1
|
Gupta N, Kumar A, Verma VK. Strategies adopted by gastric pathogen Helicobacter pylori for a mature biofilm formation: Antimicrobial peptides as a visionary treatment. Microbiol Res 2023; 273:127417. [PMID: 37267815 DOI: 10.1016/j.micres.2023.127417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/15/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
Enormous efforts in recent past two decades to eradicate the pathogen that has been prevalent in half of the world's population have been problematic. The biofilm formed by Helicobacter pylori provides resistance towards innate immune cells, various combinatorial antibiotics, and human antimicrobial peptides, despite the fact that these all are potent enough to eradicate it in vitro. Biofilm provides the opportunity to secrete various virulence factors that strengthen the interaction between host and pathogen helping in evading the innate immune system and ultimately leading to persistence. To our knowledge, this review is the first of its kind to explain briefly the journey of H. pylori starting with the chemotaxis, the mechanism for selecting the site for colonization, the stress faced by the pathogen, and various adaptations to evade these stress conditions by forming biofilm and the morphological changes acquired by the pathogen in mature biofilm. Furthermore, we have explained the human GI tract antimicrobial peptides and the reason behind the failure of these AMPs, and how encapsulation of Pexiganan-A(MSI-78A) in a chitosan microsphere increases the efficiency of eradication.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India.
| | - Atul Kumar
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India
| | - Vijay Kumar Verma
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India.
| |
Collapse
|
2
|
Wang H, Shi Y, Liang J, Zhao G, Ding X. Disruption of hrcA, the repression gene of groESL and rpoH, enhances heterologous biosynthesis of the nonribosomal peptide/polyketide compound epothilone in Schlegelella brevitalea. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
3
|
Insights into the Orchestration of Gene Transcription Regulators in Helicobacter pylori. Int J Mol Sci 2022; 23:ijms232213688. [PMID: 36430169 PMCID: PMC9696931 DOI: 10.3390/ijms232213688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Bacterial pathogens employ a general strategy to overcome host defenses by coordinating the virulence gene expression using dedicated regulatory systems that could raise intricate networks. During the last twenty years, many studies of Helicobacter pylori, a human pathogen responsible for various stomach diseases, have mainly focused on elucidating the mechanisms and functions of virulence factors. In parallel, numerous studies have focused on the molecular mechanisms that regulate gene transcription to attempt to understand the physiological changes of the bacterium during infection and adaptation to the environmental conditions it encounters. The number of regulatory proteins deduced from the genome sequence analyses responsible for the correct orchestration of gene transcription appears limited to 14 regulators and three sigma factors. Furthermore, evidence is accumulating for new and complex circuits regulating gene transcription and H. pylori virulence. Here, we focus on the molecular mechanisms used by H. pylori to control gene transcription as a function of the principal environmental changes.
Collapse
|
4
|
Versace G, Palombo M, Menon A, Scarlato V, Roncarati D. Feeling the Heat: The Campylobacter jejuni HrcA Transcriptional Repressor Is an Intrinsic Protein Thermosensor. Biomolecules 2021; 11:biom11101413. [PMID: 34680046 PMCID: PMC8533110 DOI: 10.3390/biom11101413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 01/16/2023] Open
Abstract
The heat-shock response, a universal protective mechanism consisting of a transcriptional reprogramming of the cellular transcriptome, results in the accumulation of proteins which counteract the deleterious effects of heat-stress on cellular polypeptides. To quickly respond to thermal stress and trigger the heat-shock response, bacteria rely on different mechanisms to detect temperature variations, which can involve nearly all classes of biological molecules. In Campylobacter jejuni the response to heat-shock is transcriptionally controlled by a regulatory circuit involving two repressors, HspR and HrcA. In the present work we show that the heat-shock repressor HrcA acts as an intrinsic protein thermometer. We report that a temperature upshift up to 42 °C negatively affects HrcA DNA-binding activity to a target promoter, a condition required for de-repression of regulated genes. Furthermore, we show that this impairment of HrcA binding at 42 °C is irreversible in vitro, as DNA-binding was still not restored by reversing the incubation temperature to 37 °C. On the other hand, we demonstrate that the DNA-binding activity of HspR, which controls, in combination with HrcA, the transcription of chaperones' genes, is unaffected by heat-stress up to 45 °C, portraying this master repressor as a rather stable protein. Additionally, we show that HrcA binding activity is enhanced by the chaperonin GroE, upon direct protein-protein interaction. In conclusion, the results presented in this work establish HrcA as a novel example of intrinsic heat-sensing transcriptional regulator, whose DNA-binding activity is positively modulated by the GroE chaperonin.
