1
|
Effendi DB, Suzuki I, Murata N, Awai K. DesC1 and DesC2, Δ9 Fatty Acid Desaturases of Filamentous Cyanobacteria: Essentiality and Complementarity. PLANT & CELL PHYSIOLOGY 2024; 65:975-985. [PMID: 38147500 DOI: 10.1093/pcp/pcad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/18/2023] [Accepted: 12/05/2023] [Indexed: 12/28/2023]
Abstract
DesC1 and DesC2, which are fatty acid desaturases found in cyanobacteria, are responsible for introducing a double bond at the Δ9 position of fatty-acyl chains, which are subsequently esterified to the sn-1 and sn-2 positions of the glycerol moiety, respectively. However, since the discovery of these two desaturases in the Antarctic cyanobacterium Nostoc sp. SO-36, no further research has been reported. This study presents a comprehensive characterization of DesC1 and DesC2 through targeted mutagenesis and transformation using two cyanobacteria strains: Anabaena sp. PCC 7120, comprising both desaturases, and Synechocystis sp. PCC 6803, containing a single Δ9 desaturase (hereafter referred to as DesCs) sharing similarity with DesC1 in amino acid sequence. The results suggested that both DesC1 and DesC2 were essential in Anabaena sp. PCC 7120 and that DesC1, but not DesC2, complemented DesCs in Synechocystis sp. PCC 6803. In addition, DesC2 from Anabaena sp. PCC 7120 desaturated fatty acids esterified to the sn-2 position of the glycerol moiety in Synechocystis sp. PCC 6803.
Collapse
Affiliation(s)
- Devi B Effendi
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan
| | - Iwane Suzuki
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572 Japan
| | - Norio Murata
- National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Koichiro Awai
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan
- Department of Biological Science, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Shizuoka, 422-8529 Japan
- Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Chuo-ku, Hamamatsu, Shizuoka, 432-8561 Japan
| |
Collapse
|
2
|
Rachedi R, Risoul V, Foglino M, Aoudache Y, Lang K, Champ S, Kaplan E, Orelle C, Douzi B, Jault JM, Latifi A. Unravelling HetC as a peptidase-based ABC exporter driving functional cell differentiation in the cyanobacterium Nostoc PCC 7120. Microbiol Spectr 2024; 12:e0405823. [PMID: 38358282 PMCID: PMC10986499 DOI: 10.1128/spectrum.04058-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
The export of peptides or proteins is essential for a variety of important functions in bacteria. Among the diverse protein-translocation systems, peptidase-containing ABC transporters (PCAT) are involved in the maturation and export of quorum-sensing or antimicrobial peptides in Gram-positive bacteria and of toxins in Gram-negative organisms. In the multicellular and diazotrophic cyanobacterium Nostoc PCC 7120, the protein HetC is essential for the differentiation of functional heterocysts, which are micro-oxic and non-dividing cells specialized in atmospheric nitrogen fixation. HetC shows similarities to PCAT systems, but whether it actually acts as a peptidase-based exporter remains to be established. In this study, we show that the N-terminal part of HetC, encompassing the peptidase domain, displays a cysteine-type protease activity. The conserved catalytic residues conserved in this family of proteases are essential for the proteolytic activity of HetC and the differentiation of heterocysts. Furthermore, we show that the catalytic residue of the ATPase domain of HetC is also essential for cell differentiation. Interestingly, HetC has a cyclic nucleotide-binding domain at its N-terminus which can bind ppGpp in vitro and which is required for its function in vivo. Our results indicate that HetC is a peculiar PCAT that might be regulated by ppGpp to potentially facilitate the export of a signaling peptide essential for cell differentiation, thereby broadening the scope of PCAT role in Gram-negative bacteria.IMPORTANCEBacteria have a great capacity to adapt to various environmental and physiological conditions; it is widely accepted that their ability to produce extracellular molecules contributes greatly to their fitness. Exported molecules are used for a variety of purposes ranging from communication to adjust cellular physiology, to the production of toxins that bacteria secrete to fight for their ecological niche. They use export machineries for this purpose, the most common of which energize transport by hydrolysis of adenosine triphosphate. Here, we demonstrate that such a mechanism is involved in cell differentiation in the filamentous cyanobacterium Nostoc PCC 7120. The HetC protein belongs to the ATP-binding cassette transporter superfamily and presumably ensures the maturation of a yet unknown substrate during export. These results open interesting perspectives on cellular signaling pathways involving the export of regulatory peptides, which will broaden our knowledge of how these bacteria use two cell types to conciliate photosynthesis and nitrogen fixation.
