1
|
He R, Zuo Y, Li Q, Yan Q, Huang L. Cooperative mechanisms of LexA and HtpG in the regulation of virulence gene expression in Pseudomonas plecoglossicida. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100351. [PMID: 39980631 PMCID: PMC11840546 DOI: 10.1016/j.crmicr.2025.100351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
LexA is a well-known transcriptional repressor of DNA repair genes induced by DNA damage in Escherichia coli and other bacterial species. Recently, this paradigm-that LexA solely regulates the SOS response-has been challenged as studies reveal its involvement in various biological functions linked to virulence. Pseudomonas plecoglossicida, a major pathogen in mariculture, causes substantial economic losses annually in China. Our previous research suggested that LexA might collaboratively regulate virulence gene expression with HtpG during infection. This study aims to elucidate the molecular mechanism by which LexA controls virulence gene expression. We employed an array of methods including molecular dynamics simulations, molecular docking, ChIP-seq, RNA-seq, mass spectrometry, gene mutagenesis, LacZ reporter assays, electrophoretic mobility shift assays, co-immunoprecipitation, and in vitro LexA degradation experiments. Our findings identified 36 downstream virulence genes regulated by LexA, define three critical LexA binding motifs, and provide an in-depth analysis of LexA's recognition and binding to promoters, thereby regulating virulence gene expression. Additionally, we confirm the cooperative regulatory roles of HtpG, RecA, and LexA in virulence gene modulation. This is the first report of an endogenous accessory factor aiding in the binding of LexA to DNA. This study enhances our understanding of LexA's role in virulence regulation and offers a valuable theoretical and practical foundation for disease prevention and control.
Collapse
Affiliation(s)
- Rongchao He
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, PR China
| | - Yanfei Zuo
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, PR China
| | - Qiu Li
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, PR China
| | - Qingpi Yan
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, PR China
- State Key Laboratory of Mariculture Breeding, Fisheries college of Jimei university, Xiamen, Fujian, PR China
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, PR China
| | - Lixing Huang
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, PR China
- State Key Laboratory of Mariculture Breeding, Fisheries college of Jimei university, Xiamen, Fujian, PR China
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, PR China
| |
Collapse
|
2
|
Sánchez-Osuna M, Cortés P, Lee M, Smith AT, Barbé J, Erill I. Non-canonical LexA proteins regulate the SOS response in the Bacteroidetes. Nucleic Acids Res 2021; 49:11050-11066. [PMID: 34614190 PMCID: PMC8565304 DOI: 10.1093/nar/gkab773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/18/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
Lesions to DNA compromise chromosome integrity, posing a direct threat to cell survival. The bacterial SOS response is a widespread transcriptional regulatory mechanism to address DNA damage. This response is coordinated by the LexA transcriptional repressor, which controls genes involved in DNA repair, mutagenesis and cell-cycle control. To date, the SOS response has been characterized in most major bacterial groups, with the notable exception of the Bacteroidetes. No LexA homologs had been identified in this large, diverse and ecologically important phylum, suggesting that it lacked an inducible mechanism to address DNA damage. Here, we report the identification of a novel family of transcriptional repressors in the Bacteroidetes that orchestrate a canonical response to DNA damage in this phylum. These proteins belong to the S24 peptidase family, but are structurally different from LexA. Their N-terminal domain is most closely related to CI-type bacteriophage repressors, suggesting that they may have originated from phage lytic phase repressors. Given their role as SOS regulators, however, we propose to designate them as non-canonical LexA proteins. The identification of a new class of repressors orchestrating the SOS response illuminates long-standing questions regarding the origin and plasticity of this transcriptional network.
