1
|
Pruvost O, Boyer K, Labbé F, Weishaar M, Vynisale A, Melot C, Hoareau C, Cellier G, Ravigné V. Genetic Signatures of Contrasted Outbreak Histories of " Candidatus Liberibacter asiaticus", the Bacterium That Causes Citrus Huanglongbing, in Three Outermost Regions of the European Union. Evol Appl 2024; 17:e70053. [PMID: 39691746 PMCID: PMC11649586 DOI: 10.1111/eva.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024] Open
Abstract
In an era of trade globalization and climate change, crop pathogens and pests are a genuine threat to food security. The detailed characterization of emerging pathogen populations is a prerequisite for managing invasive species pathways and designing sustainable disease control strategies. Huanglongbing is the disease that causes the most damage to citrus, a crop that ranks #1 worldwide in terms of fruit production. Huanglongbing can be caused by three species of the phloem-limited alpha-proteobacterium, "Candidatus Liberibacter," which are transmitted by psyllids. Two of these bacteria are of highest concern, "Ca. Liberibacter asiaticus" and "Ca. Liberibacter africanus," and have distinct thermal optima. These pathogens are unculturable, which complicates their high-throughput genetic characterization. In the present study, we used several genotyping techniques and an extensive sample collection to characterize Ca. Liberibacter populations associated with the emergence of huanglongbing in three French outermost regions of the European Union (Guadeloupe, Martinique and Réunion). The outbreaks were primarily caused by "Ca. Liberibacter asiaticus," as "Ca. Liberibacter africanus" was only found at a single location in Réunion. We emphasize the low diversity and high genetic relatedness between samples from Guadeloupe and Martinique, which suggests the putative movement of the pathogen between the two islands and/or the independent introduction of closely related strains. These samples were markedly different from the samples from Réunion, where the higher genetic diversity revealed by tandem-repeat markers suggests that the disease was probably overlooked for years before being officially identified in 2015. We show that "Ca. Liberibacter asiaticus" occurs from sea level to an altitude of 950 m above sea level and lacks spatial structure. This suggests the pathogen's medium- to long-distance movement. We also suggest that backyard trees acted as relays for disease spread. We discuss the implications of population biology data for surveillance and management of this threatful disease.
Collapse
|
2
|
Zheng Y, Zhang J, Li Y, Liu Y, Liang J, Wang C, Fang F, Deng X, Zheng Z. Pathogenicity and Transcriptomic Analyses of Two " Candidatus Liberibacter asiaticus" Strains Harboring Different Types of Phages. Microbiol Spectr 2023; 11:e0075423. [PMID: 37071011 PMCID: PMC10269750 DOI: 10.1128/spectrum.00754-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/31/2023] [Indexed: 04/19/2023] Open
Abstract
"Candidatus Liberibacter asiaticus" is one of the putative causal agents of citrus Huanglongbing (HLB), a highly destructive disease threatening the global citrus industry. Several types of phages had been identified in "Ca. Liberibacter asiaticus" strains and found to affect the biology of "Ca. Liberibacter asiaticus." However, little is known about the influence of phages in "Ca. Liberibacter asiaticus" pathogenicity. In this study, two "Ca. Liberibacter asiaticus" strains, PYN and PGD, harboring different types of phages were collected and used for pathogenicity analysis in periwinkle (Catharanthus roseus). Strain PYN carries a type 1 phage (P-YN-1), and PGD harbors a type 2 phage (P-GD-2). Compared to strain PYN, strain PGD exhibited a faster reproduction rate and higher virulence in periwinkle: leaf symptoms appeared earlier, and there was a stronger inhibition in the growth of new flush. Estimation of phage copy numbers by type-specific PCR indicated that there are multiple copies of phage P-YN-1 in strain PYN, while strain PGD carries only a single copy of phage P-GD-2. Genome-wide gene expression profiling revealed the lytic activity of P-YN-1 phage, as evidenced by the unique expression of genes involved in lytic cycle, which may limit the propagation of strain PYN and lead to a delayed infection in periwinkle. However, the activation of genes involved in lysogenic conversion of phage P-GD-1 indicated it could reside within the "Ca. Liberibacter asiaticus" genome as a prophage form in strain