1
|
Zupok A, Iobbi-Nivol C, Méjean V, Leimkühler S. The regulation of Moco biosynthesis and molybdoenzyme gene expression by molybdenum and iron in bacteria. Metallomics 2019; 11:1602-1624. [DOI: 10.1039/c9mt00186g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The regulation of the operons involved in Moco biosynthesis is dependent on the availability of Fe–S clusters in the cell.
Collapse
Affiliation(s)
- Arkadiusz Zupok
- University of Potsdam
- Institute of Biochemistry and Biology
- Molecular Enzymology
- Potsdam-Golm
- Germany
| | - Chantal Iobbi-Nivol
- Aix-Marseille Université
- Institut de Microbiologie de la Méditerranée
- Laboratoire de Bioénergétique et Ingénierie des Protéines
- Centre National de la Recherche Scientifique
- Marseille
| | - Vincent Méjean
- Aix-Marseille Université
- Institut de Microbiologie de la Méditerranée
- Laboratoire de Bioénergétique et Ingénierie des Protéines
- Centre National de la Recherche Scientifique
- Marseille
| | - Silke Leimkühler
- University of Potsdam
- Institute of Biochemistry and Biology
- Molecular Enzymology
- Potsdam-Golm
- Germany
| |
Collapse
|
2
|
Demtröder L, Narberhaus F, Masepohl B. Coordinated regulation of nitrogen fixation and molybdate transport by molybdenum. Mol Microbiol 2018; 111:17-30. [PMID: 30325563 DOI: 10.1111/mmi.14152] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2018] [Indexed: 12/01/2022]
Abstract
Biological nitrogen fixation, the reduction of chemically inert dinitrogen to bioavailable ammonia, is a central process in the global nitrogen cycle highly relevant for life on earth. N2 reduction to NH3 is catalyzed by nitrogenases exclusively synthesized by diazotrophic prokaryotes. All diazotrophs have a molybdenum nitrogenase containing the unique iron-molybdenum cofactor FeMoco. In addition, some diazotrophs encode one or two alternative Mo-free nitrogenases that are less efficient at reducing N2 than Mo-nitrogenase. To permit biogenesis of Mo-nitrogenase and other molybdoenzymes when Mo is scarce, bacteria synthesize the high-affinity molybdate transporter ModABC. Generally, Mo supports expression of Mo-nitrogenase genes, while it represses production of Mo-free nitrogenases and ModABC. Since all three nitrogenases and ModABC can reach very high levels at suitable Mo concentrations, tight Mo-mediated control saves considerable resources and energy. This review outlines the similarities and differences in Mo-responsive regulation of nitrogen fixation and molybdate transport in diverse diazotrophs.
Collapse
Affiliation(s)
- Lisa Demtröder
- Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | | | - Bernd Masepohl
- Microbial Biology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
3
|
Bacterial PerO Permeases Transport Sulfate and Related Oxyanions. J Bacteriol 2017; 199:JB.00183-17. [PMID: 28461447 DOI: 10.1128/jb.00183-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/22/2017] [Indexed: 01/13/2023] Open
Abstract
Rhodobacter capsulatus synthesizes the high-affinity ABC transporters CysTWA and ModABC to specifically import the chemically related oxyanions sulfate and molybdate, respectively. In addition, R. capsulatus has the low-affinity permease PerO acting as a general oxyanion transporter, whose elimination increases tolerance to molybdate and tungstate. Although PerO-like permeases are widespread in bacteria, their function has not been examined in any other species to date. Here, we present evidence that PerO permeases from the alphaproteobacteria Agrobacterium tumefaciens, Dinoroseobacter shibae, Rhodobacter sphaeroides, and Sinorhizobium meliloti and the gammaproteobacterium Pseudomonas stutzeri functionally substitute for R. capsulatus PerO in sulfate uptake and sulfate-dependent growth, as shown by assimilation of radioactively labeled sulfate and heterologous complementation. Disruption of perO genes in A. tumefaciens, R. sphaeroides, and S. meliloti increased tolerance to tungstate and, in the case of R. sphaeroides, to molybdate, suggesting that heterometal oxyanions are common substrates of PerO permeases. This study supports the view that bacterial PerO permeases typically transport sulfate and related oxyanions and, hence, form a functionally conserved permease family.IMPORTANCE Despite the widespread distribution of PerO-like permeases in bacteria, our knowledge about PerO function until now was limited to one species, Rhodobacter capsulatus In this study, we showed that PerO proteins from diverse bacteria are functionally similar to the R. capsulatus prototype, suggesting that PerO permeases form a conserved family whose members transport sulfate and related oxyanions.