Collapse
Affiliation(s)
- Raphaël Rachedi
- Aix-Marseille Université, CNRS, Laboratoire de Chimie Bactérienne LCB, IMM, Marseille, France
| | - Véronique Risoul
- Aix-Marseille Université, CNRS, Laboratoire de Chimie Bactérienne LCB, IMM, Marseille, France
| | - Maryline Foglino
- Aix-Marseille Université, CNRS, Laboratoire de Chimie Bactérienne LCB, IMM, Marseille, France
| | | | - Kevin Lang
- Microbiologie Moléculaire et Biochimie Structurale, UMR5086 Université de Lyon/CNRS, IBCP, Lyon, France
| | - Stéphanie Champ
- Aix-Marseille Université, CNRS, Laboratoire de Chimie Bactérienne LCB, IMM, Marseille, France
| | - Elise Kaplan
- Microbiologie Moléculaire et Biochimie Structurale, UMR5086 Université de Lyon/CNRS, IBCP, Lyon, France
| | - Cédric Orelle
- Microbiologie Moléculaire et Biochimie Structurale, UMR5086 Université de Lyon/CNRS, IBCP, Lyon, France
| | | | - Jean-Michel Jault
- Microbiologie Moléculaire et Biochimie Structurale, UMR5086 Université de Lyon/CNRS, IBCP, Lyon, France
| | - Amel Latifi
- Aix-Marseille Université, CNRS, Laboratoire de Chimie Bactérienne LCB, IMM, Marseille, France
| |
Collapse
|
3
|
Yin L, Zheng Z, Li Y, Li X, Cheng D, Dong C, Liu Y, Zhao J. PatU3 plays a central role in coordinating cell division and differentiation in pattern formation of filamentous cyanobacterium Nostoc sp. PCC 7120. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2896-2909. [PMID: 37505430 DOI: 10.1007/s11427-023-2380-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/31/2023] [Indexed: 07/29/2023]
Abstract
Spatial periodic signal for cell differentiation in some multicellular organisms is generated according to Turing's principle for pattern formation. How a dividing cell responds to the signal of differentiation is addressed with the filamentous cyanobacterium Nostoc sp. PCC 7120, which forms the patterned distribution of heterocysts. We show that differentiation of a dividing cell was delayed until its division was completed and only one daughter cell became heterocyst. A mutant of patU3, which encodes an inhibitor of heterocyst formation, showed no such delay and formed heterocyst pairs from the daughter cells of cell division or dumbbell-shaped heterocysts from the cells undergoing cytokinesis. The patA mutant, which forms heterocysts only at the filament ends, restored intercalary heterocysts by a single nucleotide mutation of patU3, and double mutants of patU3/patA and patU3/hetF had the phenotypes of the patU3 mutant. We provide evidence that HetF, which can degrade PatU3, is recruited to cell divisome through its C-terminal domain. A HetF mutant with its N-terminal peptidase domain but lacking the C-terminal domain could not prevent the formation of heterocyst pairs, suggesting that the divisome recruitment of HetF is needed to sequester HetF for the delay of differentiation in dividing cells. Our study demonstrates that PatU3 plays a key role in cell-division coupled control of differentiation.
