1
|
Tetz G, Kardava K, Vecherkovskaya M, Khodadadi-Jamayran A, Tsirigos A, Tetz V. Universal receptive system as a novel regulator of transcriptomic activity of Staphylococcus aureus. Microb Cell Fact 2025; 24:1. [PMID: 39754239 PMCID: PMC11697845 DOI: 10.1186/s12934-024-02637-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/24/2024] [Indexed: 01/07/2025] Open
Abstract
Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription. To this end, transcriptomic analysis of S. aureus MSSA VT209 was performed following the destruction of TezRs. Bacterial RNA samples were extracted from nuclease-treated and untreated S. aureus MSSA VT209. After destruction of the DNA-based-, RNA-, or combined DNA- and RNA-based TezRs of S. aureus, 103, 150, and 93 genes were significantly differently expressed, respectively. The analysis revealed differential clustering of gene expression following the loss of different TezRs, highlighting individual cellular responses following the loss of DNA- and RNA-based TezRs. KEGG pathway gene enrichment analysis revealed that the most upregulated pathways following TezR inactivation included those related to energy metabolism, cell wall metabolism, and secretion systems. Some of the genetic pathways were related to the inhibition of biofilm formation and increased antibiotic resistance, and we confirmed this at the phenotypic level using in vitro studies. The results of this study add another line of evidence that the Universal Receptive System plays an important role in cell regulation, including cell responses to the environmental factors of clinically important pathogens, and that nucleic acid-based TezRs are functionally active parts of the extrabiome.
Collapse
Affiliation(s)
- George Tetz
- Human Microbiology Institute, New York, NY, 10014, USA.
- Tetz Labs, New York, NY, 10014, USA.
| | | | | | | | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY, 10016, USA
- Department of Pathology, NYU School of Medicine, New York, NY, 10016, USA
- Department of Medicine, Division of Precision Medicine, NYU School of Medicine, New York, NY, 10016, USA
| | - Victor Tetz
- Human Microbiology Institute, New York, NY, 10014, USA
- Tetz Labs, New York, NY, 10014, USA
| |
Collapse
|
2
|
Tetz G, Kardava K, Vecherkovskaya M, Khodadadi-Jamayran A, Tsirigos A, Tetz V. Universal Receptive System as a novel regulator of transcriptomic activity of Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612522. [PMID: 39386507 PMCID: PMC11463695 DOI: 10.1101/2024.09.11.612522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases.. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription. To this end, transcriptomic analysis of S. aureus MSSA VT209 was performed following the destruction of TezRs. Bacterial RNA samples were extracted from nuclease-treated and untreated S. aureus MSSA VT209. After destruction of the DNA-based-, RNA-, or combined DNA- and RNA-based TezRs of S. aureus , 103, 150, and 93 genes were significantly differently expressed, respectively. The analysis revealed differential clustering of gene expression following the loss of different TezRs, highlighting individual cellular responses following the loss of DNA- and RNA-based TezRs. KEGG pathway gene enrichment analysis revealed that the most upregulated pathways following TezR inactivation included those related to energy metabolism, cell wall metabolism, and secretion systems. Some of the genetic pathways were related to the inhibition of biofilm formation and increased antibiotic resistance, and we confirmed this at the phenotypic level using in vitro studies. The results of this study add another line of evidence that the Universal Receptive System plays an important role in cell regulation, including cell responses to the environmental factors of clinically important pathogens, and that nucleic acid-based TezRs are functionally active parts of the extrabiome.
Collapse
|
3
|
Strach M, Koch F, Fiedler S, Liebeton K, Graumann PL. Protein secretion zones during overexpression of amylase within the Gram-positive cell wall. BMC Biol 2023; 21:206. [PMID: 37794427 PMCID: PMC10552229 DOI: 10.1186/s12915-023-01684-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/16/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Whereas the translocation of proteins across the cell membrane has been thoroughly investigated, it is still unclear how proteins cross the cell wall in Gram-positive bacteria, which are widely used for industrial applications. We have studied the secretion of α-amylase AmyE within two different Bacillus strains, B. subtilis and B. licheniformis. RESULTS We show that a C-terminal fusion of AmyE with the fluorescent reporter mCherry is secreted via discrete patches showing very low dynamics. These are visible at many places within the cell wall for many minutes. Expression from a high copy number plasmid was required to be able to see these structures we term "secretion zones". Zones corresponded to visualized AmyE activity on the surface of cells, showing that they release active enzymes. They overlapped with SecA signals but did not frequently co-localize with the secretion ATPase. Single particle tracking showed higher dynamics of SecA and of SecDF, involved in AmyE secretion, at the cell membrane than AmyE. These experiments suggest that SecA initially translocates AmyE molecules through the cell membrane, and then diffuses to a different translocon. Single molecule tracking of SecA suggests the existence of three distinct diffusive states of SecA, which change during AmyE overexpression, but increased AmyE secretion does not appear to overwhelm the system. CONCLUSIONS Because secretion zones were only found during the transition to and within the stationary phase, diffusion rather than passive transport based on cell wall growth from inside to outside may release AmyE and, thus, probably secreted proteins in general. Our findings suggest active transport through the cell membrane and slow, passive transition through the cell wall, at least for overexpressed proteins, in bacteria of the genus Bacillus.
