1
|
Xu B, Tao S, Yang H, Zhou R, Wu C. Identification and characterization of a novel bacteriocin produced by Lactiplantibacillus pentosus and the antibacterial mechanism on Listeria monocytogenes. Int J Biol Macromol 2025; 309:143113. [PMID: 40222526 DOI: 10.1016/j.ijbiomac.2025.143113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/26/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
In this study, bacteriocin L14 was isolated and identified from Lactiplantibacillus pentosus L14, which could effectively inhibit the growth of Listeria monocytogenes with 62.45 % of the inhibition rate at a concentration of 1 mg/mL. Bacteriocin L14 showed good stability and tolerance to temperature (37.48 % retention at 60 °C for 30 min), pH (2-10), proteases and UV radiation. According to the results of electron microscopy and fluorescence assay, bacteriocin L14 could disrupt the cell structure, reduce the intracellular ATP level, and lead to intracellular Ca2+ accumulation, phosphatidylserine exposure, DNA leakage and apoptosis. Transcriptomic analysis indicated that a total of 941 genes in L. monocytogenes showed significant alterations in expression with 404 genes significantly upregulated and 537 genes significantly downregulated in bacteriocin L14 treated cells. In L. monocytogenes, energy metabolism-associated genes (exemplified by fba) exhibited significant downregulation, leading to impaired cellular proliferation and diminished metabolic vigor. The downregulation of transport-associated genes (exemplified by cbiM) also resulted in diminished metabolic activity of L. monocytogenes. The downregulation of genes in ribosomes caused the abnormal synthesis of peptides. In conclusion, this study showed that bacteriocin L14 had the potential to be used as an antibacterial agent in food industry and control foodborne pathogens.
Collapse
Affiliation(s)
- Buqing Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Siheng Tao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Huan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Guo M, Renshaw CP, Mull RW, Tal-Gan Y. Noncanonical Streptococcus sanguinis ComCDE circuitry integrates environmental cues in transformation outcome decision. Cell Chem Biol 2024; 31:298-311.e6. [PMID: 37832551 PMCID: PMC10922391 DOI: 10.1016/j.chembiol.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023]
Abstract
Natural competence is the principal driver of streptococcal evolution. While acquisition of new traits could facilitate rapid fitness improvement for bacteria, entry into the competent state is a highly orchestrated event, involving an interplay between various pathways. We present a new type of competence-predation coordination mechanism in Streptococcus sanguinis. Unlike other streptococci that mediate competence through the ComABCDE regulon, several key components are missing in the S. sanguinis ComCDE circuitry. We assembled two synthetic biology devices linking competence-stimulating peptide (CSP) cleavage and export with a quantifiable readout to unravel the unique features of the S. sanguinis circuitry. Our results revealed the ComC precursor cleavage pattern and the two host ABC transporters implicated in the export of the S. sanguinis CSP. Moreover, we discovered a ComCDE-dependent bacteriocin locus. Overall, this study presents a mechanism for commensal streptococci to maximize transformation outcome in a fluid environment through extensive circuitry rewiring.
Collapse
Affiliation(s)
- Mingzhe Guo
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St, Reno, NV 89557, USA
| | - Clay P Renshaw
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St, Reno, NV 89557, USA
| | - Ryan W Mull
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St, Reno, NV 89557, USA
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St, Reno, NV 89557, USA.
| |
Collapse
|
3
|
Nagasawa R, Nomura N, Obana N. Identification of a Novel Gene Involved in Cell-to-cell Communication-induced Cell Death and eDNA Production in Streptococcus mutans. Microbes Environ 2023; 38:n/a. [PMID: 37302844 DOI: 10.1264/jsme2.me22085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
Streptococcus mutans is a major caries-causing bacterium that forms firmly attached biofilms on tooth surfaces. Biofilm formation by S. mutans consists of polysaccharide-dependent and polysaccharide-independent processes. Among polysaccharide-independent processes, extracellular DNA (eDNA) mediates the initial attachment of cells to surfaces. We previously reported that the secreted peptide signal, competence-stimulating peptide (CSP) induced cell death in a subpopulation of cells, leading to autolysis-mediated eDNA release. The autolysin gene lytF, the expression of which is stimulated by CSP, has been shown to mediate CSP-dependent cell death, while cell death was not entirely abolished in the lytF deletion mutant, indicating the involvement of other factors. To identify novel genes involved in CSP-dependent cell death, we herein compared transcriptomes between live and dead cells derived from an isogenic population. The results obtained revealed the accumulation of several mRNAs in dead cells. The deletion of SMU_1553c, a putative bacteriocin gene, resulted in significant reductions in CSP-induced cell death and eDNA production levels from those in the parental strain. Moreover, in the double mutant strain of lytF and SMU_1553c, cell death and eDNA production in response to synthetic CSP were completely abolished under both planktonic and biofilm conditions. These results indicate that SMU_1553c is a novel cell death-related factor that contributes to CSP-dependent cell death and eDNA production.