Collapse
Affiliation(s)
- Lei Yin
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhenggao Zheng
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yilin Li
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiying Li
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Dan Cheng
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Chunxia Dong
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yixuan Liu
- National Teaching Center for Experimental Biology, School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Jindong Zhao
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China.
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
4
|
The role of carotenoids in proton-pumping rhodopsin as a primitive solar energy conversion system. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 221:112241. [PMID: 34130090 DOI: 10.1016/j.jphotobiol.2021.112241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 12/24/2022]
Abstract
Rhodopsin and carotenoids are two molecules that certain bacteria use to absorb and utilize light. Type I rhodopsin, the simplest active proton transporter, converts light energy into an electrochemical potential. Light produces a proton gradient, which is known as the proton motive force across the cell membrane. Some carotenoids are involved in light absorbance and transfer of absorbed energy to chlorophyll during photosynthesis. A previous study in Salinibacter ruber has shown that carotenoids act as antennae to harvest light and transfer energy to retinal in xanthorhodopsin (XR). Here, we describe the role of canthaxanthin (CAN), a carotenoid, as an antenna for Gloeobacter rhodopsin (GR). The non-covalent complex formed by the interaction between CAN and GR doubled the proton pumping speed and improved the pumping capacity by 1.5-fold. The complex also tripled the proton pumping speed and improved the pumping capacity by 5-fold in the presence of strong and weak light, respectively. Interestingly, when canthaxanthin was bound to Gloeobacter rhodopsin, it showed a 126-fold increase in heat resistance, and it survived better under drought conditions than Gloeobacter rhodopsin. The results suggest direct complementation of Gloeobacter rhodopsin with a carotenoid for primitive solar energy harvesting in cyanobacteria.
Collapse
|
5
|
He H, Miao R, Huang L, Jiang H, Cheng Y. Vegetative cells may perform nitrogen fixation function under nitrogen deprivation in Anabaena sp. strain PCC 7120 based on genome-wide differential expression analysis. PLoS One 2021; 16:e0248155. [PMID: 33662009 PMCID: PMC7932525 DOI: 10.1371/journal.pone.0248155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/20/2021] [Indexed: 11/25/2022] Open
Abstract
Nitrogen assimilation is strictly regulated in cyanobacteria. In an inorganic nitrogen-deficient environment, some vegetative cells of the cyanobacterium Anabaena differentiate into heterocysts. We assessed the photosynthesis and nitrogen-fixing capacities of heterocysts and vegetative cells, respectively, at the transcriptome level. RNA extracted from nitrogen-replete vegetative cells (NVs), nitrogen-deprived vegetative cells (NDVs), and nitrogen-deprived heterocysts (NDHs) in Anabaena sp. strain PCC 7120 was evaluated by transcriptome sequencing. Paired comparisons of NVs vs. NDHs, NVs vs. NDVs, and NDVs vs. NDHs revealed 2,044 differentially expressed genes (DEGs). Kyoto Encyclopedia of Genes and Genomes enrichment analysis of the DEGs showed that carbon fixation in photosynthetic organisms and several nitrogen metabolism-related pathways were significantly enriched. Synthesis of Gvp (Gas vesicle synthesis protein gene) in NVs was blocked by nitrogen deprivation, which may cause Anabaena cells to sink and promote nitrogen fixation under anaerobic conditions; in contrast, heterocysts may perform photosynthesis under nitrogen deprivation conditions, whereas the nitrogen fixation capability of vegetative cells was promoted by nitrogen deprivation. Immunofluorescence analysis of nitrogenase iron protein suggested that the nitrogen fixation capability of vegetative cells was promoted by nitrogen deprivation. Our findings provide insight into the molecular mechanisms underlying nitrogen fixation and photosynthesis in vegetative cells and heterocysts at the transcriptome level. This study provides a foundation for further functional verification of heterocyst growth, differentiation, and water bloom control.
