1
|
Vardeman E, Abuali J, Elvin-Lewis M, Lewis WH, Vandebroek I, Kennelly EJ. Metabolomic, antibacterial, and ethnobotanical investigation of a Caribbean chew stick (bejuco de Indio), Gouania lupuloides (L.) Urb. Fitoterapia 2025; 182:106403. [PMID: 39909353 DOI: 10.1016/j.fitote.2025.106403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/29/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
Gouania lupuloides (L.) Urb. (Rhamnaceae), a medicinal plant commonly used in the Caribbean for dental health, is known as chew stick (chewstick) or bejuco de Indio. Few studies have assessed its chemistry and biological activity. The overall aim of this research is to understand the phytochemistry and antibacterial activity of Gouania lupuloides, as well as its continued cultural use. Authenticated Gouania lupuloides samples collected in Jamaica were extracted, subjected to solvent-solvent partitioning, and evaluated for inhibitory activity against pathogenic oral bacteria. Commercial Caribbean samples of bejuco de Indio available in the United States were compared chemically to known Gouania lupuloides samples through targeted and untargeted UPLC-QTOF-MS analysis. Ethnobotanical fieldwork in rural and urban Jamaica demonstrated the ongoing cultural use of Gouania lupuloides as a natural toothbrush, and in the preservation of traditional fermented beverages. Antibacterial assays demonstrated that triterpenes from Gouania lupuloides, including ceanothic acid, had activity against several of the tested oral pathogens, such as Actinomyces viscosus, Prevotella intermedia, and Peptostreptococcus micros. Principal component analysis indicates that at least one of the chew stick samples sold as bejuco de Indio was chemically distinct from Gouania lupuloides type specimens. Presence of ceanothic acid was used to characterize a chemical fingerprint typical of Gouania lupuloides to aid in the chemotaxonomic identification of unknown chew sticks. Additionally, antibacterial ceanothic acid was present in similar relative abundance in all samples identified as Gouania lupuloides, further supporting its traditional use for oral health and hygiene.
Collapse
Affiliation(s)
- Ella Vardeman
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Blvd. W., Bronx, NY 10468, USA; The Center for Plants, People and Culture, New York Botanical Garden, 2900 Southern Blvd., The Bronx, NY 10458, USA; PhD Program in Biology, The Graduate Center, City University of New York, 365 Fifth Ave., NY 10016, USA
| | - Jood Abuali
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Blvd. W., Bronx, NY 10468, USA
| | - Memory Elvin-Lewis
- Biology Department, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO 63130, USA
| | - Walter H Lewis
- Biology Department, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO 63130, USA
| | - Ina Vandebroek
- The Center for Plants, People and Culture, New York Botanical Garden, 2900 Southern Blvd., The Bronx, NY 10458, USA; PhD Program in Biology, The Graduate Center, City University of New York, 365 Fifth Ave., NY 10016, USA; Caribbean Centre for Research in Bioscience (CCRIB), The University of the West Indies, Mona, Kingston 7, Jamaica, West Indies
| | - Edward J Kennelly
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Blvd. W., Bronx, NY 10468, USA; PhD Program in Biology, The Graduate Center, City University of New York, 365 Fifth Ave., NY 10016, USA.
| |
Collapse
|
2
|
Gil E, Hatcher J, de Saram S, Guy RL, Lamagni T, Brown JS. Streptococcus intermedius: an underestimated pathogen in brain infection? Future Microbiol 2025; 20:163-177. [PMID: 39552595 PMCID: PMC11792871 DOI: 10.1080/17460913.2024.2423524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
Streptococcus intermedius is an oral commensal organism belonging to the Streptococcus anginosus group (SAG). S. intermedius causes periodontitis as well as invasive, pyogenic infection of the central nervous system, pleural space or liver. Compared with other SAG organisms, S. intermedius has a higher mortality as well as a predilection for intracranial infection, suggesting it is likely to possess virulence factors that mediate specific interactions with the host resulting in bacteria reaching the brain. The mechanisms involved are not well described. Intracranial suppuration (ICS) due to S. intermedius infection can manifest as an abscess within the brain parenchyma, or a collection of pus (empyema) in the sub- or extra-dural space. These infections necessitate neurosurgery and prolonged antibiotic treatment and are associated with a considerable burden of morbidity and mortality. The incidence of ICS is increasing in several settings, with SAG species accounting for an increasing proportion of cases. There is a paucity of published literature regarding S. intermedius pathogenesis as well as few published genomes, hampering molecular epidemiological research. This perspective evaluates what is known about the clinical features and pathogenesis of ICS due to S. intermedius and explores hypothetical explanations why the incidence of these infections may be increasing.
