1
|
Marlin A, Cao M, El Hamouche J, Glaser O, Boros E. Decoding growth inhibitory associated pathways of xenometal-siderophore antibiotic conjugates in S. aureus. Chem Sci 2025; 16:7039-7050. [PMID: 40144493 PMCID: PMC11934059 DOI: 10.1039/d4sc08509d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
Pathogenic Staphylococcus aureus causes most infectious disease related deaths in the developed world. Continuously evolving resistance to clinically approved antibiotics and combination therapies limits treatment efficacy; new strategies that evade and slow resistance or produce resistant mutants with reduced fitness are needed. We employ antibiotics conjugated to bacterially recognized siderophores to potentiate their efficacy. Acting as a Trojan horse, the siderophore antibiotic conjugates efficiently deliver the antibiotic inside the bacterial cytoplasm by hijacking the iron transport system pathways which are crucial for bacterial survival. Here, we investigated the mechanism of action of gallium xenometallomycins (siderophore antibiotic conjugates incorporating non-endogenous metal ions), Ga-DFO-Cip and Ga-LDFC-Cip, which have demonstrated high potency compared to the parent antibiotic's efficacy in vitro in S. aureus infection. Employing physicochemical, synthetic and transcriptomic analysis studies, this work reveals that kinetically inert, gallium-containing xenometallomycins targeting cytoplasmic bacterial targets impart differential resistance and gene expression profiles when compared to their parent antibiotic in S. aureus bacterial strains. Both Ga-DFO-Cip and Ga-LDFC-Cip effectively disrupt iron-siderophore biosynthesis and uptake machinery. We affirm our results with the radioactive surrogate 67/68Ga-DFO-Cip and demonstrate that the bacterial uptake in Ga-DFO-Cip-resistant S. aureus strains is impaired, leading to diminished compound accumulation in vitro and in vivo.
Collapse
Affiliation(s)
- Axia Marlin
- Department of Chemistry, Stony Brook University Stony Brook New York 11790 USA
- Department of Chemistry, University of Wisconsin-Madison Madison Wisconsin 53706 USA
| | - Minhua Cao
- Department of Chemistry, Stony Brook University Stony Brook New York 11790 USA
- Department of Chemistry, University of Wisconsin-Madison Madison Wisconsin 53706 USA
| | - Joelle El Hamouche
- Department of Chemistry, Stony Brook University Stony Brook New York 11790 USA
| | - Owen Glaser
- Department of Chemistry, Stony Brook University Stony Brook New York 11790 USA
- Department of Chemistry, University of Wisconsin-Madison Madison Wisconsin 53706 USA
| | - Eszter Boros
- Department of Chemistry, Stony Brook University Stony Brook New York 11790 USA
- Department of Chemistry, University of Wisconsin-Madison Madison Wisconsin 53706 USA
| |
Collapse
|
2
|
Ip TKY, Wang Y, Wang S, Pu K, Wang R, Han B, Gao P, Xie Y, Kao RY, Ho PL, Li H, Sun H. Hinokitiol potentiates antimicrobial activity of bismuth drugs: a combination therapy for overcoming antimicrobial resistance. RSC Med Chem 2025:d4md00860j. [PMID: 40027343 PMCID: PMC11865920 DOI: 10.1039/d4md00860j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/17/2025] [Indexed: 03/05/2025] Open
Abstract
Antimicrobial resistance (AMR) poses a significant global health threat, rendering many infections untreatable. To combat AMR, repurposing approved drugs has emerged as a cost-effective strategy. Bismuth drugs, when combined with antibiotics, have been proven to be effective against Helicobacter pylori, including antibiotic-resistant strains. However, bismuth drugs alone exhibit limited antimicrobial activity against a narrow spectrum of pathogens. Therefore, a novel approach to enhance the efficacy and broaden the antimicrobial spectrum of bismuth drugs is highly desirable. Herein, we show that a naturally occurring monoterpenoid, hinokitiol, could potentiate the antimicrobial activity of bismuth drugs. We demonstrate a strong synergy between hinokitiol and colloidal bismuth subcitrate (CBS) against various Gram-positive and Gram-negative bacterial strains, including methicillin-resistant Staphylococcus aureus (MRSA). Moreover, the combination of hinokitiol and CBS exhibits anti-biofilm activity by preventing biofilm formation and eliminating S. aureus persister cells. Importantly, the combination therapy demonstrates promising antimicrobial efficacy in murine infection models including skin wound, gastrointestinal and blood infections. Mechanistic studies reveal that hinokitiol enhances bismuth ion (Bi(iii)) accumulation and reduces intracellular iron levels. By using thermal proteome profiling combined with dynamic quantitative proteomics analysis, we demonstrate that the bismuth-hinokitiol combination propagated the bismuth binding and interfered with ribosome synthesis, the glycolysis process, impaired bacterial cell wall synthesis and pathogenesis in MRSA. Our finding highlights the potential of combinatorial hinokitiol and bismuth drugs in the fight against AMR.