Collapse
|
4
|
Proteome Profiling of the Rhodobacter capsulatus Molybdenum Response Reveals a Role of IscN in Nitrogen Fixation by Fe-Nitrogenase. J Bacteriol 2015; 198:633-43. [PMID: 26644433 DOI: 10.1128/jb.00750-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/12/2015] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Rhodobacter capsulatus is capable of synthesizing two nitrogenases, a molybdenum-dependent nitrogenase and an alternative Mo-free iron-only nitrogenase, enabling this diazotroph to grow with molecular dinitrogen (N2) as the sole nitrogen source. Here, the Mo responses of the wild type and of a mutant lacking ModABC, the high-affinity molybdate transporter, were examined by proteome profiling, Western analysis, epitope tagging, and lacZ reporter fusions. Many Mo-controlled proteins identified in this study have documented or presumed roles in nitrogen fixation, demonstrating the relevance of Mo control in this highly ATP-demanding process. The levels of Mo-nitrogenase, NifHDK, and the Mo storage protein, Mop, increased with increasing Mo concentrations. In contrast, Fe-nitrogenase, AnfHDGK, and ModABC, the Mo transporter, were expressed only under Mo-limiting conditions. IscN was identified as a novel Mo-repressed protein. Mo control of Mop, AnfHDGK, and ModABC corresponded to transcriptional regulation of their genes by the Mo-responsive regulators MopA and MopB. Mo control of NifHDK and IscN appeared to be more complex, involving different posttranscriptional mechanisms. In line with the simultaneous control of IscN and Fe-nitrogenase by Mo, IscN was found to be important for Fe-nitrogenase-dependent diazotrophic growth. The possible role of IscN as an A-type carrier providing Fe-nitrogenase with Fe-S clusters is discussed. IMPORTANCE Biological nitrogen fixation is a central process in the global nitrogen cycle by which the abundant but chemically inert dinitrogen (N2) is reduced to ammonia (NH3), a bioavailable form of nitrogen. Nitrogen reduction is catalyzed by nitrogenases found in diazotrophic bacteria and archaea but not in eukaryotes. All diazotrophs synthesize molybdenum-dependent nitrogenases. In addition, some diazotrophs, including Rhodobacter capsulatus, possess catalytically less efficient alternative Mo-free nitrogenases, whose expression is repressed by Mo. Despite the importance of Mo in biological nitrogen fixation, this is the first study analyzing the proteome-wide Mo response in a diazotroph. IscN was recognized as a novel member of the molybdoproteome in R. capsulatus. It was dispensable for Mo-nitrogenase activity but supported diazotrophic growth under Mo-limiting conditions.
Collapse
|
5
|
Coordinated expression of fdxD and molybdenum nitrogenase genes promotes nitrogen fixation by Rhodobacter capsulatus in the presence of oxygen. J Bacteriol 2013; 196:633-40. [PMID: 24272776 DOI: 10.1128/jb.01235-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Rhodobacter capsulatus is able to grow with N2 as the sole nitrogen source using either a molybdenum-dependent or a molybdenum-free iron-only nitrogenase whose expression is strictly inhibited by ammonium. Disruption of the fdxD gene, which is located directly upstream of the Mo-nitrogenase genes, nifHDK, abolished diazotrophic growth via Mo-nitrogenase at oxygen concentrations still tolerated by the wild type, thus demonstrating the importance of FdxD under semiaerobic conditions. In contrast, FdxD was not beneficial for diazotrophic growth depending on Fe-nitrogenase. These findings suggest that the 2Fe2S ferredoxin FdxD specifically supports the Mo-nitrogenase system, probably by protecting Mo-nitrogenase against oxygen, as previously shown for its Azotobacter vinelandii counterpart, FeSII. Expression of fdxD occurred under nitrogen-fixing conditions, but not in the presence of ammonium. Expression of fdxD strictly required NifA1 and NifA2, the transcriptional activators of the Mo-nitrogenase genes, but not AnfA, the transcriptional activator of the Fe-nitrogenase genes. Expression of the fdxD and nifH genes, as well as the FdxD and NifH protein levels, increased with increasing molybdate concentrations. Molybdate induction of fdxD was independent of the molybdate-sensing regulators MopA and MopB, which repress anfA transcription at micromolar molybdate concentrations. In this report, we demonstrate the physiological relevance of an fesII-like gene, fdxD, and show that the cellular nitrogen and molybdenum statuses are integrated to control its expression.
