1
|
Sherman ME, Michalski J, Das S, Yang H, Chandrasekaran L, O'Meara TR, Dowling DJ, Levy O, Barnoy S, Venkatesan M, Ernst RK. BECC-engineered live-attenuated Shigella vaccine candidates display reduced endotoxicity with robust immunogenicity in mice. Vaccine 2025; 50:126779. [PMID: 39946867 DOI: 10.1016/j.vaccine.2025.126779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/11/2024] [Accepted: 01/20/2025] [Indexed: 02/19/2025]
Abstract
Shigella spp. infection contributes significantly to the global disease burden, primarily affecting young children in developing countries. Currently, there are no FDA-approved vaccines against Shigella, and the prevalence of antibiotic resistance is increasing, making therapeutic options limited. Live-attenuated vaccine strains WRSs2 (S. sonnei) and WRSf2G12 (S. flexneri 2a) are highly immunogenic, making them promising vaccine candidates, but possess an inflammatory lipid A structure on their lipopolysaccharide (LPS; also known as endotoxin). Here, we utilized bacterial enzymatic combinatorial chemistry (BECC) to ectopically express lipid A modifying enzymes in WRSs2 and WRSf2G12, as well as their respective wild-type strains, generating targeted lipid A modifications across the Shigella backgrounds. Dephosphorylation of lipid A, rather than deacylation, reduced LPS-induced TLR4 signaling in vitro and dampened endotoxic effects in vivo. These BECC-modified vaccine strains retained the phenotypic traits of their parental strains, such as invasion of epithelial cells and immunogenicity in mice without adverse endotoxicity. Overall, our observations suggest that BECC-engineered live attenuated vaccines are a promising approach to safe and effective Shigella vaccines.
Collapse
Affiliation(s)
- Matthew E Sherman
- University of Maryland-Baltimore, Department of Microbial Pathogenesis, Baltimore, MD 21201, USA
| | - Jane Michalski
- University of Maryland-Baltimore, Department of Microbial Pathogenesis, Baltimore, MD 21201, USA; University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD 21201, USA
| | - Sayan Das
- University of Maryland-Baltimore, Department of Microbial Pathogenesis, Baltimore, MD 21201, USA
| | - Hyojik Yang
- University of Maryland-Baltimore, Department of Microbial Pathogenesis, Baltimore, MD 21201, USA
| | - Lakshmi Chandrasekaran
- Walter Reed Army Institute of Research, Department of Diarrheal Disease Research, Bacterial Disease Branch, Silver Spring, MD 20910, USA
| | - Timothy R O'Meara
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - David J Dowling
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Ofer Levy
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Shoshana Barnoy
- Walter Reed Army Institute of Research, Department of Diarrheal Disease Research, Bacterial Disease Branch, Silver Spring, MD 20910, USA
| | - Malabi Venkatesan
- Walter Reed Army Institute of Research, Department of Diarrheal Disease Research, Bacterial Disease Branch, Silver Spring, MD 20910, USA
| | - Robert K Ernst
- University of Maryland-Baltimore, Department of Microbial Pathogenesis, Baltimore, MD 21201, USA.
| |
Collapse
|
2
|
Haidar-Ahmad N, Manigat FO, Silué N, Pontier SM, Campbell-Valois FX. A Tale about Shigella: Evolution, Plasmid, and Virulence. Microorganisms 2023; 11:1709. [PMID: 37512882 PMCID: PMC10383432 DOI: 10.3390/microorganisms11071709] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Shigella spp. cause hundreds of millions of intestinal infections each year. They target the mucosa of the human colon and are an important model of intracellular bacterial pathogenesis. Shigella is a pathovar of Escherichia coli that is characterized by the presence of a large invasion plasmid, pINV, which encodes the characteristic type III secretion system and icsA used for cytosol invasion and cell-to-cell spread, respectively. First, we review recent advances in the genetic aspects of Shigella, shedding light on its evolutionary history within the E. coli lineage and its relationship to the acquisition of pINV. We then discuss recent insights into the processes that allow for the maintenance of pINV. Finally, we describe the role of the transcription activators VirF, VirB, and MxiE in the major virulence gene regulatory cascades that control the expression of the type III secretion system and icsA. This provides an opportunity to examine the interplay between these pINV-encoded transcriptional activators and numerous chromosome-encoded factors that modulate their activity. Finally, we discuss novel chromosomal genes icaR, icaT, and yccE that are regulated by MxiE. This review emphasizes the notion that Shigella and E. coli have walked the fine line between commensalism and pathogenesis for much of their history.
