the fidelity of these Y-family polymerases, by controlling the alignment of substrates at the active site.
Collapse
Affiliation(s)
- Purba Mukherjee
- Wadsworth Center, New York State Department of Health, University at Albany, School of Public Health, Albany, New York 12201; Department of Biomedical Sciences, University at Albany, School of Public Health, Albany, New York 12201
| | - Ryan C Wilson
- Wadsworth Center, New York State Department of Health, University at Albany, School of Public Health, Albany, New York 12201
| | - Indrajit Lahiri
- Wadsworth Center, New York State Department of Health, University at Albany, School of Public Health, Albany, New York 12201; Department of Biomedical Sciences, University at Albany, School of Public Health, Albany, New York 12201
| | - Janice D Pata
- Wadsworth Center, New York State Department of Health, University at Albany, School of Public Health, Albany, New York 12201; Department of Biomedical Sciences, University at Albany, School of Public Health, Albany, New York 12201.
| |
Collapse
|
17
|
Trakselis MA, Bauer RJ. Archaeal DNA Polymerases: Enzymatic Abilities, Coordination, and Unique Properties. NUCLEIC ACID POLYMERASES 2014. [DOI: 10.1007/978-3-642-39796-7_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
18
|
Walsh JM, Ippoliti PJ, Ronayne EA, Rozners E, Beuning PJ. Discrimination against major groove adducts by Y-family polymerases of the DinB subfamily. DNA Repair (Amst) 2013; 12:713-22. [PMID: 23791649 DOI: 10.1016/j.dnarep.2013.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
Abstract
Y-family DNA polymerases bypass DNA adducts in a process known as translesion synthesis (TLS). Y-family polymerases make contacts with the minor groove side of the DNA substrate at the nascent base pair. The Y-family polymerases also contact the DNA major groove via the unique little finger domain, but they generally lack contacts with the major groove at the nascent base pair. Escherichia coli DinB efficiently and accurately copies certain minor groove guanosine adducts. In contrast, we previously showed that the presence in the DNA template of the major groove-modified base 1,3-diaza-2-oxophenothiazine (tC) inhibits the activity of E. coli DinB. Even when the DNA primer is extended up to three nucleotides beyond the site of the tC analog, DinB activity is strongly inhibited. These findings prompted us to investigate discrimination against other major groove modifications by DinB and its orthologs. We chose a set of pyrimidines and purines with modifications in the major groove and determined the activity of DinB and several orthologs with these substrates. DinB, human pol kappa, and Sulfolobus solfataricus Dpo4 show differing specificities for the major groove adducts pyrrolo-dC, dP, N(6)-furfuryl-dA, and etheno-dA. In general, DinB was least efficient for bypass of all of these major groove adducts, whereas Dpo4 was most efficient. DinB activity was essentially completely inhibited by the presence of etheno-dA, while pol kappa activity was strongly inhibited. All three of these DNA polymerases were able to bypass N(6)-furfuryl-dA with modest efficiency, with DinB being the least efficient. We also determined that the R35A variant of DinB enhances bypass of N(6)-furfuryl-dA but not etheno-dA. In sum, we find that whereas DinB is specific for bypass of minor groove adducts, it is specifically inhibited by major groove DNA modifications.
Collapse
Affiliation(s)
- Jason M Walsh
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
19
|
Mukherjee P, Lahiri I, Pata JD. Human polymerase kappa uses a template-slippage deletion mechanism, but can realign the slipped strands to favour base substitution mutations over deletions. Nucleic Acids Res 2013; 41:5024-35. [PMID: 23558743 PMCID: PMC3643592 DOI: 10.1093/nar/gkt179] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 01/17/2023] Open
Abstract
Polymerases belonging to the DinB class of the Y-family translesion synthesis DNA polymerases have a preference for accurately and efficiently bypassing damaged guanosines. These DinB polymerases also generate single-base (-1) deletions at high frequencies with most occurring on repetitive 'deletion hotspot' sequences. Human DNA polymerase kappa (hPolκ), the eukaryotic DinB homologue, displays an unusual efficiency for to extend from mispaired primer termini, either by extending directly from the mispair or by primer-template misalignment. This latter property explains how hPolκ creates single-base deletions in non-repetitive sequences, but does not address how deletions occur in repetitive deletion hotspots. Here, we show that hPolκ uses a classical Streisinger template-slippage mechanism to generate -1 deletions in repetitive sequences, as do the bacterial and archaeal homologues. After the first nucleotide is added by template slippage, however, hPolκ can efficiently realign the primer-template duplex before continuing DNA synthesis. Strand realignment results in a base-substitution mutation, minimizing generation of more deleterious frameshift mutations. On non-repetitive sequences, we find that nucleotide misincorporation is slower if the incoming nucleotide can correctly basepair with the nucleotide immediately 5' to the templating base, thereby competing against the mispairing with the templating base.