Collapse
Affiliation(s)
- Tiffany Ka-Yan Ip
- Department of Chemistry and HKU-CAS Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR P. R. China
| | - Yuchuan Wang
- Department of Chemistry and HKU-CAS Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR P. R. China
- School of Chemistry, Sun Yat-Sen University Guangzhou P. R. China
| | - Suyu Wang
- Department of Chemistry and HKU-CAS Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR P. R. China
| | - Keyuan Pu
- Department of Chemistry and HKU-CAS Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR P. R. China
| | - Runming Wang
- Department of Chemistry and HKU-CAS Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR P. R. China
| | - Bingjie Han
- School of Chemistry, Sun Yat-Sen University Guangzhou P. R. China
| | - Peng Gao
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR P. R. China
| | - Yanxuan Xie
- School of Chemistry, Sun Yat-Sen University Guangzhou P. R. China
| | - Richard Y Kao
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR P. R. China
| | - Pak-Leung Ho
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR P. R. China
| | - Hongyan Li
- Department of Chemistry and HKU-CAS Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR P. R. China
| | - Hongzhe Sun
- Department of Chemistry and HKU-CAS Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR P. R. China
| |
Collapse
|
3
|
Obermueller M, Traby L, Weiss-Tessbach M, Kriz R, Spettel K, Schneider L, Hohl L, Burgmann H, Kussmann M. Staphylococcus aureus small colony variants: A potentially underestimated microbiological challenge in peritoneal dialysis. Int J Antimicrob Agents 2024; 63:107135. [PMID: 38458357 DOI: 10.1016/j.ijantimicag.2024.107135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/03/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
INTRODUCTION Peritonitis remains the major infectious complication in the setting of peritoneal dialysis (PD). Despite known only moderate pathogenicity, the most frequently detected pathogens in PD-related peritonitis are surprisingly coagulase-negative staphylococci. However, this could be explained, at least in part, by Staphylococcus aureus small colony variants (SCVs) induced by PD fluids (PDFs) and misidentified by routinely used microbiological methods. MATERIAL AND METHODS Bacteria were exposed to commonly used PDFs in various regimens designed to simulate daily use as closely as possible. Wild-type isolates and SCVs were subsequently used to determine minimum inhibitory concentrations (MICs), in vitro biofilm formation capacities, and auxotrophies. Underlying genetic alterations were investigated using whole-genome sequencing, and various microbial identification methods were tested to determine their performance for wild-types and SCVs. RESULTS Stable SCVs could be isolated most successfully after exposure to glucose-containing PDFs alone. The reading of MICs was significantly affected by the reduced growth of SCVs, resulting in lower MIC values in 44% of all tests. Nonsynonymous mutations were found in all but one SCV, while only two isolates showed typical auxotrophic responses. While MALDI-TOF, PCR and Pastorex Staph-Plus correctly identified all S. aureus SCVs, API-Staph and VITEK-2 yielded identification rates of only 40% and 10%, respectively. CONCLUSIONS Overall, the present study has shown that commercially available PDFs induce S. aureus SCVs in vitro, which are difficult to identify and test for antimicrobial susceptibility and can potentially lead to recurrent or persistent infections. Thus, they represent a potentially underappreciated challenge not only for microbiologists, but also for clinicians.