Collapse
|
6
|
Tirado-Lee L, Lee A, Rees DC, Pinkett HW. Classification of a Haemophilus influenzae ABC transporter HI1470/71 through its cognate molybdate periplasmic binding protein, MolA. Structure 2011; 19:1701-10. [PMID: 22078568 PMCID: PMC3258573 DOI: 10.1016/j.str.2011.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/11/2011] [Accepted: 10/09/2011] [Indexed: 01/07/2023]
Abstract
molA (HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB(2)C(2) (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7 Å resolution, respectively. The MolA-binding protein binds molybdate and tungstate, but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate-binding protein structurally solved. The ∼100 μM binding affinity for tungstate and molybdate is significantly lower than observed for the class II ModA molybdate-binding proteins that have nanomolar to low micromolar affinity for molybdate. The presence of two molybdate loci in H. influenzae suggests multiple transport systems for one substrate, with molABC constituting a low-affinity molybdate locus.
Collapse
Affiliation(s)
- Leidamarie Tirado-Lee
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Allen Lee
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Douglas C. Rees
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Heather W. Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
7
|
Müller A, Schlicker C, Fehringer M, Masepohl B, Hofmann E. Expression, purification, crystallization and preliminary X-ray analysis of the DNA-binding domain of Rhodobacter capsulatus MopB. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:377-9. [PMID: 21393847 DOI: 10.1107/s1744309110054710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 12/30/2010] [Indexed: 11/10/2022]
Abstract
The LysR-type regulator MopB represses transcription of several target genes (including the nitrogen-fixation gene anfA) in Rhodobacter capsulatus at high molybdenum concentrations. In this study, the isolated DNA-binding domain of MopB (MopBHTH) was overexpressed in Escherichia coli. Purified MopBHTH bound the anfA promoter as shown by DNA mobility-shift assays, demonstrating the function of the isolated regulator domain. MopBHTH was crystallized using the sitting-drop vapour-diffusion method in the presence of 0.2 M lithium sulfate, 0.1 M phosphate/citrate pH 4.2, 20%(w/v) PEG 1000 at 291 K. The crystal belonged to space group P3(1)21 or P3(2)21, with unit-cell parameters a=b=61.84, c=139.64 Å, α=β=90, γ=120°, and diffracted to 3.3 Å resolution at a synchrotron source.
Collapse
Affiliation(s)
- Alexandra Müller
- Lehrstuhl für Biologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
8
|
Gisin J, Müller A, Pfänder Y, Leimkühler S, Narberhaus F, Masepohl B. A Rhodobacter capsulatus member of a universal permease family imports molybdate and other oxyanions. J Bacteriol 2010; 192:5943-52. [PMID: 20851900 PMCID: PMC2976454 DOI: 10.1128/jb.00742-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 09/03/2010] [Indexed: 02/04/2023] Open
Abstract
Molybdenum (Mo) is an important trace element that is toxic at high concentrations. To resolve the mechanisms underlying Mo toxicity, Rhodobacter capsulatus mutants tolerant to high Mo concentrations were isolated by random transposon Tn5 mutagenesis. The insertion sites of six independent isolates mapped within the same gene predicted to code for a permease of unknown function located in the cytoplasmic membrane. During growth under Mo-replete conditions, the wild-type strain accumulated considerably more Mo than the permease mutant. For mutants defective for the permease, the high-affinity molybdate importer ModABC, or both transporters, in vivo Mo-dependent nitrogenase (Mo-nitrogenase) activities at different Mo concentrations suggested that ModABC and the permease import molybdate in nanomolar and micromolar ranges, respectively. Like the permease mutants, a mutant defective for ATP sulfurylase tolerated high Mo concentrations, suggesting that ATP sulfurylase is the main target of Mo inhibition in R. capsulatus. Sulfate-dependent growth of a double mutant defective for the permease and the high-affinity sulfate importer CysTWA was reduced compared to those of the single mutants, implying that the permease plays an important role in sulfate uptake. In addition, permease mutants tolerated higher tungstate and vanadate concentrations than the wild type, suggesting that the permease acts as a general oxyanion importer. We propose to call this permease PerO (for oxyanion permease). It is the first reported bacterial molybdate transporter outside the ABC transporter family.
