1
|
Yurgel SN, Qu Y, Rice JT, Ajeethan N, Zink EM, Brown JM, Purvine S, Lipton MS, Kahn ML. Specialization in a Nitrogen-Fixing Symbiosis: Proteome Differences Between Sinorhizobium medicae Bacteria and Bacteroids. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1409-1422. [PMID: 34402628 DOI: 10.1094/mpmi-07-21-0180-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Using tandem mass spectrometry (MS/MS), we analyzed the proteome of Sinorhizobium medicae WSM419 growing as free-living cells and in symbiosis with Medicago truncatula. In all, 3,215 proteins were identified, over half of the open reading frames predicted from the genomic sequence. The abundance of 1,361 proteins displayed strong lifestyle bias. In total, 1,131 proteins had similar levels in bacteroids and free-living cells, and the low levels of 723 proteins prevented statistically significant assignments. Nitrogenase subunits comprised approximately 12% of quantified bacteroid proteins. Other major bacteroid proteins included symbiosis-specific cytochromes and FixABCX, which transfer electrons to nitrogenase. Bacteroids had normal levels of proteins involved in amino acid biosynthesis, glycolysis or gluconeogenesis, and the pentose phosphate pathway; however, several amino acid degradation pathways were repressed. This suggests that bacteroids maintain a relatively independent anabolic metabolism. Tricarboxylic acid cycle proteins were highly expressed in bacteroids and no other catabolic pathway emerged as an obvious candidate to supply energy and reductant to nitrogen fixation. Bacterial stress response proteins were induced in bacteroids. Many WSM419 proteins that are not encoded in S. meliloti Rm1021 were detected, and understanding the functions of these proteins might clarify why S. medicae WSM419 forms a more effective symbiosis with M. truncatula than S. meliloti Rm1021.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Svetlana N Yurgel
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, P.O. Box 550, Truro, Nova Scotia, B2N 5E3, Canada
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, U.S.A
| | - Yi Qu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A
| | - Jennifer T Rice
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, U.S.A
| | - Nivethika Ajeethan
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, P.O. Box 550, Truro, Nova Scotia, B2N 5E3, Canada
- Faculty of Technology, University of Jaffna, Sri Lanka
| | - Erika M Zink
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A
| | - Joseph M Brown
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A
| | - Sam Purvine
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A
| | - Mary S Lipton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A
| | - Michael L Kahn
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, U.S.A
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-6340, U.S.A
| |
Collapse
|
2
|
Chizhevskaya EP, Naidenova EA, Onishchuk OP, Andronov EE, Simarov BV. The Melanin Biosynthesis Gene from the CA15-1 Strain of Alfalfa Nodule Bacteria: Molecular Analysis and Phylogeny. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418080045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Tong W, Li X, Huo Y, Zhang L, Cao Y, Wang E, Chen W, Tao S, Wei G. Genomic insight into the taxonomy of Rhizobium genospecies that nodulate Phaseolus vulgaris. Syst Appl Microbiol 2018; 41:300-310. [PMID: 29576402 DOI: 10.1016/j.syapm.2018.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 10/17/2022]
Abstract
Due to the wide cultivation of bean (Phaseolus vulgaris L.), rhizobia associated with this plant have been isolated from many different geographical regions. In order to investigate the species diversity of bean rhizobia, comparative genome sequence analysis was performed in the present study for 69 Rhizobium strains mainly isolated from root nodules of bean and clover (Trifolium spp.). Based on genome average nucleotide identity, digital DNA:DNA hybridization, and phylogenetic analysis of 1,458 single-copy core genes, these strains were classified into 28 clusters, consistent with their species definition based on multilocus sequence analysis (MLSA) of atpD, glnII, and recA. The bean rhizobia were found in 16 defined species and nine putative novel species; in addition, 35 strains previously described as Rhizobium etli, Rhizobium phaseoli, Rhizobium vallis, Rhizobium gallicum, Rhizobium leguminosarum and Rhizobium spp. should be renamed. The phylogenetic patterns of symbiotic genes nodC and nifH were highly host-specific and inconsistent with the genomic phylogeny. Multiple symbiovars (sv.) within the Rhizobium species were found as a common feature: sv. phaseoli, sv. trifolii and sv. viciae in Rhizobium anhuiense; sv. phaseoli and sv. mimosae in Rhizobium sophoriradicis/R. etli/Rhizobium sp. III; sv. phaseoli and sv. trifolii in Rhizobium hidalgonense/Rhizobium acidisoli; sv. phaseoli and sv. viciae in R. leguminosarum/Rhizobium sp. IX; sv. trifolii and sv. viciae in Rhizobium laguerreae. Thus, genomic comparison revealed great species diversity in bean rhizobia, corrected the species definition of some previously misnamed strains, and demonstrated the MLSA a valuable and simple method for defining Rhizobium species.