Collapse
Affiliation(s)
- Miquel Sánchez-Osuna
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain
| | - Pilar Cortés
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain
| | - Mark Lee
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Jordi Barbé
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain
| | - Ivan Erill
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain.,Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
3
|
Huang X, Jiao N, Zhang R. The genomic content and context of auxiliary metabolic genes in roseophages. Environ Microbiol 2021; 23:3743-3757. [PMID: 33511765 DOI: 10.1111/1462-2920.15412] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/24/2021] [Indexed: 11/26/2022]
Abstract
Marine bacteriophages frequently possess auxiliary metabolic genes (AMGs) that accelerate host metabolism during phage infection. The significance of AMGs in phage infecting the ecologically important Roseobacter clade, found predominantly in marine environments, remains to be determined. Here, we analysed the distribution and genomic context of 180 AMGs, annotated into 20 types, across 50 roseophage genomes. Roseophages share seven high-frequency AMGs (trx, grx, RNR, thyX, DCD, phoH, and mazG), most of them involved in the nucleotide biosynthesis pathway that represent conserved intra and inter operational taxonomic units (OTUs), and share ≥97% full-length DNA sequence similarity. Sporadic AMGs (dUTPase, lexA, degS, Que, NAPRT, AHL, pcnB, ctrA, RTX, RNR-nrdA, RNR-nrdE, wclP, and flgJ), present in only one or two OTUs, show high functional diversity. The roseophage AMG repertoire weakly correlates with environmental factors, while host range partially explains the sporadic AMG distribution. Locally co-linear blocks distribution index (LDI) analysis indicated that high-frequency roseopodovirus AMGs are restricted to particular genomic islands, possibly originating from limited historical acquisition events. Low-frequency roseopodovirus AMGs and all roseosiphovirus AMGs have high LDI values, implying multiple historical acquisition events. In summary, roseophages have acquired a range of AMGs through horizontal gene transfer, and the forces shaping the evolution of roseophages are described.
Collapse
Affiliation(s)
- Xingyu Huang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean & Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean & Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean & Earth Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
4
|
Sanchez I, Hernandez-Guerrero R, Mendez-Monroy PE, Martinez-Nuñez MA, Ibarra JA, Pérez-Rueda E. Evaluation of the Abundance of DNA-Binding Transcription Factors in Prokaryotes. Genes (Basel) 2020; 11:genes11010052. [PMID: 31947717 PMCID: PMC7017128 DOI: 10.3390/genes11010052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/13/2019] [Accepted: 12/25/2019] [Indexed: 02/03/2023] Open
Abstract
The ability of bacteria and archaea to modulate metabolic process, defensive response, and pathogenic capabilities depend on their repertoire of genes and capacity to regulate the expression of them. Transcription factors (TFs) have fundamental roles in controlling these processes. TFs are proteins dedicated to favor and/or impede the activity of the RNA polymerase. In prokaryotes these proteins have been grouped into families that can be found in most of the different taxonomic divisions. In this work, the association between the expansion patterns of 111 protein regulatory families was systematically evaluated in 1351 non-redundant prokaryotic genomes. This analysis provides insights into the functional and evolutionary constraints imposed on different classes of regulatory factors in bacterial and archaeal organisms. Based on their distribution, we found a relationship between the contents of some TF families and genome size. For example, nine TF families that represent 43.7% of the complete collection of TFs are closely associated with genome size; i.e., in large genomes, members of these families are also abundant, but when a genome is small, such TF family sizes are decreased. In contrast, almost 102 families (56.3% of the collection) do not exhibit or show only a low correlation with the genome size, suggesting that a large proportion of duplication or gene loss events occur independently of the genome size and that various yet-unexplored questions about the evolution of these TF families remain. In addition, we identified a group of families that have a similar distribution pattern across Bacteria and Archaea, suggesting common functional and probable coevolution processes, and a group of families universally distributed among all the genomes. Finally, a specific association between the TF families and their additional domains was identified, suggesting that the families sense specific signals or make specific protein-protein contacts to achieve the regulatory roles.
Collapse
Affiliation(s)
- Israel Sanchez
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida.C.P. 97302, Yucatán, Mexico; (I.S.); (R.H.-G.); (P.E.M.-M.)
| | - Rafael Hernandez-Guerrero
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida.C.P. 97302, Yucatán, Mexico; (I.S.); (R.H.-G.); (P.E.M.-M.)
| | - Paul Erick Mendez-Monroy
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida.C.P. 97302, Yucatán, Mexico; (I.S.); (R.H.-G.); (P.E.M.-M.)
| | - Mario Alberto Martinez-Nuñez
- Unidad Académica de Ciencias y Tecnología de Yucatán, UMDI-Sisal. Facultad de Ciencias, UNAM, Mérida C.P. 97302, Yucatán, Mexico;
| | - Jose Antonio Ibarra
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México C.P. 11340, Mexico;
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida.C.P. 97302, Yucatán, Mexico; (I.S.); (R.H.-G.); (P.E.M.-M.)