Collapse
Affiliation(s)
- Markus Obermueller
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University Vienna, Vienna, Austria
| | - Ludwig Traby
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University Vienna, Vienna, Austria
| | - Matthias Weiss-Tessbach
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University Vienna, Vienna, Austria; Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria
| | - Richard Kriz
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University Vienna, Vienna, Austria
| | - Kathrin Spettel
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Lisa Schneider
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University Vienna, Vienna, Austria
| | - Lena Hohl
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University Vienna, Vienna, Austria
| | - Heinz Burgmann
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University Vienna, Vienna, Austria
| | - Manuel Kussmann
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Kocer K, Boudour-Halil D, Chanthalangsy Q, Sähr A, Heeg K, Boutin S, Nurjadi D. Genomic Modification of TonB and Emergence of Small-Colony Phenotype in VIM- and NDM-Producing Escherichia coli following Cefiderocol Exposure In Vitro. Antimicrob Agents Chemother 2023; 67:e0011823. [PMID: 37022155 PMCID: PMC10190670 DOI: 10.1128/aac.00118-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Knowledge on resistance mechanisms toward cefiderocol, a novel siderophore-conjugated cephalosporin antibiotic, is still limited. Although the presence of New-Delhi metallo-β-lactamase has been demonstrated to facilitate the resistance development toward cefiderocol via siderophore receptor mutations in Enterobacter cloacae and Klebsiella pneumoniae, the impact of metallo-β-lactamases on facilitating such mutations in Escherichia coli is not yet elucidated. Our study aimed to study the effect of the presence of various β-lactamases, such as NDM-5, VIM-1, KPC-2, and OXA-48, on the development of cefiderocol resistance in E. coli. To this end, we performed liquid mating to transfer these β-lactamases onto a defined K-12 E. coli background (J53) and exposed these transconjugants to increasing cefiderocol concentrations in a serial passage experiment. Cefiderocol-resistant isolates were genotyped by whole-genome sequencing to investigate the underlying resistance mechanism. Cefiderocol-resistant isolates emerged only in isolates producing VIM-1 and NDM-5 metallo-β-lactamase, but not in those producing the serine β-lactamases KPC-2 and OXA-48. We observed two distinct morphological changes of the J53 E. coli strain exhibiting reduced colony size after insertions of transposable elements in the tonB gene leading to alterations in the TonB binding site and morphological changes consistent with the small-colony variant (SCV) phenotype due to mutations in the hemB and hemH genes. Passaging experiments suggested that these phenotypes were highly plastic. The SCV phenotype is attributed to immune evasion and decreased susceptibility toward antibiotics. The emergence of SCV following cefiderocol exposure may have clinical implications for bacterial clearance and warrants further investigation.