Collapse
Affiliation(s)
- Ryo Nagasawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba
- Microbiology Research Center for Sustainability, University of Tsukuba
| | - Nozomu Obana
- Microbiology Research Center for Sustainability, University of Tsukuba
- Faculty of Medicine, Transborder Medical Research Center, University of Tsukuba
| |
Collapse
|
4
|
Quorum Sensing and Quorum Quenching with a Focus on Cariogenic and Periodontopathic Oral Biofilms. Microorganisms 2022; 10:microorganisms10091783. [PMID: 36144385 PMCID: PMC9503171 DOI: 10.3390/microorganisms10091783] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Numerous in vitro studies highlight the role of quorum sensing in the pathogenicity and virulence of biofilms. This narrative review discusses general principles in quorum sensing, including Gram-positive and Gram-negative models and the influence of flow, before focusing on quorum sensing and quorum quenching in cariogenic and periodontopathic biofilms. In cariology, quorum sensing centres on the role of Streptococcus mutans, and to a lesser extent Candida albicans, while Fusobacterium nucleatum and the red complex pathogens form the basis of the majority of the quorum sensing research on periodontopathic biofilms. Recent research highlights developments in quorum quenching, also known as quorum sensing inhibition, as a potential antimicrobial tool to attenuate the pathogenicity of oral biofilms by the inhibition of bacterial signalling networks. Quorum quenchers may be synthetic or derived from plant or bacterial products, or human saliva. Furthermore, biofilm inhibition by coating quorum sensing inhibitors on dental implant surfaces provides another potential application of quorum quenching technologies in dentistry. While the body of predominantly in vitro research presented here is steadily growing, the clinical value of quorum sensing inhibitors against in vivo oral polymicrobial biofilms needs to be ascertained.
Collapse
|
5
|
Quorum Sensing in Streptococcus mutans Regulates Production of Tryglysin, a Novel RaS-RiPP Antimicrobial Compound. mBio 2021; 12:mBio.02688-20. [PMID: 33727351 PMCID: PMC8092268 DOI: 10.1128/mbio.02688-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria interact and compete with a large community of organisms in their natural environment. Streptococcus mutans is one such organism, and it is an important member of the oral microbiota. We found that S. mutans uses a quorum-sensing system to regulate production of a novel posttranslationally modified peptide capable of inhibiting growth of several streptococcal species. The genus Streptococcus encompasses a large bacterial taxon that commonly colonizes mucosal surfaces of vertebrates and is capable of disease etiologies originating from diverse body sites, including the respiratory, digestive, and reproductive tracts. Identifying new modes of treating infections is of increasing importance, as antibiotic resistance has escalated. Streptococcus mutans is an important opportunistic pathogen that is an agent of dental caries and is capable of systemic diseases such as endocarditis. As such, understanding how it regulates virulence and competes in the oral niche is a priority in developing strategies to defend from these pathogens. We determined that S. mutans UA159 possesses a bona fide short hydrophobic peptide (SHP)/Rgg quorum-sensing system that regulates a specialized biosynthetic operon featuring a radical-SAM (S-adenosyl-l-methionine) (RaS) enzyme and produces a ribosomally synthesized and posttranslationally modified peptide (RiPP). The pairing of SHP/Rgg regulatory systems with RaS biosynthetic operons is conserved across streptococci, and a locus similar to that in S. mutans is found in Streptococcus ferus, an oral streptococcus isolated from wild rats. We identified the RaS-RiPP product from this operon and solved its structure using a combination of analytical methods; we term these RiPPs tryglysin A and B for the unusual Trp-Gly-Lys linkage. We report that tryglysins specifically inhibit the growth of other streptococci, but not other Gram-positive bacteria such as Enterococcus faecalis or Lactococcus lactis. We predict that tryglysin is produced by S. mutans in its oral niche, thus inhibiting the growth of competing species, including several medically relevant streptococci.
