1
|
Worley TK, Asal AH, Cooper L, Courcelle CT, Courcelle J. The complex development of psoralen-interstrand crosslink resistance in Escherichia coli requires AcrR inactivation, retention of a marbox sequence, and one of three MarA, SoxS, or Rob global regulators. Mutat Res 2025; 830:111898. [PMID: 39903998 DOI: 10.1016/j.mrfmmm.2025.111898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Crosslinking agents, such as psoralen and UVA radiation, can be effectively used as antimicrobials and for treating several dysplastic conditions in humans, including some cancers. Yet, both cancer cells and bacteria can become resistant to these compounds, making it important to understand how resistance develops. Recently, several mutants were isolated that developed high levels of resistance to these compounds through upregulation of components of the AcrAB-TolC efflux pump. Here, we characterized these mutants and found that resistance specifically requires inactivating mutations of the acrR transcriptional repressor which also retain the marbox sequence found within this coding region. In addition, the presence of any one of three global regulators, MarA, SoxS, or Rob, is necessary and sufficient to bind to the marbox sequence and activate resistance. Notably, although psoralen is a substrate for the efflux pump, these regulators are not naturally responsive to this stress as neither psoralen, UVA, nor crosslink induction upregulates acrAB expression in the absence of mutation.
Collapse
Affiliation(s)
- Travis K Worley
- Department of Biology, Portland State University, Portland OR, United States.
| | - Ayah H Asal
- Department of Biology, Portland State University, Portland OR, United States
| | - Lo Cooper
- Department of Biology, Portland State University, Portland OR, United States
| | | | - Justin Courcelle
- Department of Biology, Portland State University, Portland OR, United States
| |
Collapse
|
2
|
Worley TK, Asal AH, Cooper L, Courcelle CT, Courcelle J. The complex development of psoralen-interstrand crosslink resistance in Escherichia coli requires AcrR inactivation, retention of a marbox sequence, and one of three MarA, SoxS, or Rob global regulators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626702. [PMID: 39677732 PMCID: PMC11642870 DOI: 10.1101/2024.12.03.626702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Crosslinking agents, such as psoralen and UVA radiation, can be effectively used as antimicrobials and for treating several dysplastic conditions in humans, including some cancers. Yet, both cancer cells and bacteria can become resistant to these compounds, making it important to understand how resistance develops. Recently, several mutants were isolated that developed high-levels of resistance to these compounds through upregulation of components of the AcrAB-TolC-efflux pump. Here, we characterized these mutants and found that resistance specifically requires inactivating mutations of the acrR transcriptional repressor which also retain the marbox sequence found within this coding region. In addition, the presence of any one of three global regulators, MarA, SoxS, or Rob, is necessary and sufficient to bind to the marbox sequence and activate resistance. Notably, although psoralen is a substrate for the efflux pump, these regulators are not naturally responsive to this stress as neither psoralen, UVA, nor crosslink induction upregulates acrAB expression in the absence of mutation.
Collapse
|
3
|
Wang C, Yang J, Xu Z, Lv L, Chen S, Hong M, Liu JH. Promoter regulatory mode evolution enhances the high multidrug resistance of tmexCD1-toprJ1. mBio 2024; 15:e0021824. [PMID: 38564664 PMCID: PMC11077950 DOI: 10.1128/mbio.00218-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
Antibiotic resistance could rapidly emerge from acquiring the mobile antibiotic resistance genes, which are commonly evolved from an intrinsic gene. The emergence of the plasmid-borne mobilized efflux pump gene cluster tmexCD1-toprJ1 renders the last-resort antibiotic tigecycline ineffective, although its evolutionary mechanism remains unclear. In this study, we investigate the regulatory mechanisms of the progenitor NfxB-MexCD-OprJ, a chromosomally encoded operon that does not mediate antibiotic resistance in the wild-type version, and its homologs, TNfxB1-TMexCD1-TOprJ1 mediating high-level tigecycline resistance, and TNfxB3-TMexCD3-TOprJ1. Mechanistic studies demonstrated that in nfxB-mexCD-oprJ, MexCD expression was under a weaker promoter, PmexC and inhibited by a strong repressor NfxB. For tmexCD1-toprJ1, TMexCD1 was highly expressed owing to the presence of a strong promoter, PtmexC1, and an inactive suppressor, TNfxB1, with a T39R mutation that rendered it unable to bind to promoter DNA. In tnfxB3-tmexCD3-toprJ1b, TMexCD3 expression was intermediate because of the local regulator TNfxB3, which binds to two inverted repeat sequences of PtmexC. Additionally, TNfxB3 exhibited lower protein expression and weaker DNA binding affinity than its ancestor NfxB, together with their promoter activities difference explaining the different expression levels of tmexCD-toprJ homologs. Distinct fitness burdens on these homologs-carrying bacteria were observed due to the corresponding expression level, which might be associated with their global prevalence. In summary, our data depict the mechanisms underlying the evolution and dissemination of an important mobile antibiotic resistance gene from an intrinsic chromosomal gene.IMPORTANCEAs antibiotic resistance seriously challenges global health, tigecycline is one of the few effective drugs in the pipeline against infections caused by multidrug-resistant pathogens. Our previous work identified a novel tigecycline resistance efflux pump gene cluster tmexCD1-toprJ1 in animals and humans, together with its various variants, a rising clinical concern. Herein, this study focused on how the local regulation modes of tmexCD1-toprJ1 evolved to a highly expressed efflux pump. Through comparative analysis between three tnfxB-tmexCD-toprJ homologs and their progenitor nfxB-mexCD-oprJ, modes, we demonstrated the evolutionary dynamics from a chromosomal silent gene to an active state. We found the de-repression of the local regulator and an increase of the promoter activity work together to promote a high production of drug efflux machines and enhance multidrug resistance. Our findings revealed that TMexCD1-TOprJ1 adopts a distinct evolutionary path to achieve higher multidrug resistance, urgently needing tight surveillance.
Collapse
Affiliation(s)
- Chengzhen Wang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong, China
| | - Jun Yang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong, China
| | - Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Luchao Lv
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong, China
| | - Sheng Chen
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Mei Hong
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China
| | - Jian-Hua Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong, China
| |
Collapse
|