Collapse
Affiliation(s)
- Manuel Strach
- Centre for Synthetic Microbiology (SYNMIKRO) and Fachbereich Chemie, Philipps-Universität Marburg, Marburg, 35032, Germany
| | - Felicitas Koch
- Centre for Synthetic Microbiology (SYNMIKRO) and Fachbereich Chemie, Philipps-Universität Marburg, Marburg, 35032, Germany
| | - Svenja Fiedler
- Centre for Synthetic Microbiology (SYNMIKRO) and Fachbereich Chemie, Philipps-Universität Marburg, Marburg, 35032, Germany
| | - Klaus Liebeton
- BRAIN Biotech AG, Darmstädter Str. 34-36, Zwingenberg, 64673, Germany
| | - Peter L Graumann
- Centre for Synthetic Microbiology (SYNMIKRO) and Fachbereich Chemie, Philipps-Universität Marburg, Marburg, 35032, Germany.
| |
Collapse
|
4
|
Zuke JD, Erickson R, Hummels KR, Burton BM. Visualizing dynamic competence pili and DNA capture throughout the long axis of Bacillus subtilis. J Bacteriol 2023; 205:e0015623. [PMID: 37695859 PMCID: PMC10521363 DOI: 10.1128/jb.00156-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 09/13/2023] Open
Abstract
The first step in the process of bacterial natural transformation is DNA capture. Although long hypothesized based on genetics and functional experiments, the pilus structure responsible for initial DNA binding had not yet been visualized for Bacillus subtilis. Here, we visualize functional competence pili in Bacillus subtilis using fluorophore-conjugated maleimide labeling in conjunction with epifluorescence microscopy. In strains that produce pilin monomers within tenfold of wild-type levels, the median length of detectable pili is 300 nm. These pili are retractile and associate with DNA. The analysis of pilus distribution at the cell surface reveals that they are predominantly located along the long axis of the cell. The distribution is consistent with localization of proteins associated with subsequent transformation steps, DNA binding, and DNA translocation in the cytosol. These data suggest a distributed model for B. subtilis transformation machinery, in which initial steps of DNA capture occur throughout the long axis of the cell and subsequent steps may also occur away from the cell poles. IMPORTANCE This work provides novel visual evidence for DNA translocation across the cell wall during Bacillus subtilis natural competence, an essential step in the natural transformation process. Our data demonstrate the existence of natural competence-associated retractile pili that can bind exogenous DNA. Furthermore, we show that pilus biogenesis occurs throughout the cell long axis. These data strongly support DNA translocation occurring all along the lateral cell wall during natural competence, wherein pili are produced, bind to free DNA in the extracellular space, and finally retract to pull the bound DNA through the gap in the cell wall created during pilus biogenesis.
Collapse
Affiliation(s)
- Jason D. Zuke
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rachel Erickson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Katherine R. Hummels
- Department of Microbiology and Immunology, Harvard Medical School, Boston, MA, USA
| | - Briana M. Burton
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Mollon JD, Danilova MV, Zhuravlev AV. A possible mechanism of neural read-out from a molecular engram. Neurobiol Learn Mem 2023; 200:107748. [PMID: 36907505 DOI: 10.1016/j.nlm.2023.107748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
What is the physical basis of declarative memory? The predominant view holds that stored information is embedded in the structure of a neural net, that is, in the signs and weights of its synaptic connections. An alternative possibility is that storage and processing are separated, and that the engram is encoded chemically, most probably in the sequence of a nucleic acid. One deterrent to adoption of the latter hypothesis has been the difficulty of envisaging how neural actively could be converted to and from a molecular code. Our purpose here is limited to suggesting how a molecular sequence could be read out from nucleic acid to neural activity by means of nanopores.
Collapse
Affiliation(s)
- J D Mollon
- Department of Psychology, University of Cambridge, Downing St., Cambridge CB2 3EB, United Kingdom.
| | - M V Danilova
- Department of Psychology, University of Cambridge, Downing St., Cambridge CB2 3EB, United Kingdom; I.P. Pavlov Institute of Physiology, nab Makarova 6, 199034 St Petersburg, Russian Federation
| | - A V Zhuravlev
- I.P. Pavlov Institute of Physiology, nab Makarova 6, 199034 St Petersburg, Russian Federation
| |
Collapse
|
6
|
Huang L, Guo W, Lu J, Pan W, Song F, Wang P. Enterococcus faecalis Bacteriophage vB_EfaS_efap05-1 Targets the Surface Polysaccharide and ComEA Protein as the Receptors. Front Microbiol 2022; 13:866382. [PMID: 35432223 PMCID: PMC9009173 DOI: 10.3389/fmicb.2022.866382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Enterococcus faecalis is a Gram-positive opportunistic pathogen that causes nosocomial infections in humans. Due to the growing threat of antibiotic resistance of E. faecalis, bacteriophage therapy is a promising option for treating of E. faecalis infection. Here, we characterized a lytic E. faecalis bacteriophage vB_EfaS_efap05-1 with a dsDNA genome of 56,563 bp. Phage vB_EfaS_efap05-1 had a prolate head and a tail, and belongs to Saphexavirus which is a member of Siphoviridae. Efap05-1 uses either surface polysaccharide or membrane protein ComEA as the receptor because the mutation of both genes (ComEA and UDP-glucose 4-epimerase galE) prevents phage adsorption and leads to phage resistance, and complementation of ComEA or galE could recover its phage sensitivity. Our results provided a comprehensive analysis of a new E. faecalis phage and suggest efap05-1 as a potential antimicrobial agent.
Collapse
Affiliation(s)
- Lingqiong Huang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
- School of Public Health, Dali University, Dali, China
| | - Wenqiong Guo
- School of Nursing, Chengdu Medical College, Chengdu, China
| | - Jiahui Lu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Wuliang Pan
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Fuqiang Song
- Department of Medical Laboratory, The General Hospital of Western Theater Command, Chengdu, China
- *Correspondence: Fuqiang Song,
| | - Peng Wang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
- Peng Wang,
| |
Collapse
|