PGD. Comparative transcriptome analysis showed that the significant differences in expression of virulence factor genes, including genes associated with pathogenic effectors, transcriptional factors, the Znu transport system, and the heme biosynthesis pathway, could be another major determinant of virulence variation between two "Ca. Liberibacter asiaticus" strains. This study expanded our knowledge of "Ca. Liberibacter asiaticus" pathogenicity and provided new insights into the differences in pathogenicity between "Ca. Liberibacter asiaticus" strains. IMPORTANCE Citrus Huanglongbing (HLB), also called citrus greening disease, is a highly destructive disease threatening citrus production worldwide. "Candidatus Liberibacter asiaticus" is one of the most common putative causal agents of HLB. Phages of "Ca. Liberibacter asiaticus" have recently been identified and found to affect "Ca. Liberibacter asiaticus" biology. Here, we found that "Ca. Liberibacter asiaticus" strains harboring different types of phages (type 1 or type 2) showed different levels of pathogenicity and multiplication patterns in the periwinkle plant (Catharanthus roseus). Transcriptome analysis revealed the possible lytic activity of type 1 phage in a "Ca. Liberibacter asiaticus" strain, which could limit the propagation of "Ca. Liberibacter asiaticus" and lead to the delayed infection in periwinkle. The heterogeneity in the transcriptome profiles, particularly the significant differences in expression of virulence factors genes, could be another major determinant of difference in virulence observed between the two "Ca. Liberibacter asiaticus" strains. These findings improved our understanding of "Ca. Liberibacter asiaticus"-phage interaction and provided insight into "Ca. Liberibacter asiaticus" pathogenicity.
Collapse
Affiliation(s)
- Yongqin Zheng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jingxue Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yun Li
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yaoxin Liu
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Jiayin Liang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Cheng Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Fang Fang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiaoling Deng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zheng Zheng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Cui X, Liu K, Huang J, Fu S, Chen Q, Liu X, Zhou C, Wang X. Population Diversity of ' Candidatus Liberibacter asiaticus' and Diaphorina citri in Sichuan: A Case Study for Huanglongbing Monitoring and Interception. PLANT DISEASE 2022; 106:1632-1638. [PMID: 34941368 DOI: 10.1094/pdis-07-21-1539-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Citrus huanglongbing (HLB) is present in 10 provinces in China and is associated with 'Candidatus Liberibacter asiaticus' (CLas), which is transmitted by the Asian citrus psyllid (Diaphorina citri, ACP). To date, HLB and ACP have expanded to Yibin city of Sichuan Province, posing an imminent threat to the citrus belt of the upper and middle reaches of the Yangtze River, an important late-maturing citrus-producing area in China. To understand the epidemiological route of CLas and ACP in newly invaded regions of Sichuan and thereby better establish an HLB interception zone ranging from Leibo to Yibin, we evaluated the molecular variability of 19 CLas draft genomes from citrus or dodder (Cuscuta campestris). They include three type-specific prophage loci, three variable number tandem repeat loci, a miniature inverted-repeat transposable element, and population diversity of 44 ACP mitochondrial genomes. The results indicated that CLas isolates in the newly invaded area (Pingshan) were more diverse than those in the HLB endemic areas (Leibo and Ningnan). Phylogenetic analysis based on mitochondrial genomes demonstrated that ACPs in Leibo, Pingshan, and Xuzhou (rural areas) represent a new mitochondrial group (MG4), distinguished by the three unique single-nucleotide polymorphisms in cox1, nad4, and cytb. However, the ACPs sampled from the urban areas of Cuiping and Xuzhou belonged to the southeastern China group (MG2-1). Altogether, our study revealed multiple sources of ACP and CLas in the HLB interception zone and proposed their transmission route. This study contributes to the formulation of precise HLB prevention and control strategies in the HLB interception zone in Sichuan and could be useful for HLB management efforts in other regions.