Collapse
|
6
|
Kaspar JR, Lee K, Richard B, Walker AR, Burne RA. Direct interactions with commensal streptococci modify intercellular communication behaviors of Streptococcus mutans. THE ISME JOURNAL 2021; 15:473-488. [PMID: 32999420 PMCID: PMC8027600 DOI: 10.1038/s41396-020-00789-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
Abstract
The formation of dental caries is a complex process that ultimately leads to damage of the tooth enamel from acids produced by microbes in attached biofilms. The bacterial interactions occurring within these biofilms between cariogenic bacteria, such as the mutans streptococci, and health-associated commensal streptococci, are thought to be critical determinants of health and disease. To better understand these interactions, a Streptococcus mutans reporter strain that actively monitors cell-cell communication via peptide signaling was cocultured with different commensal streptococci. Signaling by S. mutans, normally highly active in monoculture, was completely inhibited by several species of commensals, but only when the bacteria were in direct contact with S. mutans. We identified a novel gene expression pattern that occurred in S. mutans when cultured directly with these commensals. Finally, mutant derivatives of commensals lacking previously shown antagonistic gene products displayed wild-type levels of signal inhibition in cocultures. Collectively, these results reveal a novel pathway(s) in multiple health-associated commensal streptococci that blocks peptide signaling and induces a common contact-dependent pattern of differential gene expression in S. mutans. Understanding the molecular basis for this inhibition will assist in the rational design of new risk assessments, diagnostics, and treatments for the most pervasive oral infectious diseases.
Collapse
Affiliation(s)
- Justin R Kaspar
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA.
- Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH, USA.
| | - Kyulim Lee
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Brook Richard
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Alejandro R Walker
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Robert A Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
7
|
Ishkov IP, Kaspar JR, Hagen SJ. Spatial Correlations and Distribution of Competence Gene Expression in Biofilms of Streptococcus mutans. Front Microbiol 2021; 11:627992. [PMID: 33510740 PMCID: PMC7835332 DOI: 10.3389/fmicb.2020.627992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/17/2020] [Indexed: 11/13/2022] Open
Abstract
Streptococcus mutans is an important pathogen in the human oral biofilm. It expresses virulent behaviors that are linked to its genetic competence regulon, which is controlled by comX. Expression of comX is modulated by two diffusible signaling peptides, denoted CSP and XIP, and by other environmental cues such as pH and oxidative stress. The sensitivity of S. mutans competence to environmental inputs that may vary on microscopic length scales raises the question of whether the biofilm environment creates microniches where competence and related phenotypes are concentrated, leading to spatial clustering of S. mutans virulence behaviors. We have used two-photon microscopy to characterize the spatial distribution of comX expression among individual S. mutans cells in biofilms. By analyzing correlations in comX activity, we test for spatial clustering that may suggest localized competence microenvironments. Our data indicate that both competence-signaling peptides diffuse efficiently through the biofilm. XIP elicits a population-wide response. CSP triggers a Poisson-like, spatially random comX response from a subpopulation of cells that is homogeneously dispersed. Our data indicate that competence microenvironments if they exist are small enough that the phenotypes of individual cells are not clustered or correlated to any greater extent than occurs in planktonic cultures.
Collapse
Affiliation(s)
- Ivan P Ishkov
- Department of Physics, University of Florida, Gainesville, FL, United States
| | - Justin R Kaspar
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Stephen J Hagen
- Department of Physics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
García-Curiel L, Del Rocío López-Cuellar M, Rodríguez-Hernández AI, Chavarría-Hernández N. Toward understanding the signals of bacteriocin production by Streptococcus spp. and their importance in current applications. World J Microbiol Biotechnol 2021; 37:15. [PMID: 33394178 DOI: 10.1007/s11274-020-02973-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022]
Abstract
Microorganisms have developed quorum sensing (QS) systems to detect small signaling molecules that help to control access to additional nutrients and space in highly competitive polymicrobial niches. Many bacterial processes are QS-regulated; two examples are the highly related traits of the natural genetic competence state and the production of antimicrobial peptides such as bacteriocins. The Streptococcus genus is widely studied for its competence and for its ability to produce bacteriocins, as these antimicrobial peptides have significant potential in the treatment of infections caused by multiple-resistant pathogens, a severe public health issue. The transduction of a two-component system controls competence in streptococci: (1) ComD/E, which controls the competence in the Mitis and Anginosus groups, and (2) ComR/S, which performs the same function in the Bovis, Mutans, Salivarius, and Pyogenic groups. The cell-to-cell communication required for bacteriocin production in the Streptococcus groups is controlled mainly by a paralog of the ComD/E system. The relationships between pheromone signals and induction pathways are related to the bacteriocin production systems. In this review, we discuss the recent advances in the understanding of signaling and the induction of bacteriocin biosynthesis by QS regulation in streptococci. This information could aid in the design of better methods for the development and production of these antimicrobial peptides. It could also contribute to the analysis and emerging applications of bacteriocins in terms of their safety, quality, and human health benefits.