Collapse
Affiliation(s)
- Nathaline Haidar-Ahmad
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - France Ourida Manigat
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Navoun Silué
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Stéphanie M Pontier
- Centre de Recherche Santé Environnementale et Biodiversité de l'Outaouais (SEBO), CEGEP de l'Outaouais, Gatineau, QC J8Y 6M4, Canada
| | - François-Xavier Campbell-Valois
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Centre for Infection, Immunity and Inflammation, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
3
|
Roles of Two-Component Signal Transduction Systems in Shigella Virulence. Biomolecules 2022; 12:biom12091321. [PMID: 36139160 PMCID: PMC9496106 DOI: 10.3390/biom12091321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Two-component signal transduction systems (TCSs) are widespread types of protein machinery, typically consisting of a histidine kinase membrane sensor and a cytoplasmic transcriptional regulator that can sense and respond to environmental signals. TCSs are responsible for modulating genes involved in a multitude of bacterial functions, including cell division, motility, differentiation, biofilm formation, antibiotic resistance, and virulence. Pathogenic bacteria exploit the capabilities of TCSs to reprogram gene expression according to the different niches they encounter during host infection. This review focuses on the role of TCSs in regulating the virulence phenotype of Shigella, an intracellular pathogen responsible for severe human enteric syndrome. The pathogenicity of Shigella is the result of the complex action of a wide number of virulence determinants located on the chromosome and on a large virulence plasmid. In particular, we will discuss how five TCSs, EnvZ/OmpR, CpxA/CpxR, ArcB/ArcA, PhoQ/PhoP, and EvgS/EvgA, contribute to linking environmental stimuli to the expression of genes related to virulence and fitness within the host. Considering the relevance of TCSs in the expression of virulence in pathogenic bacteria, the identification of drugs that inhibit TCS function may represent a promising approach to combat bacterial infections.
Collapse
|
4
|
Shprung T, Wani NA, Wilmes M, Mangoni ML, Bitler A, Shimoni E, Sahl HG, Shai Y. Opposing Effects of PhoPQ and PmrAB on the Properties of Salmonella enterica serovar Typhimurium: Implications on Resistance to Antimicrobial Peptides. Biochemistry 2021; 60:2943-2955. [PMID: 34547893 PMCID: PMC8638962 DOI: 10.1021/acs.biochem.1c00287] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The increasing number of resistant
bacteria is a major threat worldwide,
leading to the search for new antibiotic agents. One of the leading
strategies is the use of antimicrobial peptides (AMPs), cationic and
hydrophobic innate immune defense peptides. A major target of AMPs
is the bacterial membrane. Notably, accumulating data suggest that
AMPs can activate the two-component systems (TCSs) of Gram-negative
bacteria. These include PhoP-PhoQ (PhoPQ) and PmrA-PmrB (PmrAB), responsible
for remodeling of the bacterial cell surface. To better understand
this mechanism, we utilized bacteria deficient either in one system
alone or in both and biophysical tools including fluorescence spectroscopy,
single-cell atomic force microscopy, electron microscopy, and mass
spectrometry (MoskowitzS. M.;Antimicrob. Agents Chemother.2012, 56, 1019−103022106224; ChengH. Y.;J. Biomed. Sci.2010, 17, 6020653976). Our data suggested that the two systems have opposing
effects on the properties of Salmonella enterica. The knockout of PhoPQ made the bacteria more susceptible to AMPs
by making the surface less rigid, more polarized, and permeable with
a slightly more negatively charged cell wall. In addition, the periplasmic
space is thinner. In contrast, the knockout of PmrAB did not affect
its susceptibility, while it made the bacterial outer layer very rigid,
less polarized, and less permeable than the other two mutants, with
a negatively charged cell wall similar to the WT. Overall, the data
suggest that the coexistence of systems with opposing effects on the
biophysical properties of the bacteria contribute to their membrane
flexibility, which, on the one hand, is important to accommodate changing
environments and, on the other hand, may inhibit the development of
meaningful resistance to AMPs.