Collapse
Affiliation(s)
- Hongli He
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, China
| | - Runyu Miao
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, China
| | - Lilong Huang
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, China
| | - Hongshan Jiang
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, China
| | - Yunqing Cheng
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, China
| |
Collapse
|
6
|
The Proposed Neurotoxin β- N-Methylamino-l-Alanine (BMAA) Is Taken up through Amino-Acid Transport Systems in the Cyanobacterium Anabaena PCC 7120. Toxins (Basel) 2020; 12:toxins12080518. [PMID: 32823543 PMCID: PMC7472364 DOI: 10.3390/toxins12080518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 01/20/2023] Open
Abstract
Produced by cyanobacteria and some plants, BMAA is considered as an important environmental factor in the occurrence of some neurodegenerative diseases. Neither the underlying mechanism of its toxicity, nor its biosynthetic or metabolic pathway in cyanobacteria is understood. Interestingly, BMAA is found to be toxic to some cyanobacteria, making it possible to dissect the mechanism of BMAA metabolism by genetic approaches using these organisms. In this study, we used the cyanobacterium Anabaena PCC 7120 to isolate BMAA-resistant mutants. Following genomic sequencing, several mutations were mapped to two genes involved in amino acids transport, suggesting that BMAA was taken up through amino acid transporters. This conclusion was supported by the protective effect of several amino acids against BMAA toxicity. Furthermore, targeted inactivation of genes encoding different amino acid transport pathways conferred various levels of resistance to BMAA. One mutant inactivating all three major amino acid transport systems could no longer take up BMAA and gained full resistance to BMAA toxicity. Therefore, BMAA is a substrate of amino acid transporters, and cyanobacteria are interesting models for genetic analysis of BMAA transport and metabolism.
Collapse
|
7
|
Expression from DIF1-motif promoters of hetR and patS is dependent on HetZ and modulated by PatU3 during heterocyst differentiation. PLoS One 2020; 15:e0232383. [PMID: 32701963 PMCID: PMC7377430 DOI: 10.1371/journal.pone.0232383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/03/2020] [Indexed: 01/01/2023] Open
Abstract
HetR and PatS/PatX-derived peptides are the activator and diffusible inhibitor for cell differentiation and patterning in heterocyst-forming cyanobacteria. HetR regulates target genes via HetR-recognition sites. However, some genes (such as patS/patX) upregulated at the early stage of heterocyst differentiation possess DIF1 (or DIF+) motif (TCCGGA) promoters rather than HetR-recognition sites; hetR possesses both predicted regulatory elements. How HetR controls heterocyst-specific expression from DIF1 motif promoters remains to be answered. This study presents evidence that the expression from DIF1 motif promoters of hetR, patS and patX is more directly dependent on hetZ, a gene regulated by HetR via a HetR-recognition site. The HetR-binding site upstream of hetR is not required for the autoregulation of hetR. PatU3 (3′ portion of PatU) that interacts with HetZ may modulate the expression of hetR, hetZ and patS. These findings contribute to understanding of the mutual regulation of hetR, hetZ-patU and patS/patX in a large group of multicellular cyanobacteria.