Collapse
Affiliation(s)
| | | | | | - Vincenzo Scarlato
- Correspondence: (V.S.); (D.R.); Tel.: +39-051-209-4204 (V.S.); +39-051-209-9320 (D.R.)
| | - Davide Roncarati
- Correspondence: (V.S.); (D.R.); Tel.: +39-051-209-4204 (V.S.); +39-051-209-9320 (D.R.)
| |
Collapse
|
5
|
Baj J, Forma A, Sitarz M, Portincasa P, Garruti G, Krasowska D, Maciejewski R. Helicobacter pylori Virulence Factors-Mechanisms of Bacterial Pathogenicity in the Gastric Microenvironment. Cells 2020; 10:27. [PMID: 33375694 PMCID: PMC7824444 DOI: 10.3390/cells10010027] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer constitutes one of the most prevalent malignancies in both sexes; it is currently the fourth major cause of cancer-related deaths worldwide. The pathogenesis of gastric cancer is associated with the interaction between genetic and environmental factors, among which infection by Helicobacter pylori (H. pylori) is of major importance. The invasion, survival, colonization, and stimulation of further inflammation within the gastric mucosa are possible due to several evasive mechanisms induced by the virulence factors that are expressed by the bacterium. The knowledge concerning the mechanisms of H. pylori pathogenicity is crucial to ameliorate eradication strategies preventing the possible induction of carcinogenesis. This review highlights the current state of knowledge and the most recent findings regarding H. pylori virulence factors and their relationship with gastric premalignant lesions and further carcinogenesis.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-400 Lublin, Poland;
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Monika Sitarz
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Piero Portincasa
- Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro” Medical School, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Danuta Krasowska
- Department of Dermatology, Venerology and Paediatric Dermatology of Medical University of Lublin, 20-081 Lublin, Poland;
| | | |
Collapse
|
6
|
Biofilm Formation as a Complex Result of Virulence and Adaptive Responses of Helicobacter pylori. Pathogens 2020; 9:pathogens9121062. [PMID: 33353223 PMCID: PMC7766044 DOI: 10.3390/pathogens9121062] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori is a bacterium that is capable of colonizing a host for many years, often for a lifetime. The survival in the gastric environment is enabled by the production of numerous virulence factors conditioning adhesion to the mucosa surface, acquisition of nutrients, and neutralization of the immune system activity. It is increasingly recognized, however, that the adaptive mechanisms of H. pylori in the stomach may also be linked to the ability of this pathogen to form biofilms. Initially, biofilms produced by H. pylori were strongly associated by scientists with water distribution systems and considered as a survival mechanism outside the host and a source of fecal-oral infections. In the course of the last 20 years, however, this trend has changed and now the most attention is focused on the biomedical aspect of this structure and its potential contribution to the therapeutic difficulties of H. pylori. Taking into account this fact, the aim of the current review is to discuss the phenomenon of H. pylori biofilm formation and present this mechanism as a resultant of the virulence and adaptive responses of H. pylori, including morphological transformation, membrane vesicles secretion, matrix production, efflux pump activity, and intermicrobial communication. These mechanisms will be considered in the context of transcriptomic and proteomic changes in H. pylori biofilms and their modulating effect on the development of this complex structure.
Collapse
|
7
|
Cooperative Regulation of Campylobacter jejuni Heat-Shock Genes by HspR and HrcA. Microorganisms 2020; 8:microorganisms8081161. [PMID: 32751623 PMCID: PMC7464140 DOI: 10.3390/microorganisms8081161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 01/17/2023] Open
Abstract
The heat-shock response is defined by the transient gene-expression program that leads to the rapid accumulation of heat-shock proteins. This evolutionary conserved response aims at the preservation of the intracellular environment and represents a crucial pathway during the establishment of host–pathogen interaction. In the food-borne pathogen Campylobacter jejuni two transcriptional repressors, named HspR and HrcA, are involved in the regulation of the major heat-shock genes. However, the molecular mechanism underpinning HspR and HrcA regulatory function has not been defined yet. In the present work, we assayed and mapped the HspR and HrcA interactions on heat-shock promoters by high-resolution DNase I footprintings, defining their regulatory circuit, which governs C. jejuni heat-shock response. We found that, while DNA-binding of HrcA covers a compact region enclosing a single inverted repeat similar to the so-called Controlling Inverted Repeat of Chaperone Expression (CIRCE) sequence, HspR interacts with multiple high- and low-affinity binding sites, which contain HspR Associated Inverted Repeat (HAIR)-like sequences. We also explored the DNA-binding properties of the two repressors competitively on their common targets and observed, for the first time, that HrcA and HspR can directly interact and their binding on co-regulated promoters occurs in a cooperative manner. This mutual cooperative mechanism of DNA binding could explain the synergic repressive effect of HspR and HrcA observed in vivo on co-regulated promoters. Peculiarities of the molecular mechanisms exerted by HspR and HrcA in C. jejuni are compared to the closely related bacterium H. pylori that uses homologues of the two regulators.