Collapse
Affiliation(s)
- Xuejin Cui
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Kehong Liu
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Jie Huang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Shimin Fu
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Qingdong Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Xu Liu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Changyong Zhou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Xuefeng Wang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| |
Collapse
|
4
|
Huang J, Dai Z, Zheng Z, da Silvia PA, Kumagai L, Xiang Q, Chen J, Deng X. Bacteriomic Analyses of Asian Citrus Psyllid and Citrus Samples Infected With " Candidatus Liberibacter asiaticus" in Southern California and Huanglongbing Management Implications. Front Microbiol 2021; 12:683481. [PMID: 34276617 PMCID: PMC8283493 DOI: 10.3389/fmicb.2021.683481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Citrus Huanglongbing (HLB; yellow shoot disease) is associated with an unculturable α-proteobacterium "Candidatus Liberibacter asiaticus" (CLas). HLB was found in southern California in 2012, and the current management strategy is based on suppression of the Asian citrus psyllid (Diaphorina citri) that transmits CLas and removal of confirmed CLas-positive trees. Little is known about Asian citrus psyllid-associated bacteria and citrus-associated bacteria in the HLB system. Such information is important in HLB management, particularly for accurate detection of CLas. Recent advancements in next-generation sequencing technology provide new opportunities to study HLB through genomic DNA sequence analyses (metagenomics). In this study, HLB-related bacteria in Asian citrus psyllid and citrus (represented by leaf midrib tissues) samples from southern California were analyzed. A metagenomic pipeline was developed to serve as a prototype for future bacteriomic research. This pipeline included steps of next-generation sequencing in Illumina platform, de novo assembly of Illumina reads, sequence classification using the Kaiju tool, acquisition of bacterial draft genome sequences, and taxonomic validation and diversity evaluation using average nucleotide identity. The identified bacteria in Asian citrus psyllids and citrus together included Bradyrhizobium, Buchnera, Burkholderia, "Candidatus Profftella armature," "Candidatus Carsonella ruddii," CLas, Mesorhizobium, Paraburkholderia, Pseudomonas, and Wolbachia. The whole genome of a CLas strain recently found in San Bernardino County was sequenced and classified into prophage typing group 1 (PTG-1), one of the five known CLas groups in California. Based on sequence similarity, Bradyrhizobium and Mesorhizobium were identified as possible source that could interfere with CLas detection using the 16S rRNA gene-based PCR commonly used for HLB diagnosis, particularly at low or zero CLas titer situation.
Collapse
Affiliation(s)
- Jiaquan Huang
- Laboratory of Citrus Huanglongbing Research, College of Plant Protection, South China Agricultural University, Guangzhou, China
- San Joaquin Valley Agricultural Sciences Center, Agricultural Research Service, United States Department of Agriculture, Parlier, CA, United States
| | - Zehan Dai
- Laboratory of Citrus Huanglongbing Research, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Zheng Zheng
- Laboratory of Citrus Huanglongbing Research, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | | | - Luci Kumagai
- Plant Pest Diagnostic Center, California Department of Food and Agriculture, Sacramento, CA, United States
| | - Qijun Xiang
- Jerry Dimitman Laboratory, Riverside, CA, United States
| | - Jianchi Chen
- San Joaquin Valley Agricultural Sciences Center, Agricultural Research Service, United States Department of Agriculture, Parlier, CA, United States
| | - Xiaoling Deng
- Laboratory of Citrus Huanglongbing Research, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Cui X, Liu K, Atta S, Zeng C, Zhou C, Wang X. Two Unique Prophages of ' Candidatus Liberibacter asiaticus' Strains from Pakistan. PHYTOPATHOLOGY 2021; 111:784-788. [PMID: 33356428 DOI: 10.1094/phyto-10-20-0454-sc] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
'Candidatus Liberibacter asiaticus' (CLas) is a pathogen causing Huanglongbing (HLB, yellow shoot disease), which is highly destructive to citrus production. The CLas strains harbor prophages. We identified two unique prophages, designated as P-PA19-1 and P-PA19-2, in CLas strain PA19 from Pakistan using next-generation sequencing analysis. P-PA19-1 prophage has high sequence similarity (identity: 78.23%) at the early-gene region of prophage SC1 (Type 1), but it is significantly divergent in the late-gene region (identity: 62.03%). P-PA19-2 was highly similar to SC2 (Type 2) in the late gene region (identity: 97.96%), and also in the early gene region except for a deletion of a 7,179-bp nucleotide sequence that contains a CRISPR/cas system in SC2. Both P-PA19-1 and P-PA19-2 had circular plasmid forms, and only P-PA19-2 was found integrated in the PA19 chromosome. The two new prophages were only found in Pakistani samples. Identification of prophages enhances our understanding of CLas genomic diversity and also the biology and evolution of CLas prophages.