Collapse
Affiliation(s)
- Laura García-Curiel
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias-Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, México
| | - Ma Del Rocío López-Cuellar
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias-Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, México.
| | - Adriana Inés Rodríguez-Hernández
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias-Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, México
| | - Norberto Chavarría-Hernández
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias-Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, México
| |
Collapse
|
9
|
Competence-Stimulating-Peptide-Dependent Localized Cell Death and Extracellular DNA Production in Streptococcus mutans Biofilms. Appl Environ Microbiol 2020; 86:AEM.02080-20. [PMID: 32948520 DOI: 10.1128/aem.02080-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular DNA (eDNA) is a biofilm component that contributes to the formation and structural stability of biofilms. Streptococcus mutans, a major cariogenic bacterium, induces eDNA-dependent biofilm formation under specific conditions. Since cell death can result in the release and accumulation of DNA, the dead cells in biofilms are a source of eDNA. However, it remains unknown how eDNA is released from dead cells and is localized within S. mutans biofilms. We focused on cell death induced by the extracellular signaling peptide called competence-stimulating peptide (CSP). We demonstrate that nucleic acid release into the extracellular environment occurs in a subpopulation of dead cells. eDNA production induced by CSP was highly dependent on the lytF gene, which encodes an autolysin. Although lytF expression was induced bimodally by CSP, lytF-expressing cells further divided into surviving cells and eDNA-producing dead cells. Moreover, we found that lytF-expressing cells were abundant near the bottom of the biofilm, even when all cells in the biofilm received the CSP signal. Dead cells and eDNA were also abundantly present near the bottom of the biofilm. The number of lytF-expressing cells in biofilms was significantly higher than that in planktonic cultures, which suggests that adhesion to the substratum surface is important for the induction of lytF expression. The deletion of lytF resulted in reduced adherence to a polystyrene surface. These results suggest that lytF expression and eDNA production induced near the bottom of the biofilm contribute to a firmly attached and structurally stable biofilm.IMPORTANCE Bacterial communities encased by self-produced extracellular polymeric substances (EPSs), known as biofilms, have a wide influence on human health and environmental problems. The importance of biofilm research has increased, as biofilms are the preferred bacterial lifestyle in nature. Furthermore, in recent years it has been noted that the contribution of phenotypic heterogeneity within biofilms requires analysis at the single-cell or subpopulation level to understand bacterial life strategies. In Streptococcus mutans, a cariogenic bacterium, extracellular DNA (eDNA) contributes to biofilm formation. However, it remains unclear how and where the cells produce eDNA within the biofilm. We focused on LytF, an autolysin that is induced by extracellular peptide signals. We used single-cell level imaging techniques to analyze lytF expression in the biofilm population. Here, we show that S. mutans generates eDNA by inducing lytF expression near the bottom of the biofilm, thereby enhancing biofilm adhesion and structural stability.
Collapse
|
10
|
Bikash CR, Tal-Gan Y. Structure Activity Relationship Study of the XIP Quorum Sensing Pheromone in Streptococcus mutans Reveal Inhibitors of the Competence Regulon. ACS Chem Biol 2020; 15:2833-2841. [PMID: 32946208 DOI: 10.1021/acschembio.0c00650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The dental cariogenic pathogen Streptococcus mutans coordinates competence for genetic transformation via two peptide pheromones, competence stimulating peptide (CSP) and comX-inducing peptide (XIP). CSP is sensed by the comCDE system and induces competence indirectly, whereas XIP is sensed by the comRS system and induces competence directly. In chemically defined media (CDM), after uptake by oligopeptide permease, XIP interacts with the cytosolic receptor ComR to form the XIP::ComR complex that activates the expression of comX, an alternative sigma factor that initiates the transcription of late-competence genes. In this study, we set out to determine the molecular mechanism of XIP::ComR interaction. To this end, we performed systematic replacement of the amino acid residues in the XIP pheromone and assessed the ability of the mutated analogs to modulate the competence regulon in CDM. We were able to identify structural features that are important to ComR binding and activation. Our structure-activity relationship insights led us to construct multiple XIP-based inhibitors of the comRS pathway. Furthermore, when comCDE and comRS were both stimulated with CSP and XIP, respectively, a lead XIP-based inhibitor was able to maintain the inhibitory activity. Last, phenotypic assays were used to highlight the potential of XIP-based inhibitors to attenuate pathogenicity in S. mutans and to validate the specificity of these compounds to the comRS pathway within the competence regulon. The XIP-based inhibitors developed in this study can be used as lead scaffolds for the design and development of potential therapeutics against S. mutans infections.