Collapse
|
8
|
Ciccaglione AF, Di Giulio M, Di Lodovico S, Di Campli E, Cellini L, Marzio L. Bovine lactoferrin enhances the efficacy of levofloxacin-based triple therapy as first-line treatment of Helicobacter pylori infection: an in vitro and in vivo study. J Antimicrob Chemother 2020; 74:1069-1077. [PMID: 30668729 PMCID: PMC6419617 DOI: 10.1093/jac/dky510] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/24/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022] Open
Abstract
Objectives To evaluate the in vitro antimicrobial/antivirulence action of bovine lactoferrin and its ability to synergize with levofloxacin against resistant Helicobacter pylori strains and to analyse the effect of levofloxacin, amoxicillin and esomeprazole with and without bovine lactoferrin as the first-line treatment for H. pylori infection. Methods The bovine lactoferrin antimicrobial/antivirulence effect was analysed in vitro by MIC/MBC determination and twitching motility against six clinical H. pylori strains and a reference strain. The synergism was evaluated using the chequerboard assay. The prospective therapeutic trial was carried out on two separate patient groups, one treated with esomeprazole/amoxicillin/levofloxacin and the other with esomeprazole/amoxicillin/levofloxacin/bovine lactoferrin. Treatment outcome was determined with the [13C]urea breath test. Results In vitro, bovine lactoferrin inhibited the growth of 50% of strains at 10 mg/mL and expressed 50% bactericidal effect at 40 mg/mL. The combination of levofloxacin and bovine lactoferrin displayed a synergistic effect for all strains, with the best MIC reduction of 16- and 32-fold for levofloxacin and bovine lactoferrin, respectively. Bovine lactoferrin at one-fourth MIC reduced microbial motility significantly for all strains studied. In the in vivo study, 6 of 24 patients recruited had treatment failure recorded with esomeprazole/amoxicillin/levofloxacin (75% success, 95% CI 57.68%–92.32%), and in the group with esomeprazole/amoxicillin/levofloxacin/bovine lactoferrin, 2 out of 53 patients recruited had failure recorded (96.07% success, 95% CI 90.62%–101.38%). Conclusions Bovine lactoferrin can be considered a novel potentiator for restoring susceptibility in resistant H. pylori strains. Bovine lactoferrin added to a triple therapy in first-line treatment potentiates the therapeutic effect.
Collapse
Affiliation(s)
| | - Mara Di Giulio
- Department of Pharmacy, 'G. d'Annunzio' University, Via dei Vestini, Chieti, Italy
| | - Silvia Di Lodovico
- Department of Pharmacy, 'G. d'Annunzio' University, Via dei Vestini, Chieti, Italy
| | - Emanuela Di Campli
- Department of Pharmacy, 'G. d'Annunzio' University, Via dei Vestini, Chieti, Italy
| | - Luigina Cellini
- Department of Pharmacy, 'G. d'Annunzio' University, Via dei Vestini, Chieti, Italy
| | - Leonardo Marzio
- Digestive Sciences Unit, 'G. d'Annunzio' University, Pescara Civic Hospital, Via Fonte Romana 8, Pescara, Italy
| |
Collapse
|
9
|
Pepe S, Scarlato V, Roncarati D. The Helicobacter pylori HspR-Modulator CbpA Is a Multifunctional Heat-Shock Protein. Microorganisms 2020; 8:microorganisms8020251. [PMID: 32069975 PMCID: PMC7074700 DOI: 10.3390/microorganisms8020251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/31/2020] [Accepted: 02/11/2020] [Indexed: 12/24/2022] Open
Abstract
The medically important human pathogen Helicobacter pylori relies on a collection of highly conserved heat-shock and chaperone proteins to preserve the integrity of cellular polypeptides and to control their homeostasis in response to external stress and changing environmental conditions. Among this set of chaperones, the CbpA protein has been shown to play a regulatory role in heat-shock gene regulation by directly interacting with the master stress-responsive repressor HspR. Apart from this regulatory role, little is known so far about CbpA functional activities. Using biochemistry and molecular biology approaches, we have started the in vitro functional characterization of H. pylori CbpA. Specifically, we show that CbpA is a multifunctional protein, being able to bind DNA and to stimulate the ATPase activity of the major chaperone DnaK. In addition, we report a preliminary observation suggesting that CbpA DNA-binding activity can be affected by the direct interaction with the heat-shock master repressor HspR, supporting the hypothesis of a reciprocal crosstalk between these two proteins. Thus, our work defines novel functions for H. pylori CbpA and stimulates further studies aimed at the comprehension of the complex regulatory interplay among chaperones and heat-shock transcriptional regulators.
