1
|
Paternoster C, Tarenzi T, Potestio R, Lattanzi G. Gamma-Hemolysin Components: Computational Strategies for LukF-Hlg2 Dimer Reconstruction on a Model Membrane. Int J Mol Sci 2023; 24:ijms24087113. [PMID: 37108277 PMCID: PMC10138441 DOI: 10.3390/ijms24087113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The gamma-hemolysin protein is one of the most common pore-forming toxins expressed by the pathogenic bacterium Staphylococcus aureus. The toxin is used by the pathogen to escape the immune system of the host organism, by assembling into octameric transmembrane pores on the surface of the target immune cell and leading to its death by leakage or apoptosis. Despite the high potential risks associated with Staphylococcus aureus infections and the urgent need for new treatments, several aspects of the pore-formation process from gamma-hemolysin are still unclear. These include the identification of the interactions between the individual monomers that lead to the formation of a dimer on the cell membrane, which represents the unit for further oligomerization. Here, we employed a combination of all-atom explicit solvent molecular dynamics simulations and protein-protein docking to determine the stabilizing contacts that guide the formation of a functional dimer. The simulations and the molecular modeling reveal the importance of the flexibility of specific protein domains, in particular the N-terminus, to drive the formation of the correct dimerization interface through functional contacts between the monomers. The results obtained are compared with the experimental data available in the literature.
Collapse
Affiliation(s)
- Costanza Paternoster
- Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, I-38123 Trento, Italy
| | - Thomas Tarenzi
- Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, I-38123 Trento, Italy
| | - Raffaello Potestio
- Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, I-38123 Trento, Italy
| | - Gianluca Lattanzi
- Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, I-38123 Trento, Italy
| |
Collapse
|
2
|
Jia X, Knyazeva A, Zhang Y, Castro-Gonzalez S, Nakamura S, Carlson LA, Yoshimori T, Corkery DP, Wu YW. V. cholerae MakA is a cholesterol-binding pore-forming toxin that induces non-canonical autophagy. J Cell Biol 2022; 221:213518. [PMID: 36194176 PMCID: PMC9536202 DOI: 10.1083/jcb.202206040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/16/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023] Open
Abstract
Pore-forming toxins (PFTs) are important virulence factors produced by many pathogenic bacteria. Here, we show that the Vibrio cholerae toxin MakA is a novel cholesterol-binding PFT that induces non-canonical autophagy in a pH-dependent manner. MakA specifically binds to cholesterol on the membrane at pH < 7. Cholesterol-binding leads to oligomerization of MakA on the membrane and pore formation at pH 5.5. Unlike other cholesterol-dependent cytolysins (CDCs) which bind cholesterol through a conserved cholesterol-binding motif (Thr-Leu pair), MakA contains an Ile-Ile pair that is essential for MakA-cholesterol interaction. Following internalization, endosomal acidification triggers MakA pore-assembly followed by ESCRT-mediated membrane repair and V-ATPase-dependent unconventional LC3 lipidation on the damaged endolysosomal membranes. These findings characterize a new cholesterol-binding toxin that forms pores in a pH-dependent manner and reveals the molecular mechanism of host autophagy manipulation.
Collapse
Affiliation(s)
- Xiaotong Jia
- Department of Chemistry, Umeå University, Umeå, Sweden,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Anastasia Knyazeva
- Department of Chemistry, Umeå University, Umeå, Sweden,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Yu Zhang
- Department of Chemistry, Umeå University, Umeå, Sweden,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Sergio Castro-Gonzalez
- Department of Chemistry, Umeå University, Umeå, Sweden,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Lars-Anders Carlson
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden,Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden,Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Dale P. Corkery
- Department of Chemistry, Umeå University, Umeå, Sweden,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden,Dale P. Corkery:
| | - Yao-Wen Wu
- Department of Chemistry, Umeå University, Umeå, Sweden,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden,Correspondence to Yao-Wen Wu:
| |
Collapse
|