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago C.P. 7500000, Chile
- Correspondence: ; Tel.: +52-9994060003 (ext. 7610)
| |
Collapse
|
5
|
Yang R, Santos Garcia D, Pérez Montaño F, da Silva GM, Zhao M, Jiménez Guerrero I, Rosenberg T, Chen G, Plaschkes I, Morin S, Walcott R, Burdman S. Complete Assembly of the Genome of an Acidovorax citrulli Strain Reveals a Naturally Occurring Plasmid in This Species. Front Microbiol 2019; 10:1400. [PMID: 31281298 PMCID: PMC6595937 DOI: 10.3389/fmicb.2019.01400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 06/04/2019] [Indexed: 11/13/2022] Open
Abstract
Acidovorax citrulli is the causal agent of bacterial fruit blotch (BFB), a serious threat to cucurbit crop production worldwide. Based on genetic and phenotypic properties, A. citrulli strains are divided into two major groups: group I strains have been generally isolated from melon and other non-watermelon cucurbits, while group II strains are closely associated with watermelon. In a previous study, we reported the genome of the group I model strain, M6. At that time, the M6 genome was sequenced by MiSeq Illumina technology, with reads assembled into 139 contigs. Here, we report the assembly of the M6 genome following sequencing with PacBio technology. This approach not only allowed full assembly of the M6 genome, but it also revealed the occurrence of a ∼53 kb plasmid. The M6 plasmid, named pACM6, was further confirmed by plasmid extraction, Southern-blot analysis of restricted fragments and obtention of M6-derivative cured strains. pACM6 occurs at low copy numbers (average of ∼4.1 ± 1.3 chromosome equivalents) in A. citrulli M6 and contains 63 open reading frames (ORFs), most of which (55.6%) encoding hypothetical proteins. The plasmid contains several genes encoding type IV secretion components, and typical plasmid-borne genes involved in plasmid maintenance, replication and transfer. The plasmid also carries an operon encoding homologs of a Fic-VbhA toxin-antitoxin (TA) module. Transcriptome data from A. citrulli M6 revealed that, under the tested conditions, the genes encoding the components of this TA system are among the highest expressed genes in pACM6. Whether this TA module plays a role in pACM6 maintenance is still to be determined. Leaf infiltration and seed transmission assays revealed that, under tested conditions, the loss of pACM6 did not affect the virulence of A. citrulli M6. We also show that pACM6 or similar plasmids are present in several group I strains, but absent in all tested group II strains of A. citrulli.
Collapse
Affiliation(s)
- Rongzhi Yang
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Diego Santos Garcia
- Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Francisco Pérez Montaño
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,Department of Microbiology, University of Seville, Seville, Spain
| | - Gustavo Mateus da Silva
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Mei Zhao
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Irene Jiménez Guerrero
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tally Rosenberg
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Gong Chen
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Inbar Plaschkes
- Bioinformatics Unit, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shai Morin
- Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ron Walcott
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
6
|
Xiong L, Liao D, Lu X, Yan H, Shi L, Mo Z. Proteomic analysis reveals that a global response is induced by subinhibitory concentrations of ampicillin. Bioengineered 2017; 8:732-741. [PMID: 28881168 DOI: 10.1080/21655979.2017.1373532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this study, a recipient-donor co-culture system was used to research the effect of subinhibitory concentrations of antibiotics on horizontal transmission in bacteria and the influence of antibiotics on protein expression. We employed two-dimensional gel electrophoresis combined with mass spectrometry to compare the protein expression profiles in systems with or without 0.5 × the minimum inhibitory concentration of ampicillin. RT-PCR was used to assess the transcriptional levels of the differentially expressed genes. Fifty-seven different proteins were induced or suppressed. The upregulated proteins were involved in transcription and translation, cell wall synthesis, bacterial SOS response, and detoxifying functions, and the downregulated proteins were involved in metabolism. These results indicated that a global response was induced in the recipient-donor co-culture system by the subinhibitory concentration of ampicillin. Further analysis revealed that a global regulatory network based on key pathways was induced in the system in response to the antibiotic pressure. These findings provide a new, more comprehensive view for research on antibiotic-resistance mechanisms in recipient-donor co-culture.