Collapse
Affiliation(s)
- Chowdhury Raihan Bikash
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
11
|
Ahn SJ, Desai S, Blanco L, Lin M, Rice KC. Acetate and Potassium Modulate the Stationary-Phase Activation of lrgAB in Streptococcus mutans. Front Microbiol 2020; 11:401. [PMID: 32231651 PMCID: PMC7082836 DOI: 10.3389/fmicb.2020.00401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/26/2020] [Indexed: 12/28/2022] Open
Abstract
Fluctuating environments force bacteria to constantly adapt and optimize the uptake of substrates to maintain cellular and nutritional homeostasis. Our recent findings revealed that LrgAB functions as a pyruvate uptake system in Streptococcus mutans, and its activity is modulated in response to glucose and oxygen levels. Here, we show that the composition of the growth medium dramatically influences the magnitude and pattern of lrgAB activation. Specifically, tryptone (T) medium does not provide a preferred environment for stationary phase lrgAB activation, which is independent of external pyruvate concentration. The addition of pyruvate to T medium can elicit PlrgA activation during exponential growth, enabling the cell to utilize external pyruvate for improvement of cell growth. Through comparison of the medium composition and a series of GFP quantification assays for measurement of PlrgA activation, we found that acetate and potassium (K+) play important roles in eliciting PlrgA activation at stationary phase. Of note, supplementation of pooled human saliva to T medium induced lrgAB expression at stationary phase and in response to pyruvate, suggesting that LrgAB is likely functional in the oral cavity. High concentrations of acetate inhibit cell growth, while high concentrations of K+ negatively regulate lrgAB activation. qPCR analysis also revealed that growth in T medium (acetate/K+ limited) significantly affects the expression of genes related to the catabolic pathways of pyruvate, including the Pta/AckA pathway (acetate metabolism). Lastly, stationary phase lrgAB expression is not activated when S. mutans is cultured in T medium, even in a strain that overexpresses lytST. Taken together, these data suggest that lrgAB activation and pyruvate uptake in S. mutans are connected to acetate metabolism and potassium uptake systems, important for cellular and energy homeostasis. They also suggest that these factors need to be implemented when planning metabolic experiments and analyzing data in S. mutans studies that may be sensitive to stationary growth phase.
Collapse
Affiliation(s)
- Sang-Joon Ahn
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Shailja Desai
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Loraine Blanco
- Department of Biology, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, United States
| | - Min Lin
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, United States
| | - Kelly C Rice
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
12
|
Novel Probiotic Mechanisms of the Oral Bacterium Streptococcus sp. A12 as Explored with Functional Genomics. Appl Environ Microbiol 2019; 85:AEM.01335-19. [PMID: 31420345 DOI: 10.1128/aem.01335-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022] Open
Abstract
Health-associated biofilms in the oral cavity are composed of a diverse group of microbial species that can foster an environment that is less favorable for the outgrowth of dental caries pathogens, like Streptococcus mutans A novel oral bacterium, designated Streptococcus A12, was previously isolated from supragingival dental plaque of a caries-free individual and was shown to interfere potently with the growth and virulence properties of S. mutans In this study, we applied functional genomics to begin to identify molecular mechanisms used by A12 to antagonize, and to resist the antagonistic factors of, S. mutans Using bioinformatics, genes that could encode factors that enhance the ability of A12 to compete with S. mutans were identified. Selected genes, designated potential competitive factors (pcf), were deleted. Certain mutant derivatives showed a reduced capacity to compete with S. mutans compared to that of the