1
|
Marsin S, Jeannin S, Baconnais S, Walbott H, Pehau-Arnaudet G, Noiray M, Aumont-Nicaise M, Stender EGP, Cargemel C, Le Bars R, Le Cam E, Quevillon-Cheruel S. DciA, the Bacterial Replicative Helicase Loader, Promotes LLPS in the Presence of ssDNA. J Mol Biol 2025; 437:168873. [PMID: 39603490 DOI: 10.1016/j.jmb.2024.168873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
The loading of the bacterial replicative helicase DnaB is an essential step for genome replication and depends on the assistance of accessory proteins. Several of these proteins have been identified across the bacterial phyla. DciA is the most common loading protein in bacteria, yet the one whose mechanism is the least understood. We have previously shown that DciA from Vibrio cholerae is composed of a globular domain followed by an unfolded extension and demonstrated its strong affinity for DNA. Here, we characterize the condensates formed by VcDciA upon interaction with a short single-stranded DNA substrate. We demonstrate the fluidity of these condensates using light microscopy and address their network organization through electron microscopy, thereby bridging events to conclude on a liquid-liquid phase separation behavior. Additionally, we observe the recruitment of DnaB in the droplets, concomitant with the release of DciA. We show that the well-known helicase loader DnaC from Escherichia coli is also competent to form these phase-separated condensates in the presence of ssDNA. Our phenomenological data are still preliminary as regards the existence of these condensates in vivo, but open the way for exploring the potential involvement of DciA in the formation of non-membrane compartments within the bacterium to facilitate the assembly of replication players on chromosomal DNA.
Collapse
Affiliation(s)
- Stéphanie Marsin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Sylvain Jeannin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Sonia Baconnais
- Genome Integrity and Cancer UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Hélène Walbott
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | - Magali Noiray
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Magali Aumont-Nicaise
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | - Claire Cargemel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Romain Le Bars
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Eric Le Cam
- Genome Integrity and Cancer UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Sophie Quevillon-Cheruel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
2
|
Tominaga K, Ozaki S, Sato S, Katayama T, Nishimura Y, Omae K, Iwasaki W. Frequent nonhomologous replacement of replicative helicase loaders by viruses in Vibrionaceae. Proc Natl Acad Sci U S A 2024; 121:e2317954121. [PMID: 38683976 PMCID: PMC11087808 DOI: 10.1073/pnas.2317954121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/14/2024] [Indexed: 05/02/2024] Open
Abstract
Several microbial genomes lack textbook-defined essential genes. If an essential gene is absent from a genome, then an evolutionarily independent gene of unknown function complements its function. Here, we identified frequent nonhomologous replacement of an essential component of DNA replication initiation, a replicative helicase loader gene, in Vibrionaceae. Our analysis of Vibrionaceae genomes revealed two genes with unknown function, named vdhL1 and vdhL2, that were substantially enriched in genomes without the known helicase-loader genes. These genes showed no sequence similarities to genes with known function but encoded proteins structurally similar with a viral helicase loader. Analyses of genomic syntenies and coevolution with helicase genes suggested that vdhL1/2 encodes a helicase loader. The in vitro assay showed that Vibrio harveyi VdhL1 and Vibrio ezurae VdhL2 promote the helicase activity of DnaB. Furthermore, molecular phylogenetics suggested that vdhL1/2 were derived from phages and replaced an intrinsic helicase loader gene of Vibrionaceae over 20 times. This high replacement frequency implies the host's advantage in acquiring a viral helicase loader gene.
Collapse
Affiliation(s)
- Kento Tominaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-0882, Japan
| | - Shogo Ozaki
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka812-8582, Japan
| | - Shohei Sato
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka812-8582, Japan
| | - Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka812-8582, Japan
| | - Yuki Nishimura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-0882, Japan
| | - Kimiho Omae
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-0882, Japan
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-0882, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0032, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-0882, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba277-8564, Japan
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo113-0032, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo113-8657, Japan
| |
Collapse
|
3
|
Blaine HC, Simmons LA, Stallings CL. Diverse Mechanisms of Helicase Loading during DNA Replication Initiation in Bacteria. J Bacteriol 2023; 205:e0048722. [PMID: 36877032 PMCID: PMC10128896 DOI: 10.1128/jb.00487-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Initiation of DNA replication is required for cell viability and passage of genetic information to the next generation. Studies in Escherichia coli and Bacillus subtilis have established ATPases associated with diverse cellular activities (AAA+) as essential proteins required for loading of the replicative helicase at replication origins. AAA+ ATPases DnaC in E. coli and DnaI in B. subtilis have long been considered the paradigm for helicase loading during replication in bacteria. Recently, it has become increasingly clear that most bacteria lack DnaC/DnaI homologs. Instead, most bacteria express a protein homologous to the newly described DciA (dnaC/dnaI antecedent) protein. DciA is not an ATPase, and yet it serves as a helicase operator, providing a function analogous to that of DnaC and DnaI across diverse bacterial species. The recent discovery of DciA and of other alternative mechanisms of helicase loading in bacteria has changed our understanding of DNA replication initiation. In this review, we highlight recent discoveries, detailing what is currently known about the replicative helicase loading process across bacterial species, and we discuss the critical questions that remain to be investigated.