Collapse
Affiliation(s)
- Wenjun Tong
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangchen Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yunyun Huo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ying Cao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 México D.F., Mexico
| | - Weimin Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Shiheng Tao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
|
5
|
Genomic analysis of cyclic-di-GMP-related genes in rhizobial type strains and functional analysis in Rhizobium etli. Appl Microbiol Biotechnol 2014; 98:4589-602. [PMID: 24728599 DOI: 10.1007/s00253-014-5722-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 03/04/2014] [Accepted: 03/22/2014] [Indexed: 12/28/2022]
Abstract
Rhizobia are soil bacteria that can fix nitrogen in symbiosis with leguminous plants or exist free living in the rhizosphere. Crucial to their complex lifestyle is the ability to sense and respond to diverse environmental stimuli, requiring elaborate signaling pathways. In the majority of bacteria, the nucleotide-based second messenger cyclic diguanosine monophosphate (c-di-GMP) is involved in signal transduction. Surprisingly, little is known about the importance of c-di-GMP signaling in rhizobia. We have analyzed the genome sequences of six well-studied type species (Bradyrhizobium japonicum, Mesorhizobium loti, Rhizobium etli, Rhizobium leguminosarum, Sinorhizobium fredii, and Sinorhizobium meliloti) for proteins possibly involved in c-di-GMP signaling based on the presence of four domains: GGDEF (diguanylate cyclase), EAL and HD-GYP (phosphodiesterase), and PilZ (c-di-GMP sensor). We find that rhizobia possess a high number of these proteins. Conservation analysis suggests that c-di-GMP signaling proteins modulate species-specific pathways rather than ancient rhizobia-specific processes. Two hybrid GGDEF-EAL proteins were selected for functional analysis, R. etli RHE_PD00105 (CdgA) and RHE_PD00137 (CdgB). Expression of cdgA and cdgB is repressed by the alarmone (p)ppGpp. cdgB is significantly expressed on plant roots and free living. Mutation of cdgA, cdgB, or both does not affect plant root colonization, nitrogen fixation capacity, biofilm formation, motility, and exopolysaccharide production. However, heterologous expression of the individual GGDEF and EAL domains of each protein in Escherichia coli strongly suggests that CdgA and CdgB are bifunctional proteins, possessing both diguanylate cyclase and phosphodiesterase activities. Taken together, our results provide a platform for future studies of c-di-GMP signaling in rhizobia.
Collapse
|
6
|
López-Guerrero MG, Ormeño-Orrillo E, Velázquez E, Rogel MA, Acosta JL, Gónzalez V, Martínez J, Martínez-Romero E. Rhizobium etli taxonomy revised with novel genomic data and analyses. Syst Appl Microbiol 2012; 35:353-8. [DOI: 10.1016/j.syapm.2012.06.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/14/2012] [Accepted: 06/14/2012] [Indexed: 11/16/2022]
|
7
|
López-Guerrero MG, Ormeño-Orrillo E, Acosta JL, Mendoza-Vargas A, Rogel MA, Ramírez MA, Rosenblueth M, Martínez-Romero J, Martínez-Romero E. Rhizobial extrachromosomal replicon variability, stability and expression in natural niches. Plasmid 2012; 68:149-58. [PMID: 22813963 DOI: 10.1016/j.plasmid.2012.07.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/28/2012] [Accepted: 07/06/2012] [Indexed: 12/25/2022]
Abstract
In bacteria, niche adaptation may be determined by mobile extrachromosomal elements. A remarkable characteristic of Rhizobium and Ensifer (Sinorhizobium) but also of Agrobacterium species is that almost half of the genome is contained in several large extrachromosomal replicons (ERs). They encode a plethora of functions, some of them required for bacterial survival, niche adaptation, plasmid transfer or stability. In spite of this, plasmid loss is common in rhizobia upon subculturing. Rhizobial gene-expression studies in plant rhizospheres with novel results from transcriptomic analysis of Rhizobium phaseoli in maize and Phaseolus vulgaris roots highlight the role of ERs in natural niches and allowed the identification of common extrachromosomal genes expressed in association with plant rootlets and the replicons involved.
Collapse
|