Collapse
Affiliation(s)
- Tal Shprung
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naiem Ahmad Wani
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miriam Wilmes
- Pharmaceutical Microbiology Section, Institute for Medical Microbiology, Immunology and Parasitology, University of Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences A. Rossi Fanelli, Faculty of Pharmacy and Medicine, Sapienza University of Rome, CU27, 00185 Roma, Italy
| | - Arkadi Bitler
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eyal Shimoni
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hans-Georg Sahl
- Pharmaceutical Microbiology Section, Institute for Medical Microbiology, Immunology and Parasitology, University of Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| | - Yechiel Shai
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
5
|
Inactivation of the sfgtr4 Gene of Shigella flexneri Induces Biofilm Formation and Affects Bacterial Pathogenicity. Microorganisms 2020; 8:microorganisms8060841. [PMID: 32512756 PMCID: PMC7355660 DOI: 10.3390/microorganisms8060841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/08/2020] [Accepted: 05/21/2020] [Indexed: 01/08/2023] Open
Abstract
Biofilm formation is a significant cause for the environmental persistence of foodborne pathogens. This phenomenon remains misunderstood in Shigellaflexneri whose pathogenicity is mainly associated with the virulence plasmid pWR100. Sequence analysis of the latter predicts a putative lipopolysaccharides (LPS) glycosyltransferase (Gtr) encoded by Sfgtr4, which is the second gene of the SfpgdA-orf186-virK-msbB2 locus. We demonstrated here that purified SfGtr4 exhibited a Gtr activity in vitro by transferring glucose to lipid A. To establish the role of SfGtr4 in virulence, we generated a Sfgtr4 mutant and assessed its phenotype in vitro. Sfgtr4 mutant significantly reduced HeLa cells invasion without impairing type III effectors secretion, increased susceptibility to lysozyme degradation, and enhanced bacterial killing by polymorphonuclear neutrophils (PMNs). SfGtr4 is related to proteins required in biofilm formation. We established conditions whereby wild-type Shigella formed biofilm and revealed that its appearance was accelerated by the Sfgtr4 mutant. Additional phenotypical analysis revealed that single SfpdgA and double SfpgdA-Sfgtr4 mutants behaved similarly to Sfgtr4 mutant. Furthermore, a molecular interaction between SfGtr4 and SfPgdA was identified. In summary, the dual contribution of SfGtr4 and SfPgdA to the pathogenicity and the regulation biofilm formation by S. flexneri was demonstrated here.
Collapse
|
6
|
Structural Insight into a Membrane Intrinsic Acyltransferase from Chlorobium tepidum. Curr Microbiol 2019; 76:1290-1297. [PMID: 31321468 DOI: 10.1007/s00284-019-01743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 07/11/2019] [Indexed: 10/26/2022]
Abstract
The Lipid A component of the outer membrane of Gram-negative bacteria is an integral part of the permeability barrier known as LPS, which actively prevents the uptake of bactericidal compounds. It is clinically very significant, as it is known to elicit a strong immune response in the humans, through the TLR4 complex. The Lipid A species are synthesized through a highly conserved multistep biosynthetic pathway. The final step is catalyzed by acyltransferases of the HtrB/MsbB family, which are members of a superfamily of enzymes, present in all domains of life with important roles to play in various biological processes. The investigation of a putative dual functioning enzyme which can add both laurate and myristate residues to the (Kdo)2-lipid IVA (precursor of Lipid A) would give a snapshot into the versatility of substrates that these enzymes catalyze. In this study we have cloned and purified to homogeneity, such a putative dual functional acyltransferase from Chlorobium tepidum, and attempted to study the enzyme in more details in terms of its sequence and structural aspects, as it lacks conserved residues with other enzymes of the same family.
Collapse
|
7
|
|
8
|
Lin Z, Cai X, Chen M, Ye L, Wu Y, Wang X, Lv Z, Shang Y, Qu D. Virulence and Stress Responses of Shigella flexneri Regulated by PhoP/PhoQ. Front Microbiol 2018; 8:2689. [PMID: 29379483 PMCID: PMC5775216 DOI: 10.3389/fmicb.2017.02689] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/26/2017] [Indexed: 12/31/2022] Open
Abstract
The two-component signal transduction system PhoP/PhoQ is an important regulator for stress responses and virulence in most Gram-negative bacteria, but characterization of PhoP/PhoQ in Shigella has not been thoroughly investigated. In the present study, we found that deletion of phoPQ (ΔphoPQ) from Shigella flexneri 2a 301 (Sf301) resulted in a significant decline (reduced by more than 15-fold) in invasion of HeLa cells and Caco-2 cells, and less inflammation (− or +) compared to Sf301 (+++) in the guinea pig Sereny test. In low Mg2+ (10 μM) medium or pH 5 medium, the ΔphoPQ strain exhibited a growth deficiency compared to Sf301. The ΔphoPQ strain was more sensitive than Sf301 to polymyxin B, an important antimicrobial agent for treating multi-resistant Gram-negative infections. By comparing the transcriptional profiles of ΔphoPQ and Sf301 using DNA microarrays, 117 differentially expressed genes (DEGs) were identified, which were involved in Mg2+ transport, lipopolysaccharide modification, acid resistance, bacterial virulence, respiratory, and energy metabolism. Based on the reported PhoP box motif [(T/G) GTTTA-5nt-(T/G) GTTTA], we screened 38 suspected PhoP target operons in S. flexneri, and 11 of them (phoPQ, mgtA, slyB, yoaE, yrbL, icsA, yhiWX, rstA, hdeAB, pagP, and shf–rfbU-virK-msbB2) were demonstrated to be PhoP-regulated genes based on electrophoretic mobility shift assays and β-galactosidase assays. One of these PhoP-regulated genes, icsA, is a well-known virulence factor in S. flexneri. In conclusion, our data suggest that the PhoP/PhoQ system modulates S. flexneri virulence (in an icsA-dependent manner) and stress responses of Mg2+, pH and antibacterial peptides.