Collapse
Affiliation(s)
| | - Vincenzo Scarlato
- Correspondence: (V.S.); (D.R.); Tel.: +39-051-2094204 (V.S.); +39-051-2099320 (D.R.)
| | - Davide Roncarati
- Correspondence: (V.S.); (D.R.); Tel.: +39-051-2094204 (V.S.); +39-051-2099320 (D.R.)
| |
Collapse
|
10
|
Mechanism of HrcA function in heat shock regulation in Mycobacterium tuberculosis. Biochimie 2019; 168:285-296. [PMID: 31765672 DOI: 10.1016/j.biochi.2019.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/19/2019] [Indexed: 01/16/2023]
Abstract
Molecular chaperones are a conserved family of proteins that are over-expressed in response to heat and other stresses. The regulation of expression of chaperone proteins plays a vital role in pathogenesis of various bacterial pathogens. In M. tuberculosis, HrcA and HspR negatively regulate heat shock protein operons by binding to their cognate DNA elements, CIRCE and HAIR respectively. In this study, we show that M. tuberculosis HrcA is able to bind to its cognate CIRCE DNA element present in the upstream regions of groES and groEL2 operons only with the help of other protein(s). It is also demonstrated that M. tuberculosis HrcA binds to a CIRCE like DNA element present in the upstream region of hrcA gene suggesting its auto-regulatory nature. In addition, we report the presence of a putative HAIR element in the upstream region of groES operon and demonstrate the binding of HspR to it. In vitro, HrcA inhibited the DNA binding activity of HspR in a dose-dependent manner. The current study demonstrates that M. tuberculosis HrcA requires other protein(s) to function, and the heat shock protein expression in M. tuberculosis is negatively regulated jointly by HrcA and HspR.
Collapse
|
11
|
Needs SH, Diep TT, Bull SP, Lindley-Decaire A, Ray P, Edwards AD. Exploiting open source 3D printer architecture for laboratory robotics to automate high-throughput time-lapse imaging for analytical microbiology. PLoS One 2019; 14:e0224878. [PMID: 31743346 PMCID: PMC6863568 DOI: 10.1371/journal.pone.0224878] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022] Open
Abstract
Growth in open-source hardware designs combined with the low-cost of high performance optoelectronic and robotics components has supported a resurgence of in-house custom lab equipment development. We describe a low cost (below $700), open-source, fully customizable high-throughput imaging system for analytical microbiology applications. The system comprises a Raspberry Pi camera mounted on an aluminium extrusion frame with 3D-printed joints controlled by an Arduino microcontroller running open-source Repetier Host Firmware. The camera position is controlled by simple G-code scripts supplied from a Raspberry Pi singleboard computer and allow customized time-lapse imaging of microdevices over a large imaging area. Open-source OctoPrint software allows remote access and control. This simple yet effective design allows high-throughput microbiology testing in multiple formats including formats for bacterial motility, colony growth, microtitre plates and microfluidic devices termed 'lab-on-a-comb' to screen the effects of different culture media components and antibiotics on bacterial growth. The open-source robot design allows customization of the size of the imaging area; the current design has an imaging area of ~420 × 300mm, which allows 29 'lab-on-a-comb' devices to be imaged which is equivalent 3480 individual 1μl samples. The system can also be modified for fluorescence detection using LED and emission filters embedded on the PiCam for more sensitive detection of bacterial growth using fluorescent dyes.