Collapse
Affiliation(s)
- Xuejin Cui
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Kehong Liu
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Sagheer Atta
- Department of Plant Protection, Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan 32200, Pakistan
| | - Chunhua Zeng
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Changyong Zhou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Xuefeng Wang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| |
Collapse
|
6
|
da Silva PA, Fassini CG, Sampaio LS, Dequigiovanni G, Zucchi MI, Wulff NA. Genetic Diversity of ' Candidatus Liberibacter asiaticus' Revealed by Short Tandem Repeats and Prophage Typing Indicates Population Homogeneity in Brazil. PHYTOPATHOLOGY 2019; 109:960-971. [PMID: 30694114 DOI: 10.1094/phyto-08-18-0295-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
'Candidatus Liberibacter asiaticus' is the most common huanglongbing-associated bacteria, being present in Asia, South, Central, and North America. Genomic approaches enabled sequencing of 'Ca. L. asiaticus' genomes, allowing for a broader assessment of its genetic variability with the application of polymerase chain reaction (PCR)-based tools such as microsatellite or short tandem repeat (STR) analysis. Although these tools contributed to a detailed analysis of strains from Japan, China, and the United States, Brazilian strains were analyzed in either too few samples with several STRs or in several strains with only a single microsatellite and a single PCR marker. We used 573 'Ca. L. asiaticus' strains, mainly collected from São Paulo State (SPS), in our genetic analyses, employing three STRs and several prophage PCR markers. STR revealed a homogeneous population regardless of sampling year or geographic regions of SPS. Thirty-eight haplotypes were recognized with a predominance of VNTR_005 higher than 10 repeats, with VNTR_002 and VNTR_077 containing 11 and 8 repeats, respectively. This haplotype is indicated as class HE, which comprised 80.28% of strains. Classes HA and HB, predominant in Florida, were not found. A new genomic organization in the junction of prophages SC2 and SC1 is prevalent in Brazilian strains, indicating gene rearrangement and a widespread occurrence of a type 1 prophage as well as the presence of a type 2-like prophage. Our results indicate that 'Ca. L. asiaticus' populations are homogeneous and harbor a new genomic organization in prophages type 1 and 2.