Collapse
|
8
|
Munawaroh HSH, Apdila ET, Awai K. hetN and patS Mutations Enhance Accumulation of Fatty Alcohols in the hglT Mutants of Anabaena sp. PCC 7120. FRONTIERS IN PLANT SCIENCE 2020; 11:804. [PMID: 32733494 PMCID: PMC7360850 DOI: 10.3389/fpls.2020.00804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
The heterocysts present in filamentous cyanobacteria such as Anabaena sp. PCC 7120 are known to be regulated by HetN and PatS, the repressors of heterocyst differentiation; therefore, the inactivation of these proteins will result in the formation of multiple heterocysts. To enhance the accumulation of fatty alcohols synthesized in the heterocyst, we introduced mutations of these repressors to increase heterocyst frequency. First, we isolated double mutants of hetN and patS and confirmed that the null mutation of these genes promoted higher frequencies of heterocyst formation and higher accumulation of heterocyst-specific glycolipids (Hgls) compared with its wild type. Next, we combined hetN and patS mutations with an hglT (encoding glycosyltransferase, an enzyme involved in Hgl synthesis) mutation to increase the accumulation of fatty alcohols since knockout mutation of hglT results in accumulation of very long chain fatty alcohol, the precursor of Hgl. We also observed retarded growth, lower chlorophyll content and up to a five-fold decrease in photosynthetic activity of the hetN/patS/hglT triple mutants. In contrast, the triple mutants showed three times higher heterocyst formation frequencies than the hglT single mutant and wild type. The production rate of fatty alcohol in the triple mutants attained a value 1.41 nmol/mL OD730, whereas accumulation of Hgls in the wild type was 0.90 nmol/mL OD730. Aeration of culture improved the accumulation of fatty alcohols in hetN/patS/hglT mutant cells up to 2.97 nmol/mL OD730 compared with cells cultured by rotation. Our study outlines an alternative strategy for fatty alcohol production supported by photosynthesis and nitrogen fixation.
Collapse
Affiliation(s)
- Heli Siti Halimatul Munawaroh
- Laboratory of Chemistry Study Program, Department of Chemistry Education, Universitas Pendidikan Indonesia, Bandung, Indonesia
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Egi Tritya Apdila
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Koichiro Awai
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
- Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
9
|
Xiong Z, Wang Y, Dong Y, Zhang Q, Xu X. Cyanophage A-1(L) Adsorbs to Lipopolysaccharides of Anabaena sp. Strain PCC 7120 via the Tail Protein Lipopolysaccharide-Interacting Protein (ORF36). J Bacteriol 2019; 201:e00516-18. [PMID: 30420453 PMCID: PMC6349090 DOI: 10.1128/jb.00516-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/05/2018] [Indexed: 11/20/2022] Open
Abstract
Ecological functions of cyanophages in aquatic environments depend on their interactions with cyanobacterial hosts. The first step of phage-host interaction involves adsorption to the cell surface. We report that adsorption of a cyanophage, A-1(L), to the outer membrane of Anabaena sp. strain PCC 7120 is based on the binding of a tail protein, ORF36, to the O antigen of lipopolysaccharides (LPS). Removal of O antigen by gene inactivation abolished infection by A-1(L); consistently, preincubation of the cyanophage with extracted Anabaena LPS partially blocked infection. In contrast, inactivation of major outer membrane protein genes in Anabaena or addition of Synechocystis LPS showed no effect on infection. ORF35 and ORF36 are two predicted tail proteins of A-1(L). Antibodies against either ORF35 or ORF36 strongly inhibited infection. Enzyme-linked immunosorbent assay showed a specific interaction between ORF36 and the LPS of Anabaena sp. strain PCC 7120. These findings indicate that ORF35 and ORF36 are probably both required for adsorption of A-1(L) to the cell surface, but ORF36 specifically binds to the O antigen of LPS.IMPORTANCE Cyanophages play an important role in regulating the dynamics of cyanobacterial communities in aquatic environments. Hitherto, the mechanisms for cyanophage infection have been barely investigated. In this study, the first cyanophage tail protein that binds to the receptor (LPS) on cell surface was identified and shown to be essential for the A-1(L) infection of Anabaena sp. strain PCC 7120. The protein-LPS interaction may represent an important route for adsorption of cyanophages to their hosts.