Collapse
Affiliation(s)
- Purba Mukherjee
- Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, University at Albany, School of Public Health, Albany, NY 12201-0509, USA
| | - Indrajit Lahiri
- Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, University at Albany, School of Public Health, Albany, NY 12201-0509, USA
| | - Janice D. Pata
- Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, University at Albany, School of Public Health, Albany, NY 12201-0509, USA
| |
Collapse
|
20
|
Gahlon HL, Schweizer WB, Sturla SJ. Tolerance of base pair size and shape in postlesion DNA synthesis. J Am Chem Soc 2013; 135:6384-7. [PMID: 23560524 DOI: 10.1021/ja311434s] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The influence of base pair size and shape on the fidelity of DNA polymerase-mediated extension past lesion-containing mispairs was examined. Primer extension analysis was performed with synthetic nucleosides paired opposite the pro-mutagenic DNA lesion O(6)-benzylguanine (O(6)-BnG). These data indicate that the error-prone DNA polymerase IV (Dpo4) inefficiently extended past the larger Peri:O(6)-BnG base pair, and in contrast, error-free extension was observed for the smaller BIM:O(6)-BnG base pair. Steady-state kinetic analysis revealed that Dpo4 catalytic efficiency was strongly influenced by the primer:template base pair. Compared to the C:G pair, a 1.9- and 79,000-fold reduction in Dpo4 efficiency was observed for terminal C:O(6)-BnG and BIM:G base pairs respectively. These results demonstrate the impact of geometrical size and shape on polymerase-mediated mispair extension.
Collapse
Affiliation(s)
- Hailey L Gahlon
- Department of Health Sciences and Technology, Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | | | | |
Collapse
|
21
|
Wilson RC, Jackson MA, Pata JD. Y-family polymerase conformation is a major determinant of fidelity and translesion specificity. Structure 2013; 21:20-31. [PMID: 23245850 PMCID: PMC3545038 DOI: 10.1016/j.str.2012.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/11/2012] [Accepted: 11/05/2012] [Indexed: 01/07/2023]
Abstract
Y-family polymerases help cells tolerate DNA damage by performing translesion synthesis opposite damaged DNA bases, yet they also have a high intrinsic error rate. We constructed chimeras of two closely related Y-family polymerases that display distinctly different activity profiles and found that the polypeptide linker that tethers the catalytic polymerase domain to the C-terminal DNA-binding domain is a major determinant of overall polymerase activity, nucleotide incorporation fidelity, and abasic site-bypass ability. Exchanging just 3 out of the 15 linker residues is sufficient to interconvert the polymerase activities tested. Crystal structures of four chimeras show that the conformation of the protein correlates with the identity of the interdomain linker sequence. Thus, residues that are more than 15 Å away from the active site are able to influence many aspects of polymerase activity by altering the relative orientations of the catalytic and DNA-binding domains.
Collapse
Affiliation(s)
- Ryan C. Wilson
- Wadsworth Center, New York State Department of Health, University at Albany, Albany, NY 12201-0509, USA
| | - Meghan A. Jackson
- Wadsworth Center, New York State Department of Health, University at Albany, Albany, NY 12201-0509, USA
| | - Janice D. Pata
- Wadsworth Center, New York State Department of Health, University at Albany, Albany, NY 12201-0509, USA,Department of Biomedical Sciences, University at Albany, Albany, NY 12201-0509, USA,Contact informationCorresponding author: Janice D. Pata, Wadsworth Center, NYSDOH, Center for Medical Science, Room 2007, Albany, NY 12208, , Phone: 518-402-2595, FAX: 518-402-4623
| |
Collapse
|
22
|
Sharma A, Subramanian V, Nair DT. The PAD region in the mycobacterial DinB homologue MsPolIV exhibits positional heterogeneity. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:960-7. [PMID: 22868761 DOI: 10.1107/s0907444912017623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 04/20/2012] [Indexed: 12/17/2022]
Abstract
Y-family DNA polymerases (dPols) have evolved to carry out translesion bypass to rescue stalled replication; prokaryotic members of this family also participate in the phenomenon of adaptive mutagenesis to relieve selection pressure imposed by a maladapted environment. In this study, the first structure of a member of this family from a prokaryote has been determined. The structure of MsPolIV, a Y-family dPol from Mycobacterium smegmatis, shows the presence of the characteristic finger, palm and thumb domains. Surprisingly, the electron-density map of the intact protein does not show density for the PAD region that is unique to members of this family. Analysis of the packing of the molecules in the crystals showed the existence of large solvent-filled voids in which the PAD region could be located in multiple conformations. In line with this observation, analytical gel-filtration and dynamic light-scattering studies showed that MsPolIV undergoes significant compaction upon DNA binding. The PAD region is known to insert into the major groove of the substrate DNA and to play a major role in shaping the active site. Comparison with structures of other Y-family dPols shows that in the absence of tertiary contacts between the PAD domain and the other domains this region has the freedom to adopt multiple orientations. This structural attribute of the PAD will allow these enzymes to accommodate the alterations in the width of the DNA double helix that are necessary to achieve translesion bypass and adaptive mutagenesis and will also allow regulation of their activity to prevent adventitious error-prone DNA synthesis.