Collapse
Affiliation(s)
- Helen C. Blaine
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Lyle A. Simmons
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Christina L. Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
4
|
Cargemel C, Marsin S, Noiray M, Legrand P, Bounoua H, Li de la Sierra-Gallay I, Walbott H, Quevillon-Cheruel S. The LH-DH module of bacterial replicative helicases is the common binding site for DciA and other helicase loaders. Acta Crystallogr D Struct Biol 2023; 79:177-187. [PMID: 36762863 PMCID: PMC9912922 DOI: 10.1107/s2059798323000281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/11/2023] [Indexed: 02/09/2023] Open
Abstract
During the initiation step of bacterial genome replication, replicative helicases depend on specialized proteins for their loading onto oriC. DnaC and DnaI were the first loaders to be characterized. However, most bacteria do not contain any of these genes, which are domesticated phage elements that have replaced the ancestral and unrelated loader gene dciA several times during evolution. To understand how DciA assists the loading of DnaB, the crystal structure of the complex from Vibrio cholerae was determined, in which two VcDciA molecules interact with a dimer of VcDnaB without changing its canonical structure. The data showed that the VcDciA binding site on VcDnaB is the conserved module formed by the linker helix LH of one monomer and the determinant helix DH of the second monomer. Interestingly, DnaC from Escherichia coli also targets this module onto EcDnaB. Thanks to their common target site, it was shown that VcDciA and EcDnaC could be functionally interchanged in vitro despite sharing no structural similarity. This represents a milestone in understanding the mechanism employed by phage helicase loaders to hijack bacterial replicative helicases during evolution.
Collapse
Affiliation(s)
- Claire Cargemel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91180 Gif-sur-Yvette, France
| | - Stéphanie Marsin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91180 Gif-sur-Yvette, France
| | - Magali Noiray
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91180 Gif-sur-Yvette, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L’Orme des Merisiers, 91192 Gif-sur-Yvette, France
| | - Halil Bounoua
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91180 Gif-sur-Yvette, France
| | - Inès Li de la Sierra-Gallay
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91180 Gif-sur-Yvette, France
| | - Hélène Walbott
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91180 Gif-sur-Yvette, France
| | - Sophie Quevillon-Cheruel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91180 Gif-sur-Yvette, France
| |
Collapse
|
5
|
Cargemel C, Baconnais S, Aumont-Nicaise M, Noiray M, Maurin L, Andreani J, Walbott H, Le Cam E, Ochsenbein F, Marsin S, Quevillon-Cheruel S. Structural Insights of the DciA Helicase Loader in Its Relationship with DNA. Int J Mol Sci 2023; 24:1427. [PMID: 36674944 PMCID: PMC9865707 DOI: 10.3390/ijms24021427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
DciA is the ancestral bacterial replicative helicase loader, punctually replaced during evolution by the DnaC/I loaders of phage origin. DnaC helps the helicase to load onto DNA by cracking open the hexameric ring, but the mechanism of loading by DciA remains unknown. We demonstrate by electron microscopy, nuclear magnetic resonance (NMR) spectroscopy, and biochemistry experiments that DciA, which folds into a KH-like domain, interacts with not only single-stranded but also double-stranded DNA, in an atypical mode. Some point mutations of the long α-helix 1 demonstrate its importance in the interaction of DciA for various DNA substrates mimicking single-stranded, double-stranded, and forked DNA. Some of these mutations also affect the loading of the helicase by DciA. We come to the hypothesis that DciA could be a DNA chaperone by intercalating itself between the two DNA strands to stabilize it. This work allows us to propose that the direct interaction of DciA with DNA could play a role in the loading mechanism of the helicase.
Collapse
Affiliation(s)
- Claire Cargemel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Sonia Baconnais
- Genome Integrity and Cancer UMR 9019 CNRS, Université Paris Saclay, Gustave Roussy, 114 Rue Edouard Vaillant, 94805 Villejuif, France
| | - Magali Aumont-Nicaise
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Magali Noiray
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Lia Maurin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Jessica Andreani
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Hélène Walbott
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Eric Le Cam
- Genome Integrity and Cancer UMR 9019 CNRS, Université Paris Saclay, Gustave Roussy, 114 Rue Edouard Vaillant, 94805 Villejuif, France
| | - Françoise Ochsenbein
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Stéphanie Marsin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Sophie Quevillon-Cheruel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|