Collapse
Affiliation(s)
- Zhenzhen Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yali Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yanling Dong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qiya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xudong Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
10
|
Zhang H, Xu X. Manipulation of Pattern of Cell Differentiation in a hetR Mutant of Anabaena sp. PCC 7120 by Overexpressing hetZ Alone or with hetP. Life (Basel) 2018; 8:life8040060. [PMID: 30513635 PMCID: PMC6316738 DOI: 10.3390/life8040060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 12/29/2022] Open
Abstract
In the filamentous cyanobacterium, Anabaena sp. PCC 7120, single heterocysts differentiate at semi-regular intervals in response to nitrogen stepdown. HetR is a principal regulator of heterocyst differentiation, and hetP and hetZ are two genes that are regulated directly by HetR. In a hetR mutant generated from the IHB (Institute of Hydrobiology) substrain of PCC 7120, heterocyst formation can be restored by moderate expression of hetZ and hetP. The resulting heterocysts are located at terminal positions. We used a tandem promoter, PrbcLPpetE, to express hetZ and hetP strongly in the hetR mutant. Co-expression of hetZ and hetP enabled the hetR mutant to form multiple contiguous heterocysts at both terminal and intercalary positions. Expression of hetZ, alone resulted in terminally located heterocysts, whereas expression of hetP, alone produced enlarged cells in strings. In the absence of HetR, formation of heterocysts was insensitive to the peptide inhibitor, RGSGR.
Collapse
Affiliation(s)
- He Zhang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Xudong Xu
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
11
|
Yao R, Liu D, Jia X, Zheng Y, Liu W, Xiao Y. CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Synth Syst Biotechnol 2018; 3:135-149. [PMID: 30345399 PMCID: PMC6190536 DOI: 10.1016/j.synbio.2018.09.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas technologies have greatly reshaped the biology field. In this review, we discuss the CRISPR-Cas with a particular focus on the associated technologies and applications of CRISPR-Cas9 and CRISPR-Cas12a, which have been most widely studied and used. We discuss the biological mechanisms of CRISPR-Cas as immune defense systems, recently-discovered anti-CRISPR-Cas systems, and the emerging Cas variants (such as xCas9 and Cas13) with unique characteristics. Then, we highlight various CRISPR-Cas biotechnologies, including nuclease-dependent genome editing, CRISPR gene regulation (including CRISPR interference/activation), DNA/RNA base editing, and nucleic acid detection. Last, we summarize up-to-date applications of the biotechnologies for synthetic biology and metabolic engineering in various bacterial species.
Collapse
Affiliation(s)
- Ruilian Yao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Di Liu
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Xiao Jia
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuan Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
12
|
Rivers OS, Beurmann S, Dow A, Cozy LM, Videau P. Phenotypic Assessment Suggests Multiple Start Codons for HetN, an Inhibitor of Heterocyst Differentiation, in Anabaena sp. Strain PCC 7120. J Bacteriol 2018; 200:e00220-18. [PMID: 29784882 PMCID: PMC6060353 DOI: 10.1128/jb.00220-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/14/2018] [Indexed: 11/20/2022] Open
Abstract
Multicellular organisms must carefully regulate the timing, number, and location of specialized cellular development. In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, nitrogen-fixing heterocysts are interspersed between vegetative cells in a periodic pattern to achieve an optimal exchange of bioavailable nitrogen and reduced carbon. The spacing between heterocysts is regulated by the activity of two developmental inhibitors, PatS and HetN. PatS functions to create a de novo pattern from a homogenous field of undifferentiated cells, while HetN maintains the pattern throughout subsequent growth. Both PatS and HetN harbor the peptide motif ERGSGR, which is sufficient to inhibit development. While the small size of PatS makes the interpretation of inhibitory domains relatively simple, HetN is a 287-amino-acid protein with multiple functional regions. Previous work suggested the possibility of a truncated form of HetN containing the ERGSGR motif as the source of the HetN-derived inhibitory signal. In this work, we present evidence that the glutamate of the ERGSGR motif is required for proper HetN inhibition of heterocysts. Mutational analysis and subcellular localization indicate that the gene encoding HetN uses two methionine start codons (M1 and M119) to encode two protein forms: M1 is required for protein localization, while M119 is primarily responsible for inhibitory function. Finally, we demonstrate that patS and hetN are not functionally equivalent when expressed from the other gene's regulatory sequences. Taken together, these results help clarify the functional forms of HetN and will help refine future work defining a HetN-derived inhibitory signal in this model of one-dimensional periodic patterning.IMPORTANCE The proper placement of different cell types during a developmental program requires the creation and maintenance of a biological pattern to define the cells that will differentiate. Here we show that the HetN inhibitor, responsible for pattern maintenance of specialized nitrogen-fixing heterocyst cells in the filamentous cyanobacterium Anabaena, may be produced from two different start methionine codons. This work demonstrates that the two start sites are individually involved in a different HetN function, either membrane localization or inhibition of cellular differentiation.