Collapse
Affiliation(s)
| | - Camila Giacomo Fassini
- 1 Departamento de Pesquisa & Desenvolvimento-Fundecitrus, Araraquara, SP, 14807-040, Brazil
| | - Laís Simões Sampaio
- 1 Departamento de Pesquisa & Desenvolvimento-Fundecitrus, Araraquara, SP, 14807-040, Brazil
| | - Gabriel Dequigiovanni
- 2 Agência Paulista de Tecnologia dos Agronegócios, Polo Regional Centro-Sul, Rodovia SP 127, km 30, Piracicaba, SP, 13400-970 Brazil; and
| | - Maria Imaculada Zucchi
- 2 Agência Paulista de Tecnologia dos Agronegócios, Polo Regional Centro-Sul, Rodovia SP 127, km 30, Piracicaba, SP, 13400-970 Brazil; and
| | - Nelson Arno Wulff
- 1 Departamento de Pesquisa & Desenvolvimento-Fundecitrus, Araraquara, SP, 14807-040, Brazil
- 3 PPG Biotecnologia, IQ/UNESP Araraquara, SP, 14800-060, Brazil
| |
Collapse
|
7
|
Dai Z, Wu F, Zheng Z, Yokomi R, Kumagai L, Cai W, Rascoe J, Polek M, Chen J, Deng X. Prophage Diversity of 'Candidatus Liberibacter asiaticus' Strains in California. PHYTOPATHOLOGY 2019; 109:551-559. [PMID: 30303769 DOI: 10.1094/phyto-06-18-0185-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Huanglongbing (HLB) is a highly destructive citrus disease and is associated with a nonculturable bacterium, 'Candidatus Liberibacter asiaticus'. 'Ca. L. asiaticus' in the United States was first found in Florida in 2005 and is now endemic there. In California, 'Ca. L. asiaticus' was first detected in Hacienda Heights in Los Angeles County in 2012 and has now been detected in multiple urban locations in southern California. Knowledge of 'Ca. L. asiaticus' strain diversity in California is important for HLB management. In this study, genomic diversity among 10 'Ca. L. asiaticus' strains from six California locations were analyzed using a next-generation sequencing (NGS) (Illumina MiSeq and HiSeq) approach. Draft genome sequences of 'Ca. L. asiaticus' strains were assembled. Sequences of the 16S ribosomal RNA gene and nrdB confirmed 'Ca. L. asiaticus' identity. Prophages were detected in all 'Ca. L. asiaticus' strains. The California 'Ca. L. asiaticus' strains formed four prophage typing groups (PTGs): PTG1, with type 1 prophage only (strains from Anaheim, San Gabriel, and Riverside); PTG2, with type 2 prophage only (strains from Hacienda Heights); PTG1-3, with both type 1 and 3 prophages (a strain from Cerritos); and PTG1-2, with both type 1 and type 2 prophages (a strain from La Habra). Analyses of the terL sequence showed that all California 'Ca. L. asiaticus' strains were not introduced from Florida but likely from locations in Asia. Miniature inverted-repeat transposable elements were found in all 'Ca. L. asiaticus' strains, yet, a jumping-out event was detected in the 'Ca. L. asiaticus' strain from Cerritos. Altogether, this study demonstrated that the NGS approach focusing on prophage variation was sensitive and effective in revealing diversity of 'Ca. L. asiaticus' strains in California.
Collapse
Affiliation(s)
- Z Dai
- 1 Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, China
| | - F Wu
- 1 Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, China
| | - Z Zheng
- 1 Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, China
| | - R Yokomi
- 2 United States Department of Agriculture (USDA)-Agricultural Research Service, San Joaquín Valley Agricultural Sciences Center, Parlier, CA, U.S.A
| | - L Kumagai
- 3 Plant Pest Diagnostic Center, California Department of Food and Agriculture, Sacramento, U.S.A
| | - W Cai
- 4 USDA Animal and Plant Health Inspection Service-Plant Protection and Quarantine, Beltsville, MD, U.S.A.; and
| | - J Rascoe
- 3 Plant Pest Diagnostic Center, California Department of Food and Agriculture, Sacramento, U.S.A
| | - M Polek
- 5 National Clonal Germplasm Repository for Citrus and Dates, Riverside, CA, U.S.A
| | - J Chen
- 2 United States Department of Agriculture (USDA)-Agricultural Research Service, San Joaquín Valley Agricultural Sciences Center, Parlier, CA, U.S.A
| | - X Deng
- 1 Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Hussain M, Akutse KS, Lin Y, Chen S, Huang W, Zhang J, Idrees A, Qiu D, Wang L. Susceptibilities of Candidatus Liberibacter asiaticus-infected and noninfected Diaphorina citri to entomopathogenic fungi and their detoxification enzyme activities under different temperatures. Microbiologyopen 2018; 7:e00607. [PMID: 29577643 PMCID: PMC6291790 DOI: 10.1002/mbo3.607] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/22/2022] Open
Abstract
Some entomopathogenic fungi species, Isaria fumosorosea, and Hirsutella citriformis were found to be efficient against the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). However, the susceptibility to these fungi increases when the psyllid infected with Candidatus Liberibacter asiaticus (Las), which is transmitted by D. citri and causes citrus greening disease. In this study, we examined the Las-infected and Las-uninfected D. citri susceptibility to entomopathogenic fungi at different temperature regimes (5-40°C). When D. citri adults exposed to cold temperature (5°C), they showed less susceptibility to entomopathogenic fungi as compared with control (27°C). Irrespective of infection with Las, a significantly positive correlation was observed between temperature and percentage mortality caused by different isolates of I. fumosorosea, 3A Ifr, 5F Ifr, PS Ifr, and H. citriformis isolates, HC3D and 2H. In contrast, a significantly negative correlation was found between temperature and percentage mortality for 3A Ifr for both Las-infected and Las-uninfected psyllids. Detoxification enzymes, Glutathione S-transferase levels in D. citri showed a negative correlation, whereas cytochrome P450 and general esterase levels were not correlated with changes in temperature. These findings revealed that detoxification enzymes and general esterase levels are not correlated with altered susceptibility to entomopathogenic fungi at the different temperature regimes. Conclusively, temperature fluctuations tested appear to be a significant factor impacting the management strategies of D. citri using entomopathogenic fungi.