parental strain. The A12 pcfO mutant lost the ability to inhibit comX -inducing peptide (XIP) signaling by S. mutans, while mutants with changes in the pcfFEG locus were impaired in sensing of, and were more sensitive to, the lantibiotic nisin. Loss of PcfV, annotated as a colicin V biosynthetic protein, resulted in diminished antagonism of S. mutans Collectively, the data provide new insights into the complexities and variety of factors that affect biofilm ecology and virulence. Continued exploration of the genomic and physiological factors that distinguish commensals from truly beneficial members of the oral microbiota will lead to a better understanding of the microbiome and new approaches to promote oral health.IMPORTANCE Advances in defining the composition of health-associated biofilms have highlighted the important role of beneficial species in maintaining health. Comparatively little, however, has been done to address the genomic and physiological bases underlying the probiotic mechanisms of beneficial commensals. In this study, we explored the ability of a novel oral bacterial isolate, Streptococcus A12, to compete with the dental pathogen Streptococcus mutans using various gene products with diverse functions. A12 displayed enhanced competitiveness by (i) disrupting intercellular communication pathways of S. mutans, (ii) sensing and resisting antimicrobial peptides, and (iii) producing factors involved in the production of a putative antimicrobial compound. Research on the probiotic mechanisms employed by Streptococcus A12 is providing essential insights into how beneficial bacteria may help maintain oral health, which will aid in the development of biomarkers and therapeutics that can improve the practice of clinical dentistry.
Collapse
|
13
|
Ahn SJ, Deep K, Turner ME, Ishkov I, Waters A, Hagen SJ, Rice KC. Characterization of LrgAB as a stationary phase-specific pyruvate uptake system in Streptococcus mutans. BMC Microbiol 2019; 19:223. [PMID: 31606034 PMCID: PMC6790026 DOI: 10.1186/s12866-019-1600-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Our recent '-omics' comparisons of Streptococcus mutans wild-type and lrgAB-mutant revealed that this organism undergoes dynamic cellular changes in the face of multiple exogenous stresses, consequently affecting its comprehensive virulence traits. In this current study, we further demonstrate that LrgAB functions as a S. mutans pyruvate uptake system. RESULTS S. mutans excretes pyruvate during growth as an overflow metabolite, and appears to uptake this excreted pyruvate via LrgAB once the primary carbon source is exhausted. This utilization of excreted pyruvate was tightly regulated by glucose levels and stationary growth phase lrgAB induction. The degree of lrgAB induction was reduced by high extracellular levels of pyruvate, suggesting that lrgAB induction is subject to negative feedback regulation, likely through the LytST TCS, which is required for expression of lrgAB. Stationary phase lrgAB induction was efficiently inhibited by low concentrations of 3FP, a toxic pyruvate analogue, without affecting cell growth, suggesting that accumulated pyruvate is sensed either directly or indirectly by LytS, subsequently triggering lrgAB expression. S. mutans growth was inhibited by high concentrations of 3FP, implying that pyruvate uptake is necessary for S. mutans exponential phase growth and occurs in a Lrg-independent manner. Finally, we found that stationary phase lrgAB induction is modulated by hydrogen peroxide (H2O2) and by co-cultivation with H2O2-producing S. gordonii. CONCLUSIONS Pyruvate may provide S. mutans with an alternative carbon source under limited growth conditions, as well as serving as a buffer against exogenous oxidative stress. Given the hypothesized role of LrgAB in cell death and lysis, these data also provide an important basis for how these processes are functionally and mechanically connected to key metabolic pathways such as pyruvate metabolism.
Collapse
Affiliation(s)
- Sang-Joon Ahn
- Department of Oral Biology, College of Dentistry, University of Florida, P.O. Box 100424, Gainesville, FL, 32610, USA.