Collapse
Affiliation(s)
- Amit Sharma
- National Centre for Biological Sciences (NCBS-TIFR), UAS-GKVK Campus, Bellary Road, Bangalore 560 065, India
| | | | | |
Collapse
|
23
|
Sakofsky CJ, Foster PL, Grogan DW. Roles of the Y-family DNA polymerase Dbh in accurate replication of the Sulfolobus genome at high temperature. DNA Repair (Amst) 2012; 11:391-400. [PMID: 22305938 DOI: 10.1016/j.dnarep.2012.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/05/2012] [Accepted: 01/06/2012] [Indexed: 11/28/2022]
Abstract
The intrinsically thermostable Y-family DNA polymerases of Sulfolobus spp. have revealed detailed three-dimensional structure and catalytic mechanisms of trans-lesion DNA polymerases, yet their functions in maintaining their native genomes remain largely unexplored. To identify functions of the Y-family DNA polymerase Dbh in replicating the Sulfolobus genome under extreme conditions, we disrupted the dbh gene in Sulfolobus acidocaldarius and characterized the resulting mutant strains phenotypically. Disruption of dbh did not cause any obvious growth defect, sensitivity to any of several DNA-damaging agents, or change in overall rate of spontaneous mutation at a well-characterized target gene. Loss of dbh did, however, cause significant changes in the spectrum of spontaneous forward mutation in each of two orthologous target genes of different sequence. Relative to wild-type strains, dbh(-) constructs exhibited fewer frame-shift and other small insertion-deletion mutations, but exhibited more base-pair substitutions that converted G:C base pairs to T:A base pairs. These changes, which were confirmed to be statistically significant, indicate two distinct activities of the Dbh polymerase in Sulfolobus cells growing under nearly optimal culture conditions (78-80°C and pH 3). The first activity promotes slipped-strand events within simple repetitive motifs, such as mononucleotide runs or triplet repeats, and the second promotes insertion of C opposite a potentially miscoding form of G, thereby avoiding G:C to T:A transversions.
Collapse
Affiliation(s)
- Cynthia J Sakofsky
- Department of Biological Sciences, University of Cincinnati, OH 45221-0006, USA
| | | | | |
Collapse
|
24
|
Hile SE, Wang X, Lee MYWT, Eckert KA. Beyond translesion synthesis: polymerase κ fidelity as a potential determinant of microsatellite stability. Nucleic Acids Res 2011; 40:1636-47. [PMID: 22021378 PMCID: PMC3287198 DOI: 10.1093/nar/gkr889] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Microsatellite DNA synthesis represents a significant component of human genome replication that must occur faithfully. However, yeast replicative DNA polymerases do not possess high fidelity for microsatellite synthesis. We hypothesized that the structural features of Y-family polymerases that facilitate accurate translesion synthesis may promote accurate microsatellite synthesis. We compared human polymerases κ (Pol κ) and η (Pol η) fidelities to that of replicative human polymerase δ holoenzyme (Pol δ4), using the in vitro HSV-tk assay. Relative polymerase accuracy for insertion/deletion (indel) errors within 2-3 unit repeats internal to the HSV-tk gene concurred with the literature: Pol δ4 >> Pol κ or Pol η. In contrast, relative polymerase accuracy for unit-based indel errors within [GT](10) and [TC](11) microsatellites was: Pol κ ≥ Pol δ4 > Pol η. The magnitude of difference was greatest between Pols κ and δ4 with the [GT] template. Biochemically, Pol κ displayed less synthesis termination within the [GT] allele than did Pol δ4. In dual polymerase reactions, Pol κ competed with either a stalled or moving Pol δ4, thereby reducing termination. Our results challenge the ideology that pol κ is error prone, and suggest that DNA polymerases with complementary biochemical properties can function cooperatively at repetitive sequences.
Collapse
Affiliation(s)
- Suzanne E Hile
- Department of Pathology, Gittlen Cancer Research Foundation, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
25
|
Efficient extension of slipped DNA intermediates by DinB is required to escape primer template realignment by DnaQ. J Bacteriol 2011; 193:2637-41. [PMID: 21421753 DOI: 10.1128/jb.00005-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We show that Escherichia coli DinB polymerase, which creates single-base deletions, prefers to extend slipped DNA substrates with the skipped base at the -4 position. A DinB(Y79L) variant, which extends these substrates less efficiently in vitro, allows the proofreading function of polymerase III to reverse their formation in vivo.
Collapse
|