Collapse
Affiliation(s)
- Mubasher Hussain
- Plant Protection CollegeFujian Agriculture and Forestry UniversityFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhou350002China
- College of HorticultureFujian Agriculture and Forestry UniversityFuzhouChina
- Key Laboratory of Biopesticide and Chemical BiologyMinistry of EducationFuzhouChina
| | - Komivi Senyo Akutse
- Plant Protection CollegeFujian Agriculture and Forestry UniversityFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhou350002China
- Key Laboratory of Biopesticide and Chemical BiologyMinistry of EducationFuzhouChina
- International Centre of Insect Ecology and PhysiologyNairobiKenya
| | - Yongwen Lin
- Plant Protection CollegeFujian Agriculture and Forestry UniversityFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhou350002China
- Key Laboratory of Biopesticide and Chemical BiologyMinistry of EducationFuzhouChina
| | - Shiman Chen
- Plant Protection CollegeFujian Agriculture and Forestry UniversityFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhou350002China
- Key Laboratory of Biopesticide and Chemical BiologyMinistry of EducationFuzhouChina
| | - Wei Huang
- Plant Protection CollegeFujian Agriculture and Forestry UniversityFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhou350002China
- Key Laboratory of Biopesticide and Chemical BiologyMinistry of EducationFuzhouChina
| | - Jinguan Zhang
- Plant Protection CollegeFujian Agriculture and Forestry UniversityFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhou350002China
- Key Laboratory of Biopesticide and Chemical BiologyMinistry of EducationFuzhouChina
| | - Atif Idrees
- Plant Protection CollegeFujian Agriculture and Forestry UniversityFuzhouChina
- Institute of Beneficial InsectsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Dongliang Qiu
- College of HorticultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Liande Wang
- Plant Protection CollegeFujian Agriculture and Forestry UniversityFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhou350002China
- Key Laboratory of Biopesticide and Chemical BiologyMinistry of EducationFuzhouChina
| |
Collapse
|
9
|
Zheng Z, Chen J, Deng X. Historical Perspectives, Management, and Current Research of Citrus HLB in Guangdong Province of China, Where the Disease has been Endemic for Over a Hundred Years. PHYTOPATHOLOGY 2018; 108:1224-1236. [PMID: 30156499 DOI: 10.1094/phyto-07-18-0255-ia] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Citrus huanglongbing (HLB) is a highly destructive disease currently threatening citrus production worldwide. In China, the disease is exclusively associated with 'Candidatus Liberibacter asiaticus', a nonculturable proteobacterium. HLB was observed in Guangdong of China over a hundred years ago. Researchers and citrus growers have been battling with the disease through vigorous research and have exercised various control practices. Much of the early work was not well known outside China. This review is intended to fill in gaps of historical information by reviewing selected literature records. Along the way, the HLB system within southern China was evaluated. Emphases were on comparison of symptomatology, evolution of etiology, control practices, and impacts of using next-generation sequencing technology for 'Ca. L. asiaticus' research and detection.