Collapse
Affiliation(s)
- Zhiwei Lin
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xia Cai
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Mingliang Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Lina Ye
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaofei Wang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhihui Lv
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yongpeng Shang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| |
Collapse
|
9
|
Identification and Characterization of Two Klebsiella pneumoniae lpxL Lipid A Late Acyltransferases and Their Role in Virulence. Infect Immun 2017; 85:IAI.00068-17. [PMID: 28652313 DOI: 10.1128/iai.00068-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/20/2017] [Indexed: 01/18/2023] Open
Abstract
Klebsiella pneumoniae causes a wide range of infections, from urinary tract infections to pneumonia. The lipopolysaccharide is a virulence factor of this pathogen, although there are gaps in our understanding of its biosynthesis. Here we report on the characterization of K. pneumoniaelpxL, which encodes one of the enzymes responsible for the late secondary acylation of immature lipid A molecules. Analysis of the available K. pneumoniae genomes revealed that this pathogen's genome encodes two orthologues of Escherichia coli LpxL. Using genetic methods and mass spectrometry, we demonstrate that LpxL1 catalyzes the addition of laureate and LpxL2 catalyzes the addition of myristate. Both enzymes acylated E. coli lipid A, whereas only LpxL2 mediated K. pneumoniae lipid A acylation. We show that LpxL1 is negatively regulated by the two-component system PhoPQ. The lipid A produced by the lpxL2 mutant lacked the 2-hydroxymyristate, palmitate, and 4-aminoarabinose decorations found in the lipid A synthesized by the wild type. The lack of 2-hydroxymyristate was expected since LpxO modifies the myristate transferred by LpxL2 to the lipid A. The absence of the other two decorations is most likely caused by the downregulation of phoPQ and pmrAB expression. LpxL2-dependent lipid A acylation protects Klebsiella from polymyxins, mediates resistance to phagocytosis, limits the activation of inflammatory responses by macrophages, and is required for pathogen survival in the wax moth (Galleria mellonella). Our findings indicate that the LpxL2 contribution to virulence is dependent on LpxO-mediated hydroxylation of the LpxL2-transferred myristate. Our studies suggest that LpxL2 might be a candidate target in the development of anti-K. pneumoniae drugs.
Collapse
|
10
|
Structure-guided enzymology of the lipid A acyltransferase LpxM reveals a dual activity mechanism. Proc Natl Acad Sci U S A 2016; 113:E6064-E6071. [PMID: 27681620 DOI: 10.1073/pnas.1610746113] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gram-negative bacteria possess a characteristic outer membrane, of which the lipid A constituent elicits a strong host immune response through the Toll-like receptor 4 complex, and acts as a component of the permeability barrier to prevent uptake of bactericidal compounds. Lipid A species comprise the bulk of the outer leaflet of the outer membrane and are produced through a multistep biosynthetic pathway conserved in most Gram-negative bacteria. The final steps in this pathway involve the secondary acylation of lipid A precursors. These are catalyzed by members of a superfamily of enzymes known as lysophospholipid acyltransferases (LPLATs), which are present in all domains of life and play important roles in diverse biological processes. To date, characterization of this clinically important class of enzymes has been limited by a lack of structural information and the availability of only low-throughput biochemical assays. In this work, we present the structure of the bacterial LPLAT protein LpxM, and we describe a high-throughput, label-free mass spectrometric assay to characterize acyltransferase enzymatic activity. Using our structure and assay, we identify an LPLAT thioesterase activity, and we provide experimental evidence to support an ordered-binding and "reset" mechanistic model for LpxM function. This work enables the interrogation of other bacterial acyltransferases' structure-mechanism relationships, and the assay described herein provides a foundation for quantitatively characterizing the enzymology of any number of clinically relevant LPLAT proteins.