Collapse
Affiliation(s)
- Orion S Rivers
- University of Hawaii at Manoa, Department of Microbiology, Honolulu, Hawaii, USA
| | - Silvia Beurmann
- University of Maryland, Institute for Genome Sciences, Maryland School of Medicine, Baltimore, Maryland, USA
| | - Allexa Dow
- University of Hawaii at Manoa, Department of Microbiology, Honolulu, Hawaii, USA
| | - Loralyn M Cozy
- Illinois Wesleyan University, Department of Biology, Bloomington, Illinois, USA
| | - Patrick Videau
- Dakota State University, Biology Department, College of Arts and Sciences, Madison, South Dakota
| |
Collapse
|
13
|
Videau P, Rivers OS, Tom SK, Oshiro RT, Ushijima B, Swenson VA, Philmus B, Gaylor MO, Cozy LM. The hetZ gene indirectly regulates heterocyst development at the level of pattern formation in Anabaena sp. strain PCC 7120. Mol Microbiol 2018; 109:91-104. [PMID: 29676808 DOI: 10.1111/mmi.13974] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2018] [Indexed: 01/08/2023]
Abstract
Multicellular development requires the careful orchestration of gene expression to correctly create and position specialized cells. In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, nitrogen-fixing heterocysts are differentiated from vegetative cells in a reproducibly periodic and physiologically relevant pattern. While many genetic factors required for heterocyst development have been identified, the role of HetZ has remained unclear. Here, we present evidence to clarify the requirement of hetZ for heterocyst production and support a model where HetZ functions in the patterning stage of differentiation. We show that a clean, nonpolar deletion of hetZ fails to express the developmental genes hetR, patS, hetP and hetZ correctly and fails to produce heterocysts. Complementation and overexpression of hetZ in a hetP mutant revealed that hetZ was incapable of bypassing hetP, suggesting that it acts upstream of hetP. Complementation and overexpression of hetZ in a hetR mutant, however, demonstrated bypass of hetR, suggesting that it acts downstream of hetR and is capable of bypassing the need for hetR for differentiation irrespective of nitrogen status. Finally, protein-protein interactions were observed between HetZ and HetR, Alr2902 and HetZ itself. Collectively, this work suggests a regulatory role for HetZ in the patterning phase of cellular differentiation in Anabaena.
Collapse
Affiliation(s)
- Patrick Videau
- Department of Biology, College of Arts and Sciences, Dakota State University, Madison, SD, USA
| | - Orion S Rivers
- Department of Microbiology, University of Hawaii, Honolulu, HI, USA
| | - Sasa K Tom
- Department of Microbiology, University of Hawaii, Honolulu, HI, USA
| | - Reid T Oshiro
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Blake Ushijima
- Department of Microbiology, University of Hawaii, Honolulu, HI, USA
| | - Vaille A Swenson
- Department of Biology, College of Arts and Sciences, Dakota State University, Madison, SD, USA
- Department of Chemistry, College of Arts and Sciences, Dakota State University, Madison, SD, USA
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Michael O Gaylor
- Department of Chemistry, College of Arts and Sciences, Dakota State University, Madison, SD, USA
| | - Loralyn M Cozy
- Department of Biology, Illinois Wesleyan University, Bloomington, IL, USA
| |
Collapse
|