Collapse
Affiliation(s)
- Lina Xiong
- a The First Affiliated Hospital of Guangzhou Medical University , Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Disease , Guangzhou , China.,b Jinan University , Guangzhou , China.,c School of Food Sciences and Technology , South China University of Technology , Guangzhou , China
| | - Dongjiang Liao
- a The First Affiliated Hospital of Guangzhou Medical University , Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Disease , Guangzhou , China
| | - Xinpeng Lu
- a The First Affiliated Hospital of Guangzhou Medical University , Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Disease , Guangzhou , China
| | - He Yan
- c School of Food Sciences and Technology , South China University of Technology , Guangzhou , China
| | - Lei Shi
- b Jinan University , Guangzhou , China.,c School of Food Sciences and Technology , South China University of Technology , Guangzhou , China
| | - Ziyao Mo
- a The First Affiliated Hospital of Guangzhou Medical University , Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Disease , Guangzhou , China
| |
Collapse
|
7
|
Sánchez-Osuna M, Barbé J, Erill I. Comparative genomics of the DNA damage-inducible network in the Patescibacteria. Environ Microbiol 2017; 19:3465-3474. [DOI: 10.1111/1462-2920.13826] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/09/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Miquel Sánchez-Osuna
- Departament de Genètica i de Microbiologia; Universitat Autònoma de Barcelona; Spain
| | - Jordi Barbé
- Departament de Genètica i de Microbiologia; Universitat Autònoma de Barcelona; Spain
| | - Ivan Erill
- Department of Biological Sciences; University of Maryland Baltimore County; Baltimore Maryland USA
| |
Collapse
|
8
|
Erill I, Campoy S, Kılıç S, Barbé J. The Verrucomicrobia LexA-Binding Motif: Insights into the Evolutionary Dynamics of the SOS Response. Front Mol Biosci 2016; 3:33. [PMID: 27489856 PMCID: PMC4951493 DOI: 10.3389/fmolb.2016.00033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/04/2016] [Indexed: 12/20/2022] Open
Abstract
The SOS response is the primary bacterial mechanism to address DNA damage, coordinating multiple cellular processes that include DNA repair, cell division, and translesion synthesis. In contrast to other regulatory systems, the composition of the SOS genetic network and the binding motif of its transcriptional repressor, LexA, have been shown to vary greatly across bacterial clades, making it an ideal system to study the co-evolution of transcription factors and their regulons. Leveraging comparative genomics approaches and prior knowledge on the core SOS regulon, here we define the binding motif of the Verrucomicrobia, a recently described phylum of emerging interest due to its association with eukaryotic hosts. Site directed mutagenesis of the Verrucomicrobium spinosum recA promoter confirms that LexA binds a 14 bp palindromic motif with consensus sequence TGTTC-N4-GAACA. Computational analyses suggest that recognition of this novel motif is determined primarily by changes in base-contacting residues of the third alpha helix of the LexA helix-turn-helix DNA binding motif. In conjunction with comparative genomics analysis of the LexA regulon in the Verrucomicrobia phylum, electrophoretic shift assays reveal that LexA binds to operators in the promoter region of DNA repair genes and a mutagenesis cassette in this organism, and identify previously unreported components of the SOS response. The identification of tandem LexA-binding sites generating instances of other LexA-binding motifs in the lexA gene promoter of Verrucomicrobia species leads us to postulate a novel mechanism for LexA-binding motif evolution. This model, based on gene duplication, successfully addresses outstanding questions in the intricate co-evolution of the LexA protein, its binding motif and the regulatory network it controls.
Collapse
Affiliation(s)
- Ivan Erill
- Erill Lab, Department of Biological Sciences, University of Maryland Baltimore County Baltimore, MD, USA
| | - Susana Campoy
- Unitat de Microbiologia, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Sefa Kılıç
- Erill Lab, Department of Biological Sciences, University of Maryland Baltimore County Baltimore, MD, USA
| | - Jordi Barbé
- Unitat de Microbiologia, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| |
Collapse
|