Collapse
Affiliation(s)
- Kaan Kocer
- Department of Infectious Diseases, Medical Microbiology and Hospital Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | - Deniz Boudour-Halil
- Department of Infectious Diseases, Medical Microbiology and Hospital Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | - Quan Chanthalangsy
- Department of Infectious Diseases, Medical Microbiology and Hospital Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | - Aline Sähr
- Department of Infectious Diseases, Medical Microbiology and Hospital Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | - Klaus Heeg
- Department of Infectious Diseases, Medical Microbiology and Hospital Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | - Sébastien Boutin
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Dennis Nurjadi
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg-Lübeck-Borstel-Riems, Germany
| |
Collapse
|
5
|
Functional mgrA Influences Genetic Changes within a Staphylococcus aureus Cell Population over Time. J Bacteriol 2022; 204:e0013822. [PMID: 36154359 DOI: 10.1128/jb.00138-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prolonged survival in the host-bacteria microenvironment drives the selection of alternative cell types in Staphylococcus aureus, permitting quasi-dormant sub-populations to develop. These facilitate antibiotic tolerance, long-term growth, and relapse of infection. Small Colony Variants (SCV) are an important cell type associated with persistent infection but are difficult to study in vitro due to the instability of the phenotype and reversion to the normal cell type. We have previously reported that under conditions of growth in continuous culture over a prolonged culture time, SCVs dominated a heterogenous population of cell types and these SCVs harbored a mutation in the DNA binding domain of the gene for the transcription factor, mgrA. To investigate this specific cell type further, S. aureus WCH-SK2-ΔmgrA itself was assessed with continuous culture. Compared to the wild type, the mgrA mutant strain required fewer generations to select for SCVs. There was an increased rate of mutagenesis within the ΔmgrA strain compared to the wild type, which we postulate is the mechanism explaining the increased emergence of SCV selection. The mgrA derived SCVs had impeded metabolism, altered MIC to specific antibiotics and an increased biofilm formation compared to non-SCV strain. Whole genomic sequencing detected single nucleotide polymorphisms (SNP) in phosphoglucosamine mutase glmM and tyrosine recombinase xerC. In addition, several genomic rearrangements were detected which affected genes involved in important functions such as antibiotic and toxic metal resistance and pathogenicity. Thus, we propose a direct link between mgrA and the SCV phenotype. IMPORTANCE Within a bacterial population, a stochastically generated heterogeneity of phenotypes allows continual survival against current and future stressors. The generation of a sub-population of quasi-dormant Small Colony Variants (SCV) in Staphylococcus aureus is such a mechanism, allowing for persistent or relapse of infection despite initial intervention seemingly clearing the infection. The use of continuous culture under clinically relevant conditions has allowed us to introduce time to the growth system and selects SCV within the population. This study provides valuable insights into the generation of SCV which are not addressed in standard laboratory generated models and reveals new pathways for understanding persistent S. aureus infection which can potentially be targeted in future treatments of persistent S. aureus infection.
Collapse
|
6
|
Zhou S, Rao Y, Li J, Huang Q, Rao X. Staphylococcus aureus small-colony variants: Formation, infection, and treatment. Microbiol Res 2022; 260:127040. [DOI: 10.1016/j.micres.2022.127040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
|
7
|
de Lima VM, Batista BB, da Silva Neto JF. The Regulatory Protein ChuP Connects Heme and Siderophore-Mediated Iron Acquisition Systems Required for Chromobacterium violaceum Virulence. Front Cell Infect Microbiol 2022; 12:873536. [PMID: 35646721 PMCID: PMC9131926 DOI: 10.3389/fcimb.2022.873536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022] Open
Abstract
Chromobacterium violaceum is an environmental Gram-negative beta-proteobacterium that causes systemic infections in humans. C. violaceum uses siderophore-based iron acquisition systems to overcome the host-imposed iron limitation, but its capacity to use other iron sources is unknown. In this work, we characterized ChuPRSTUV as a heme utilization system employed by C. violaceum to explore an important iron reservoir in mammalian hosts, free heme and hemoproteins. We demonstrate that the chuPRSTUV genes comprise a Fur-repressed operon that is expressed under iron limitation. The chu operon potentially encodes a small regulatory protein (ChuP), an outer membrane TonB-dependent receptor (ChuR), a heme degradation enzyme (ChuS), and an inner membrane ABC transporter (ChuTUV). Our nutrition growth experiments using C. violaceum chu deletion mutants revealed that, with the exception of chuS, all genes of the chu operon are required for heme and hemoglobin utilization in C. violaceum. The mutant strains without chuP displayed increased siderophore halos on CAS plate assays. Significantly, we demonstrate that ChuP connects heme and siderophore utilization by acting as a positive regulator of chuR and vbuA, which encode the TonB-dependent receptors for the uptake of heme (ChuR) and the siderophore viobactin (VbuA). Our data favor a model of ChuP as a heme-binding post-transcriptional regulator. Moreover, our virulence data in a mice model of acute infection demonstrate that C. violaceum uses both heme and siderophore for iron acquisition during infection, with a preference for siderophores over the Chu heme utilization system.