Collapse
|
11
|
Faherty CS, Wu T, Morris CR, Grassel CL, Rasko DA, Harper JM, Shea-Donohue T, Fasano A, Barry EM. The synthesis of OspD3 (ShET2) in Shigella flexneri is independent of OspC1. Gut Microbes 2016; 7:486-502. [PMID: 27657187 PMCID: PMC5103656 DOI: 10.1080/19490976.2016.1239682] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Shigella flexneri is a Gram-negative pathogen that invades the colonic epithelium and causes millions of cases of watery diarrhea or bacillary dysentery predominately in children under the age of 5 years in developing countries. The effector Shigella enterotoxin 2 (ShET2), or OspD3, is encoded by the sen or ospD3 gene on the virulence plasmid. Previous literature has suggested that ospD3 is in an operon downstream of the ospC1 gene, and expression of both genes is controlled by a promoter upstream of ospC1. Since the intergenic region is 328 bases in length and contains several putative promoter regions, we hypothesized the genes are independently expressed. Here we provide data that ospD3 and ospC1 are not co-transcribed and that OspC1 is not required for OspD3/ShET2 function. Most importantly, we identified strong promoter activity in the intergenic region and demonstrate that OspD3/ShET2 can be expressed and secreted independently of OspC1. This work increases our understanding of the synthesis of a unique virulence factor and provides further insights into Shigella pathogenesis.
Collapse
Affiliation(s)
- Christina S. Faherty
- Department of Medicine, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland,Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts,CONTACT Christina S. Faherty Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, 114 16th Street (114-3503), Charlestown, MA, 02129
| | - Tao Wu
- Department of Medicine, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland
| | - Carolyn R. Morris
- Department of Medicine, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland,Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Christen L. Grassel
- Department of Medicine, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland
| | - David A. Rasko
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jill M. Harper
- Department of Medicine, Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Terez Shea-Donohue
- Department of Medicine, Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Alessio Fasano
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Eileen M. Barry
- Department of Medicine, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
12
|
Characterization of SlyA in Shigella flexneri Identifies a Novel Role in Virulence. Infect Immun 2016; 84:1073-1082. [PMID: 26831468 DOI: 10.1128/iai.00806-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/23/2016] [Indexed: 12/18/2022] Open
Abstract
The SlyA transcriptional regulator has important roles in the virulence and pathogenesis of several members of the Enterobacteriaceae family, including Salmonella enterica serovar Typhimurium and Escherichia coli. Despite the identification of the slyA gene in Shigella flexneri nearly 2 decades ago, as well as the significant conservation of SlyA among enteric bacteria, the role of SlyA in Shigella remains unknown. The genes regulated by SlyA in closely related organisms often are absent from or mutated inS. flexneri, and consequently many described SlyA-dependent phenotypes are not present. By characterizing the expression of slyA and determining its ultimate effect in this highly virulent organism, we postulated that novel SlyA-regulated virulence phenotypes would be identified. In this study, we report the first analysis of SlyA in Shigella and show that (i) the slyA gene is transcribed and ultimately translated into protein, (ii) slyA promoter activity is maximal during stationary phase and is negatively autoregulated and positively regulated by the PhoP response regulator, (iii) the exogenous expression of slyA rescues transcription and virulence-associated deficiencies during virulence-repressed conditions, and (iv) the absence of slyA significantly decreases acid resistance, demonstrating a novel and important role in Shigella virulence. Cumulatively, our study illustrates unexpected parallels between the less conserved S. flexneri and S Typhimurium slyA promoters as well as a unique role for SlyA in Shigella virulence that has not been described previously in any closely related organism.
Collapse
|
13
|
A Shigella flexneri virulence plasmid encoded factor controls production of outer membrane vesicles. G3-GENES GENOMES GENETICS 2014; 4:2493-503. [PMID: 25378474 PMCID: PMC4267944 DOI: 10.1534/g3.114.014381] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Shigella spp. use a repertoire of virulence plasmid-encoded factors to cause shigellosis. These include components of a Type III Secretion Apparatus (T3SA) that is required for invasion of epithelial cells and many genes of unknown function. We constructed an array of 99 deletion mutants comprising all genes encoded by the virulence plasmid (excluding those known to be required for plasmid maintenance) of Shigella flexneri. We screened these mutants for their ability to bind the dye Congo red: an indicator of T3SA function. This screen focused our attention on an operon encoding genes that modify the cell envelope including virK, a gene of partially characterized function. We discovered that virK is required for controlled release of proteins to the culture supernatant. Mutations in virK result in a temperature-dependent overproduction of outer membrane vesicles (OMVs). The periplasmic chaperone/protease DegP, a known regulator of OMV production in Escherichia coli (encoded by a chromosomal gene), was found to similarly control OMV production in S. flexneri. Both virK and degP show genetic interactions with mxiD, a structural component of the T3SA. Our results are consistent with a model in which VirK and DegP relieve the periplasmic stress that accompanies assembly of the T3SA.