Collapse
Affiliation(s)
- Eliza Gil
- UCL Respiratory, Division of Medicine, University College London, London, WC1E 6JF, UK
- Clinical Research Department, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
- Division of Infection, University College London Hospital, London, NW1 2BU, UK
- Department of Microbiology, Virology & Infection Control, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, WC1N 1EH, UK
| | - James Hatcher
- Department of Microbiology, Virology & Infection Control, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, WC1N 1EH, UK
- Department of Infection, Immunity & Inflammation, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Sophia de Saram
- Division of Infection, University College London Hospital, London, NW1 2BU, UK
| | - Rebecca L Guy
- Healthcare-Associated Infection & Antimicrobial Resistance Division, UK Health Security Agency, London, NW9 5EQ, United Kingdom
| | - Theresa Lamagni
- Healthcare-Associated Infection & Antimicrobial Resistance Division, UK Health Security Agency, London, NW9 5EQ, United Kingdom
| | - Jeremy S Brown
- UCL Respiratory, Division of Medicine, University College London, London, WC1E 6JF, UK
| |
Collapse
|
3
|
Sun WS, Lassinantti L, Järvå M, Schmitt A, ter Beek J, Berntsson RPA. Structural foundation for the role of enterococcal PrgB in conjugation, biofilm formation, and virulence. eLife 2023; 12:RP84427. [PMID: 37860966 PMCID: PMC10588982 DOI: 10.7554/elife.84427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Type 4 Secretion Systems are a main driver for the spread of antibiotic resistance genes and virulence factors in bacteria. In Gram-positives, these secretion systems often rely on surface adhesins to enhance cellular aggregation and mating-pair formation. One of the best studied adhesins is PrgB from the conjugative plasmid pCF10 of Enterococcus faecalis, which has been shown to play major roles in conjugation, biofilm formation, and importantly also in bacterial virulence. Since prgB orthologs exist on a large number of conjugative plasmids in various different species, this makes PrgB a model protein for this widespread virulence factor. After characterizing the polymer adhesin domain of PrgB previously, we here report the structure for almost the entire remainder of PrgB, which reveals that PrgB contains four immunoglobulin (Ig)-like domains. Based on this new insight, we re-evaluate previously studied variants and present new in vivo data where specific domains or conserved residues have been removed. For the first time, we can show a decoupling of cellular aggregation from biofilm formation and conjugation in prgB mutant phenotypes. Based on the presented data, we propose a new functional model to explain how PrgB mediates its different functions. We hypothesize that the Ig-like domains act as a rigid stalk that presents the polymer adhesin domain at the right distance from the cell wall.
Collapse
Affiliation(s)
- Wei-Sheng Sun
- Department of Medical Biochemistry and Biophysics, Umeå UniversityUmeåSweden
- Wallenberg Centre for Molecular Medicine, Umeå UniversityUmeåSweden
| | - Lena Lassinantti
- Department of Medical Biochemistry and Biophysics, Umeå UniversityUmeåSweden
| | - Michael Järvå
- Department of Medical Biochemistry and Biophysics, Umeå UniversityUmeåSweden
| | - Andreas Schmitt
- Department of Medical Biochemistry and Biophysics, Umeå UniversityUmeåSweden
| | - Josy ter Beek
- Department of Medical Biochemistry and Biophysics, Umeå UniversityUmeåSweden
- Wallenberg Centre for Molecular Medicine, Umeå UniversityUmeåSweden
| | - Ronnie P-A Berntsson
- Department of Medical Biochemistry and Biophysics, Umeå UniversityUmeåSweden
- Wallenberg Centre for Molecular Medicine, Umeå UniversityUmeåSweden
| |
Collapse
|
4
|
Biofilm ecology associated with dental caries: Understanding of microbial interactions in oral communities leads to development of therapeutic strategies targeting cariogenic biofilms. ADVANCES IN APPLIED MICROBIOLOGY 2023; 122:27-75. [PMID: 37085193 DOI: 10.1016/bs.aambs.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
A biofilm is a sessile community characterized by cells attached to the surface and organized into a complex structural arrangement. Dental caries is a biofilm-dependent oral disease caused by infection with cariogenic pathogens, such as Streptococcus mutans, and associated with frequent exposure to a sugar-rich diet and poor oral hygiene. The virulence of cariogenic biofilms is often associated with the spatial organization of S. mutans enmeshed with exopolysaccharides on tooth surfaces. However, in the oral cavity, S. mutans does not act alone, and several other microbes contribute to cariogenic biofilm formation. Microbial communities in cariogenic biofilms are spatially organized into complex structural arrangements of various microbes and extracellular matrices. The balance of microbiota diversity with reduced diversity and a high proportion of acidogenic-aciduric microbiota within the biofilm is closely related to the disease state. Understanding the characteristics of polymicrobial biofilms and the association of microbial interactions within the biofilm (e.g., symbiosis, cooperation, and competition) in terms of their potential role in the pathogenesis of oral disease would help develop new strategies for interventions in virulent biofilm formation.
Collapse
|
5
|
Pohl CH. Recent Advances and Opportunities in the Study of Candida albicans Polymicrobial Biofilms. Front Cell Infect Microbiol 2022; 12:836379. [PMID: 35252039 PMCID: PMC8894716 DOI: 10.3389/fcimb.2022.836379] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/26/2022] [Indexed: 01/11/2023] Open
Abstract
It is well known that the opportunistic pathogenic yeast, Candida albicans, can form polymicrobial biofilms with a variety of bacteria, both in vitro and in vivo, and that these polymicrobial biofilms can impact the course and management of disease. Although specific interactions are often described as either synergistic or antagonistic, this may be an oversimplification. Polymicrobial biofilms are complex two-way interacting communities, regulated by inter-domain (inter-kingdom) signaling and various molecular mechanisms. This review article will highlight advances over the last six years (2016-2021) regarding the unique biology of polymicrobial biofilms formed by C. albicans and bacteria, including regulation of their formation. In addition, some of the consequences of these interactions, such as the influence of co-existence on antimicrobial susceptibility and virulence, will be discussed. Since the aim of this knowledge is to inform possible alternative treatment options, recent studies on the discovery of novel anti-biofilm compounds will also be included. Throughout, an attempt will be made to identify ongoing challenges in this area.
Collapse
|