| | - Kamal Deep
- Department of Oral Biology, College of Dentistry, University of Florida, P.O. Box 100424, Gainesville, FL, 32610, USA
| | - Matthew E Turner
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Ivan Ishkov
- Department of Physics, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Anthony Waters
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Stephen J Hagen
- Department of Physics, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Kelly C Rice
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
14
|
Ricomini Filho AP, Khan R, Åmdal HA, Petersen FC. Conserved Pheromone Production, Response and Degradation by Streptococcus mutans. Front Microbiol 2019; 10:2140. [PMID: 31572344 PMCID: PMC6753979 DOI: 10.3389/fmicb.2019.02140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/30/2019] [Indexed: 01/27/2023] Open
Abstract
Streptococcus mutans, a bacterium with high cariogenic potential, coordinates competence for natural transformation and bacteriocin production via the XIP and CSP pheromones. CSP is effective in inducing bacteriocin responses but not competence in chemically defined media (CDM). This is in contrast to XIP, which is a strong inducer of competence in CDM but can also stimulate bacteriocin genes as a late response. Interconnections between the pathways activated by the two pheromones have been characterized in certain detail in S. mutans UA159, but it is mostly unknown whether such findings are representative for the species. In this study, we used bioassays based on luciferase reporters for the bacteriocin gene cipB and the alternative sigma factor sigX to investigate various S. mutans isolates for production and response to CSP and XIP pheromones in CDM. Similar to S. mutans UA159, endogenous CSP was undetectable in the culture supernatants of all tested strains. During optimization of the bioassay using the cipB reporter, we discovered that the activity of exogenous CSP used as a standard was reduced over time during S. mutans growth. Using a FRET-CSP reporter peptide, we found that S. mutans UA159 was able to degrade CSP, and that such activity was not significantly different in isogenic mutants with deletion of the protease gene htrA or the competence genes sigX, oppD, and comR. CSP cleavage was also detected in all the wild type strains, indicating that this is a conserved feature in S. mutans. For the XIP pheromone, endogenous production was observed in the supernatants of all 34 tested strains at peak concentrations in culture supernatants that varied between 200 and 26000 nM. Transformation in the presence of exogenous XIP was detected in all but one of the isolates. The efficiency of transformation varied, however, among the different strains, and for those with the highest transformation rates, endogenous XIP peak concentrations in the supernatants were above 2000 nM XIP. We conclude that XIP production and inducing effect on transformation, as well as the ability to degrade CSP, are conserved functions among different S. mutans isolates. Understanding the functionality and conservation of pheromone systems in S. mutans may lead to novel strategies to prevent or treat unbalances in oral microbiomes that may favor diseases.
Collapse
Affiliation(s)
| | - Rabia Khan
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Heidi Aarø Åmdal
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Fernanda C. Petersen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Kaspar JR, Walker AR. Expanding the Vocabulary of Peptide Signals in Streptococcus mutans. Front Cell Infect Microbiol 2019; 9:194. [PMID: 31245303 PMCID: PMC6563777 DOI: 10.3389/fcimb.2019.00194] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022] Open
Abstract
Streptococci, including the dental pathogen Streptococcus mutans, undergo cell-to-cell signaling that is mediated by small peptides to control critical physiological functions such as adaptation to the environment, control of subpopulation behaviors and regulation of virulence factors. One such model pathway is the regulation of genetic competence, controlled by the ComRS signaling system and the peptide XIP. However, recent research in the characterization of this pathway has uncovered novel operons and peptides that are intertwined into its regulation. These discoveries, such as cell lysis playing a critical role in XIP release and importance of bacterial self-sensing during the signaling process, have caused us to reevaluate previous paradigms and shift our views on the true purpose of these signaling systems. The finding of new peptides such as the ComRS inhibitor XrpA and the peptides of the RcrRPQ operon also suggests there may be more peptides hidden in the genomes of streptococci that could play critical roles in the physiology of these organisms. In this review, we summarize the recent findings in S. mutans regarding the integration of other circuits into the ComRS signaling pathway, the true mode of XIP export, and how the RcrRPQ operon controls competence activation. We also look at how new technologies can be used to re-annotate the genome to find new open reading frames that encode peptide signals. Together, this summary of research will allow us to reconsider how we perceive these systems to behave and lead us to expand our vocabulary of peptide signals within the genus Streptococcus.
Collapse
Affiliation(s)
- Justin R. Kaspar
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| | | |
Collapse
|
16
|
Zhu Y, Dong W, Ma J, Zhang Y, Pan Z, Yao H. Utilization of the ComRS system for the rapid markerless deletion of chromosomal genes in Streptococcus suis. Future Microbiol 2019; 14:207-222. [DOI: 10.2217/fmb-2018-0279] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To develop a markerless gene deletion strategy in Streptococcus suis to solve the problem that several serotypes against electrotransformation of foreign DNA. Materials & methods: Bioinformatics retrieval was performed to identified ComRS systems functioning for natural transformation. A sacB-spc cassette with the upper and lower homologous fragments was amplification by fusion-PCR for spectinomycin-positive and sucrose-negative selection during gene deletion. Results & conclusion: Three phylogenetic clusters of ComR were identified to function for natural transformation by specific recognition to competence pheromone in S. suis. Thus, they were employed to establish gene deletion method. Its efficiency for genetic replacement was dependent on the length of homologs fragment and the concentration of donor DNA. This rapid gene-editing technique may greatly facilitate molecular studies on S. suis.