Collapse
|
14
|
Yan X, Fratamico PM, Needleman DS, Bayles DO. DNA sequence and analysis of a 90.1-kb plasmid in Shiga toxin-producing Escherichia coli (STEC) O145:NM 83-75. Plasmid 2012; 68:25-32. [DOI: 10.1016/j.plasmid.2012.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 02/09/2012] [Accepted: 02/12/2012] [Indexed: 10/28/2022]
|
15
|
Two live attenuated Shigella flexneri 2a strains WRSf2G12 and WRSf2G15: a new combination of gene deletions for 2nd generation live attenuated vaccine candidates. Vaccine 2012; 30:5159-71. [PMID: 22658966 DOI: 10.1016/j.vaccine.2012.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 04/25/2012] [Accepted: 05/01/2012] [Indexed: 11/23/2022]
Abstract
Shigella infections are a major cause of inflammatory diarrhea and dysentery worldwide. First-generation virG-based live attenuated Shigella strains have been successfully tested in phase I and II clinical trials and are a leading approach for Shigella vaccine development. Additional gene deletions in senA, senB and msbB2 have been engineered into second-generation virG-based Shigella flexneri 2a strains producing WRSf2G12 and WRSf2G15. Both strains harbor a unique combination of gene deletions designed to increase the safety of live Shigella vaccines. WRSf2G12 and WRSf2G15 are genetically stable and highly attenuated in both cell culture and animal models of infection. Ocular immunization of guinea pigs with either strain induces robust systemic and mucosal immune responses that protect against homologous challenge with wild-type Shigella. The data support further evaluation of the second-generation strains in a phase I clinical trial.
Collapse
|
16
|
Abstract
Much is known about the molecular effectors of pathogenicity of gram-negative enteric pathogens, among which Shigella can be considered a model. This is due to its capacity to recapitulate the multiple steps required for a pathogenic microbe to survive close to its mucosal target, colonize and then invade its epithelial surface, cause its inflammatory destruction and simultaneously regulate the extent of the elicited innate response to likely survive the encounter and achieve successful subsequent transmission. These various steps of the infectious process represent an array of successive environmental conditions to which the bacteria need to successfully adapt. These conditions represent the selective pressure that triggered the "arms race" in which Shigella acquired the genetic and molecular effectors of its pathogenic armory, including the regulatory hierarchies that regulate the expression and function of these effectors. They also represent cues through which Shigella achieves the temporo-spatial expression and regulation of its virulence effectors. The role of such environmental cues has recently become obvious in the case of the major virulence effector of Shigella, the type three secretion system (T3SS) and its dedicated secreted virulence effectors. It needs to be better defined for other major virulence components such as the LPS and peptidoglycan which are used as examples here, in addition to the T3SS as models of regulation as it relates to the assembly and functional regulation of complex macromolecular systems of the bacterial surface. This review also stresses the need to better define what the true and relevant environmental conditions can be at the various steps of the progression of infection. The "identity" of the pathogen differs depending whether it is cultivated under in vitro or in vivo conditions. Moreover, this "identity" may quickly change during its progression into the infected tissue. Novel concepts and relevant tools are needed to address this challenge in microbial pathogenesis.
Collapse
Affiliation(s)
- Benoit Marteyn
- Unité de Pathogénie Microbienne Moléculaire; Institut Pasteur; Paris, France,Unité INSERM 786; Institut Pasteur; Paris, France
| | - Anastasia Gazi
- Unité de Pathogénie Microbienne Moléculaire; Institut Pasteur; Paris, France,Unité INSERM 786; Institut Pasteur; Paris, France
| | - Philippe Sansonetti
- Unité de Pathogénie Microbienne Moléculaire; Institut Pasteur; Paris, France,Unité INSERM 786; Institut Pasteur; Paris, France,Chaire de Microbiologie et Maladies Infectieuses; Collège de France; Paris, France,Correspondence to: Philippe Sansonetti,
| |
Collapse
|
17
|
Kaoukab-Raji A, Biskri L, Bernardini ML, Allaoui A. Characterization of SfPgdA, a Shigella flexneri peptidoglycan deacetylase required for bacterial persistence within polymorphonuclear neutrophils. Microbes Infect 2012; 14:619-27. [PMID: 22307019 DOI: 10.1016/j.micinf.2012.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 12/31/2022]
Abstract
Peptidoglycan deacetylases protect the Gram-positive bacteria cell wall from host lysozymes by deacetylating peptidoglycan. Sequence analysis of the genome of Shigella flexneri predicts a putative polysaccharide deacetylase encoded by the plasmidic gene orf185, renamed here SfpgdA. We demonstrated a peptidoglycan deacetylase (PGD) activity with the purified SfPgdA in vitro. To investigate the role SfPgdA in virulence, we constructed a SfpgdA mutant and studied its phenotype in vitro. The mutant showed an increased sensitivity to lysozyme compared to the parental strain. Moreover, the mutant was rapidly killed by polymorphonuclear neutrophils (PMNs). Specific substitution of histidines residues 120 and 125, located within the PGD catalytic domain, by phenylalanine abolished SfPgdA function. SfPgdA expression is controlled by PhoP. Mutation of phoP increases sensitivity to lysozyme compared to the SfpgdA mutant. Here, we confirmed that SfPgdA expression is enhanced under low magnesium concentration and not produced by the phoP mutant. Ectopic expression of SfPgdA in the phoP mutant restored lysozyme resistance and parental bacterial persistence within PMNs. Together our results indicate that PG deacetylation mechanism likely contributes to Shigella persistence by subverting detection by the host immune system.