Collapse
|
8
|
In vivo growth of Staphylococcus lugdunensis is facilitated by the concerted function of heme and non-heme iron acquisition mechanisms. J Biol Chem 2022; 298:101823. [PMID: 35283192 PMCID: PMC9052147 DOI: 10.1016/j.jbc.2022.101823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus lugdunensis has increasingly been recognized as a pathogen that can cause serious infection indicating this bacterium overcomes host nutritional immunity. Despite this, there exists a significant knowledge gap regarding the iron acquisition mechanisms employed by S. lugdunensis, especially during infection of the mammalian host. Here we show that S. lugdunensis can usurp hydroxamate siderophores and staphyloferrin A and B from Staphylococcus aureus. These transport activities all required a functional FhuC ATPase. Moreover, we show that the acquisition of catechol siderophores and catecholamine stress hormones by S. lugdunensis required the presence of the sst-1 transporter-encoding locus, but not the sst-2 locus. Iron-dependent growth in acidic culture conditions necessitated the ferrous iron transport system encoded by feoAB. Heme iron was acquired via expression of the iron-regulated surface determinant (isd) locus. During systemic infection of mice, we demonstrated that while S. lugdunensis does not cause overt illness, it does colonize and proliferate to high numbers in the kidneys. By combining mutations in the various iron acquisition loci (isd, fhuC, sst-1, and feo), we demonstrate that only a strain deficient for all of these systems was attenuated in its ability to proliferate to high numbers in the murine kidney. We propose the concerted action of heme and non-heme iron acquisition systems also enable S. lugdunensis to cause human infection.
Collapse
|
9
|
Wang X, Li W, Wang W, Wang S, Xu T, Chen J, Zhang W. Involvement of Small Colony Variant-Related Heme Biosynthesis Genes in Staphylococcus aureus Persister Formation in vitro. Front Microbiol 2021; 12:756809. [PMID: 35003000 PMCID: PMC8733728 DOI: 10.3389/fmicb.2021.756809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Persisters are important reasons for persistent infections, and they can lead to antibiotic treatment failure in patients and consequently chronic infection. Staphylococcus aureus small colony variants (SCVs) have been shown to be related to persistent infection. Mutations in the genes of the heme biosynthesis pathway lead to the formation of SCVs. However, the relationship between heme production genes and persister has not been tested. Methods: HemA and hemB were knocked out by allelic replacement from S. aureus strain USA500 separately, and then, the heme deficiency was complemented by overexpression of related genes and the addition of hemin. The stress-related persister assay was conducted. RNA-sequencing was performed to find genes and pathways involved in heme-related persister formation, and relative genes and operons were further knocked out and overexpressed to confirm their role in each process. Results: We found that heme biosynthesis deficiency can lead to decreased persister. After complementing the corresponding genes or hemin, the persister levels could be restored. RNA-seq on knockout strains showed that various metabolic pathways were influenced, such as energy metabolism, amino acid metabolism, carbohydrate metabolism, and membrane transport. Overexpression of epiF and operon asp23 could restore USA500∆hemA persister formation under acid stress. Knocking out operon arc in USA500∆hemA could further reduce USA500∆hemA persister formation under acid and oxidative stress. Conclusion: Heme synthesis has a role in S. aureus persister formation.
Collapse
Affiliation(s)
- Xuyang Wang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weizheng Li
- Department of Infectious Diseases, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjie Wang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shiyong Wang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tao Xu
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiazhen Chen
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology (MOE/MOH) Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|