Collapse
Affiliation(s)
- Yinchu Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- Office International Des Epizooties (OIE) Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenyang Dong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- Office International Des Epizooties (OIE) Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiale Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- Office International Des Epizooties (OIE) Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yue Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- Office International Des Epizooties (OIE) Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- Office International Des Epizooties (OIE) Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- Office International Des Epizooties (OIE) Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
17
|
Abstract
Entry into genetic competence in streptococci is controlled by ComX, an alternative sigma factor for genes that enable the import of exogenous DNA. In Streptococcus mutans, the immediate activator of comX is the ComRS quorum system. ComS is the precursor of XIP, a seven-residue peptide that is imported into the cell and interacts with the cytosolic receptor ComR to form a transcriptional activator for both comX and comS Although intercellular quorum signaling by ComRS has been demonstrated, observations of bimodal expression of comX suggest that comRS may also function as an intracellular feedback loop, activating comX without export or detection of extracellular XIP. Here we used microfluidic and single-cell methods to test whether ComRS induction of comX requires extracellular XIP or ComS. We found that individual comS-overexpressing cells activate their own comX, independently of the rate at which their growth medium is replaced. However, in the absence of lysis they do not activate comS-deficient mutants growing in coculture. We also found that induction of comR and comS genes introduced into Escherichia coli cells leads to activation of a comX reporter. Therefore, ComRS control of comX does not require either the import or extracellular accumulation of ComS or XIP or specific processing of ComS to XIP. We also found that endogenously and exogenously produced ComS and XIP have inequivalent effects on comX activation. These data are fully consistent with identification of intracellular positive feedback in comS transcription as the origin of bimodal comX expression in S. mutans IMPORTANCE The ComRS system can function as a quorum sensing trigger for genetic competence in S. mutans The signal peptide XIP, which is derived from the precursor ComS, enters the cell and interacts with the Rgg-type cytosolic receptor ComR to activate comX, which encodes the alternative sigma factor for the late competence genes. Previous studies have demonstrated intercellular signaling via ComRS, although release of the ComS or XIP peptide to the extracellular medium appears to require lysis of the producing cells. Here we tested the complementary hypothesis that ComRS can drive comX through a purely intracellular mechanism that does not depend on extracellular accumulation or import of ComS or XIP. By combining single-cell, coculture, and microfluidic approaches, we demonstrated that endogenously produced ComS can enable ComRS to activate comX without requiring processing, export, or import. These data provide insight into intracellular mechanisms that generate noise and heterogeneity in S. mutans competence.
Collapse
|
18
|
Kaspar J, Shields RC, Burne RA. Competence inhibition by the XrpA peptide encoded within the comX gene of Streptococcus mutans. Mol Microbiol 2018; 109:345-364. [PMID: 29802741 DOI: 10.1111/mmi.13989] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2018] [Indexed: 01/06/2023]
Abstract
Streptococcus mutans displays complex regulation of natural genetic competence. Competence development in S. mutans is controlled by a peptide derived from ComS (XIP); which along with the cytosolic regulator ComR controls the expression of the alternative sigma factor comX, the master regulator of competence development. Recently, a gene embedded within the coding region of comX was discovered and designated xrpA (comX regulatory peptide A). XrpA was found to be an antagonist of ComX, but the mechanism was not established. In this study, we reveal through both genomic and proteomic techniques that XrpA is the first described negative regulator of ComRS systems in streptococci. Transcriptomic and promoter activity assays in the ΔxrpA strain revealed an up-regulation of genes controlled by both the ComR- and ComX-regulons. An in vivo protein crosslinking and in vitro fluorescent polarization assays confirmed that the N-terminal region of XrpA were found to be sufficient in inhibiting ComR-XIP complex binding to ECom-box located within the comX promoter. This inhibitory activity was sufficient for decreases in PcomX activity, transformability and ComX accumulation. XrpA serving as a modulator of ComRS activity ultimately results in changes to subpopulation behaviors and cell fate during competence activation.
Collapse
Affiliation(s)
- Justin Kaspar
- Department of Oral Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Robert C Shields
- Department of Oral Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Robert A Burne
- Department of Oral Biology, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|