Collapse
Affiliation(s)
- Abdelmoughit Kaoukab-Raji
- Laboratoire de Bactériologie Moléculaire, Faculté de Médecine, Université Libre de Bruxelles, Route de Lennik 808, 1070 Bruxelles, Belgium
| | | | | | | |
Collapse
|
18
|
Complete genome sequence and comparative metabolic profiling of the prototypical enteroaggregative Escherichia coli strain 042. PLoS One 2010; 5:e8801. [PMID: 20098708 PMCID: PMC2808357 DOI: 10.1371/journal.pone.0008801] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 12/14/2009] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Escherichia coli can experience a multifaceted life, in some cases acting as a commensal while in other cases causing intestinal and/or extraintestinal disease. Several studies suggest enteroaggregative E. coli are the predominant cause of E. coli-mediated diarrhea in the developed world and are second only to Campylobacter sp. as a cause of bacterial-mediated diarrhea. Furthermore, enteroaggregative E. coli are a predominant cause of persistent diarrhea in the developing world where infection has been associated with malnourishment and growth retardation. METHODS In this study we determined the complete genomic sequence of E. coli 042, the prototypical member of the enteroaggregative E. coli, which has been shown to cause disease in volunteer studies. We performed genomic and phylogenetic comparisons with other E. coli strains revealing previously uncharacterised virulence factors including a variety of secreted proteins and a capsular polysaccharide biosynthetic locus. In addition, by using Biolog Phenotype Microarrays we have provided a full metabolic profiling of E. coli 042 and the non-pathogenic lab strain E. coli K-12. We have highlighted the genetic basis for many of the metabolic differences between E. coli 042 and E. coli K-12. CONCLUSION This study provides a genetic context for the vast amount of experimental and epidemiological data published thus far and provides a template for future diagnostic and intervention strategies.
Collapse
|
19
|
Fu H, Liu LG, Peng JP, Leng WC, Yang J, Jin Q. Transcriptional profile of the Shigella flexneri response to an alkaloid: berberine. FEMS Microbiol Lett 2009; 303:169-75. [PMID: 20030725 DOI: 10.1111/j.1574-6968.2009.01872.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Berberine, a natural isoquinoline alkaloid found in many medicinal herbs, has been shown to be active against a variety of microbial infections. To examine the potential effects of berberine on Shigella flexneri, a whole-genome DNA microarray was constructed and a transcriptome analysis of the cellular responses of S. flexneri when exposed to berberine chloride (BC) was performed. Our data revealed that BC upregulated a group of genes involved in DNA replication, repair and division. Intriguingly, the expression of many genes related to cell envelope biogenesis was increased. In addition, many genes involved in cell secretion, nucleotide metabolism, translation, fatty acid metabolism and the virulence system were also induced by the drug. However, more genes from the functional classes of carbohydrate metabolism, energy production and conversion as well as amino acid metabolism were significantly repressed than were induced. These results provide a comprehensive view of the changes in gene expression when S. flexneri was exposed to BC, and shed light on its complicated effects on this pathogen.