Collapse
Affiliation(s)
- Jonathan Gisin
- Biologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Germany, Molekulare Mikrobiologie und Enzymologie, Fachbereich Biologie, Universität Konstanz, 78457 Constance, Germany, Molekulare Enzymologie, Institut für Biochemie und Biologie, Universität Potsdam, 14469 Potsdam, Germany
| | - Alexandra Müller
- Biologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Germany, Molekulare Mikrobiologie und Enzymologie, Fachbereich Biologie, Universität Konstanz, 78457 Constance, Germany, Molekulare Enzymologie, Institut für Biochemie und Biologie, Universität Potsdam, 14469 Potsdam, Germany
| | - Yvonne Pfänder
- Biologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Germany, Molekulare Mikrobiologie und Enzymologie, Fachbereich Biologie, Universität Konstanz, 78457 Constance, Germany, Molekulare Enzymologie, Institut für Biochemie und Biologie, Universität Potsdam, 14469 Potsdam, Germany
| | - Silke Leimkühler
- Biologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Germany, Molekulare Mikrobiologie und Enzymologie, Fachbereich Biologie, Universität Konstanz, 78457 Constance, Germany, Molekulare Enzymologie, Institut für Biochemie und Biologie, Universität Potsdam, 14469 Potsdam, Germany
| | - Franz Narberhaus
- Biologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Germany, Molekulare Mikrobiologie und Enzymologie, Fachbereich Biologie, Universität Konstanz, 78457 Constance, Germany, Molekulare Enzymologie, Institut für Biochemie und Biologie, Universität Potsdam, 14469 Potsdam, Germany
| | - Bernd Masepohl
- Biologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Germany, Molekulare Mikrobiologie und Enzymologie, Fachbereich Biologie, Universität Konstanz, 78457 Constance, Germany, Molekulare Enzymologie, Institut für Biochemie und Biologie, Universität Potsdam, 14469 Potsdam, Germany
| |
Collapse
|
9
|
Müller A, Püttmann L, Barthel R, Schön M, Lackmann JW, Narberhaus F, Masepohl B. Relevance of individual Mo-box nucleotides to DNA binding by the related molybdenum-responsive regulators MopA and MopB in Rhodobacter capsulatus. FEMS Microbiol Lett 2010; 307:191-200. [PMID: 20455946 DOI: 10.1111/j.1574-6968.2010.01981.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Either of two related molybdenum-responsive regulators, MopA and MopB, of Rhodobacter capsulatus is sufficient to repress the nitrogen-fixation gene anfA. In contrast, MopA (but not MopB) activates mop, which codes for a molybdate (Mo)-binding molbindin. Both regulators bind to conserved cis-regulatory elements called Mo-boxes. Single-base substitution of two highly conserved nucleotides within the anfA-Mo-box (T21C and C24T) had little effect on regulator binding and anfA expression as shown by DNA mobility shift assays and reporter gene fusions, respectively. In contrast to C24T, mutation C24A strongly diminished binding and repression by MopA and MopB, showing that different nucleotide substitutions at the same position may have very different effects. A triple mutation destroying the left half-site of the mop-Mo-box completely abolished mop expression by MopA, demonstrating the importance of the mop-Mo-box for mop activation. Two point mutations (T23A and T24C) still allowed binding by MopA, but abolished mop activation, most likely because these nucleotides overlap with the RNA polymerase-binding site. A mutant mop promoter, in which the mop-Mo-box was exchanged against the anfA-Mo-box, allowed activation by MopA, showing that a former repressor-binding site may act as an activator-binding site depending on its location relative to the other promoter elements.
Collapse
Affiliation(s)
- Alexandra Müller
- Lehrstuhl für Biologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Nitrogen and Molybdenum Control of Nitrogen Fixation in the Phototrophic Bacterium Rhodobacter capsulatus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 675:49-70. [DOI: 10.1007/978-1-4419-1528-3_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|