Collapse
Affiliation(s)
- Zheng Zheng
- First and third authors: Laboratory of Citrus Huanglongbing Research, Department of Plant Pathology, South China Agricultural University, Guangzhou, China; and second author: San Joaquin Valley Agricultural Sciences Center, United States Department of Agriculture-Agricultural Research Service, Parlier, CA
| | - Jianchi Chen
- First and third authors: Laboratory of Citrus Huanglongbing Research, Department of Plant Pathology, South China Agricultural University, Guangzhou, China; and second author: San Joaquin Valley Agricultural Sciences Center, United States Department of Agriculture-Agricultural Research Service, Parlier, CA
| | - Xiaoling Deng
- First and third authors: Laboratory of Citrus Huanglongbing Research, Department of Plant Pathology, South China Agricultural University, Guangzhou, China; and second author: San Joaquin Valley Agricultural Sciences Center, United States Department of Agriculture-Agricultural Research Service, Parlier, CA
| |
Collapse
|
10
|
Patel S. Drivers of bacterial genomes plasticity and roles they play in pathogen virulence, persistence and drug resistance. INFECTION GENETICS AND EVOLUTION 2016; 45:151-164. [DOI: 10.1016/j.meegid.2016.08.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 12/11/2022]
|
11
|
Klein BA, Chen T, Scott JC, Koenigsberg AL, Duncan MJ, Hu LT. Identification and characterization of a minisatellite contained within a novel miniature inverted-repeat transposable element (MITE) of Porphyromonas gingivalis. Mob DNA 2015; 6:18. [PMID: 26448788 PMCID: PMC4596501 DOI: 10.1186/s13100-015-0049-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/23/2015] [Indexed: 12/26/2022] Open
Abstract
Background Repetitive regions of DNA and transposable elements have been found to constitute large percentages of eukaryotic and prokaryotic genomes. Such elements are known to be involved in transcriptional regulation, host-pathogen interactions and genome evolution. Results We identified a minisatellite contained within a miniature inverted-repeat transposable element (MITE) in Porphyromonas gingivalis. The P. gingivalis minisatellite and associated MITE, named ‘BrickBuilt’, comprises a tandemly repeating twenty-three nucleotide DNA sequence lacking spacer regions between repeats, and with flanking ‘leader’ and ‘tail’ subunits that include small inverted-repeat ends. Forms of the BrickBuilt MITE are found 19 times in the genome of P. gingivalis strain ATCC 33277, and also multiple times within the strains W83, TDC60, HG66 and JCVI SC001. BrickBuilt is always located intergenically ranging between 49 and 591 nucleotides from the nearest upstream and downstream coding sequences. Segments of BrickBuilt contain promoter elements with bidirectional transcription capabilities. Conclusions We performed a bioinformatic analysis of BrickBuilt utilizing existing whole genome sequencing, microarray and RNAseq data, as well as performing in vitro promoter probe assays to determine potential roles, mechanisms and regulation of the expression of these elements and their affect on surrounding loci. The multiplicity, localization and limited host range nature of MITEs and MITE-like elements in P. gingivalis suggest that these elements may play an important role in facilitating genome evolution as well as modulating the transcriptional regulatory system. Electronic supplementary material The online version of this article (doi:10.1186/s13100-015-0049-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brian A Klein
- Department of Molecular Biology and Microbiology, Tufts University Sackler School of Biomedical Sciences, Boston, MA 02111 USA ; Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142 USA
| | - Tsute Chen
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142 USA
| | - Jodie C Scott
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142 USA
| | - Andrea L Koenigsberg
- Department of Molecular Biology and Microbiology, Tufts University Sackler School of Biomedical Sciences, Boston, MA 02111 USA
| | - Margaret J Duncan
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142 USA
| | - Linden T Hu
- Department of Molecular Biology and Microbiology, Tufts University Sackler School of Biomedical Sciences, Boston, MA 02111 USA
| |
Collapse
|