Collapse
Affiliation(s)
- Hua Fu
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
20
|
Barnoy S, Jeong KI, Helm RF, Suvarnapunya AE, Ranallo RT, Tzipori S, Venkatesan MM. Characterization of WRSs2 and WRSs3, new second-generation virG(icsA)-based Shigella sonnei vaccine candidates with the potential for reduced reactogenicity. Vaccine 2009; 28:1642-54. [PMID: 19932216 DOI: 10.1016/j.vaccine.2009.11.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 09/02/2009] [Accepted: 11/03/2009] [Indexed: 11/28/2022]
Abstract
Live, attenuated Shigella vaccine candidates, such as Shigella sonnei strain WRSS1, Shigella flexneri 2a strain SC602, and Shigella dysenteriae 1 strain WRSd1, are attenuated principally by the loss of the VirG(IcsA) protein. These candidates have proven to be safe and immunogenic in volunteer trials and in one study, efficacious against shigellosis. One drawback of these candidate vaccines has been the reactogenic symptoms of fever and diarrhea experienced by the volunteers, that increased in a dose-dependent manner. New, second-generation virG(icsA)-based S. sonnei vaccine candidates, WRSs2 and WRSs3, are expected to be less reactogenic while retaining the ability to generate protective levels of immunogenicity seen with WRSS1. Besides the loss of VirG(IcsA), WRSs2 and WRSs3 also lack plasmid-encoded enterotoxin ShET2-1 and its paralog ShET2-2. WRSs3 further lacks MsbB2 that reduces the endotoxicity of the lipid A portion of the bacterial LPS. Studies in cell cultures and in gnotobiotic piglets demonstrate that WRSs2 and WRSs3 have the potential to cause less diarrhea due to loss of ShET2-1 and ShET2-2 as well as alleviate febrile symptoms by loss of MsbB2. In guinea pigs, WRSs2 and WRSs3 were as safe, immunogenic and efficacious as WRSS1.
Collapse
Affiliation(s)
- S Barnoy
- Division of Bacterial & Rickettsial Diseases, Walter Reed Army Institute of Research 503, Robert Grant Avenue, Silver Spring, MD 208914, United States
| | | | | | | | | | | | | |
Collapse
|
21
|
Virulence, inflammatory potential, and adaptive immunity induced by Shigella flexneri msbB mutants. Infect Immun 2009; 78:400-12. [PMID: 19884336 DOI: 10.1128/iai.00533-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The ability of genetically detoxified lipopolysaccharide (LPS) to stimulate adaptive immune responses is an ongoing area of investigation with significant consequences for the development of safe and effective bacterial vaccines and adjuvants. One approach to genetic detoxification is the deletion of genes whose products modify LPS. The msbB1 and msbB2 genes, which encode late acyltransferases, were deleted in the Shigella flexneri 2a human challenge strain 2457T to evaluate the virulence, inflammatory potential, and acquired immunity induced by strains producing underacylated lipid A. Consistent with a reduced endotoxic potential, S. flexneri 2a msbB mutants were attenuated in an acute mouse pulmonary challenge model. Attenuation correlated with decreases in the production of proinflammatory cytokines and in chemokine release without significant changes in lung histopathology. The levels of specific proinflammatory cytokines (interleukin-1beta [IL-1beta], macrophage inflammatory protein 1alpha [MIP-1alpha], and tumor necrosis factor alpha [TNF-alpha]) were also significantly reduced after infection of mouse macrophages with either single or double msbB mutants. Surprisingly, the msbB double mutant displayed defects in the ability to invade, replicate, and spread within epithelial cells. Complementation restored these phenotypes, but the exact nature of the defects was not determined. Acquired immunity and protective efficacy were also assayed in the mouse lung model, using a vaccination-challenge study. Both humoral and cellular responses were generally robust in msbB-immunized mice and afforded significant protection from lethal challenge. These data suggest that the loss of either msbB gene reduces the endotoxicity of Shigella LPS but does not coincide with a reduction in protective immune responses.
Collapse
|
22
|
Contribution of the periplasmic chaperone Skp to efficient presentation of the autotransporter IcsA on the surface of Shigella flexneri. J Bacteriol 2008; 191:815-21. [PMID: 19047350 DOI: 10.1128/jb.00989-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
IcsA is an outer membrane protein in the autotransporter family that is required for Shigella flexneri pathogenesis. Following its secretion through the Sec translocon, IcsA is incorporated into the outer membrane in a process that depends on YaeT, a component of an outer membrane beta-barrel insertion machinery. We investigated the role of the periplasmic chaperone Skp in IcsA maturation. Skp is required for the presentation of the mature amino terminus (alpha-domain) of IcsA on the bacterial surface and contributes to cell-to-cell spread of S. flexneri in cell culture. A mutation in skp does not prevent the insertion of the beta-barrel into the outer membrane, suggesting that the primary role of Skp is the folding of the IcsA alpha-domain. In addition, the requirement for skp can be partially bypassed by disrupting icsP, an ortholog of Escherichia coli ompT, which encodes the protease that processes IcsA between the mature amino terminus and the beta-barrel outer membrane anchor. These findings are consistent with a model in which Skp plays a critical role in the chaperoning of the alpha-domain of IcsA during transit through the periplasm.
Collapse
|