Collapse
Affiliation(s)
- Sarah H. Needs
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, United Kingdom
| | - Tai The Diep
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, United Kingdom
| | - Stephanie P. Bull
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, United Kingdom
| | | | - Partha Ray
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Alexander D. Edwards
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, United Kingdom
| |
Collapse
|
12
|
Helicobacter pylori Stress-Response: Definition of the HrcA Regulon. Microorganisms 2019; 7:microorganisms7100436. [PMID: 31614448 PMCID: PMC6843607 DOI: 10.3390/microorganisms7100436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
Bacteria respond to different environmental stresses by reprogramming the transcription of specific genes whose proper expression is critical for their survival. In this regard, the heat-shock response, a widespread protective mechanism, triggers a sudden increase in the cellular concentration of different proteins, including molecular chaperones and proteases, to preserve protein folding and maintain cellular homeostasis. In the medically important gastric pathogen Helicobacter pylori the regulation of the principal heat-shock genes is under the transcriptional control of two repressor proteins named HspR and HrcA. To define the HrcA regulon, we carried out whole transcriptome analysis through RNA-sequencing, comparing the transcriptome of the H. pylori G27 wild type strain to that of the isogenic hrcA-knockout strain. Overall, differential gene expression analysis outlined 49 genes to be deregulated upon hrcA gene inactivation. Interestingly, besides controlling the transcription of genes coding for molecular chaperones and stress-related mediators, HrcA is involved in regulating the expression of proteins whose function is linked to several cellular processes crucial for bacterial survival and virulence. These include cell motility, membrane transporters, Lipopolysaccharide modifiers and adhesins. The role of HrcA as a central regulator of H. pylori transcriptome, as well as its interconnections with the HspR regulon are here analyzed and discussed. As the HrcA protein acts as a pleiotropic regulator, influencing the expression of several stress-unrelated genes, it may be considered a promising target for the design of new antimicrobial strategies.
Collapse
|
13
|
Abstract
Proteasomes are a class of protease that carry out the degradation of a specific set of cellular proteins. While essential for eukaryotic life, proteasomes are found only in a small subset of bacterial species. In this chapter, we present the current knowledge of bacterial proteasomes, detailing the structural features and catalytic activities required to achieve proteasomal proteolysis. We describe the known mechanisms by which substrates are doomed for degradation, and highlight potential non-degradative roles for components of bacterial proteasome systems. Additionally, we highlight several pathways of microbial physiology that rely on proteasome activity. Lastly, we explain the various gaps in our understanding of bacterial proteasome function and emphasize several opportunities for further study.
Collapse
Affiliation(s)
- Samuel H Becker
- Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, Room 312, New York, NY, 10016, USA
| | - Huilin Li
- Van Andel Research Institute, Cryo-EM Structural Biology Laboratory, 333 Bostwick Ave, NE, Grand Rapids, MI, 4950, USA
| | - K Heran Darwin
- Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, Room 312, New York, NY, 10016, USA.
| |
Collapse
|
14
|
Helicobacter pylori Biofilm Involves a Multigene Stress-Biased Response, Including a Structural Role for Flagella. mBio 2018; 9:mBio.01973-18. [PMID: 30377283 PMCID: PMC6212823 DOI: 10.1128/mbio.01973-18] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Biofilms, communities of bacteria that are embedded in a hydrated matrix of extracellular polymeric substances, pose a substantial health risk and are key contributors to many chronic and recurrent infections. Chronicity and recalcitrant infections are also common features associated with the ulcer-causing human pathogen H. pylori. However, relatively little is known about the role of biofilms in H. pylori pathogenesis, as well as the biofilm structure itself and the genes associated with this mode of growth. In the present study, we found that H. pylori biofilm cells highly expressed genes related to cell envelope and stress response, as well as those encoding the flagellar apparatus. Flagellar filaments were seen in high abundance in the biofilm. Flagella are known to play a role in initial biofilm formation, but typically are downregulated after that state. H. pylori instead appears to have coopted these structures for nonmotility roles, including a role building a robust biofilm. Helicobacter pylori has an impressive ability to persist chronically in the human stomach. Similar characteristics are associated with biofilm formation in other bacteria. The H. pylori biofilm process, however, is poorly understood. To gain insight into this mode of growth, we carried out comparative transcriptomic analysis between H. pylori biofilm and planktonic cells, using the mouse-colonizing strain SS1. Optimal biofilm formation was obtained with a low concentration of serum and 3 days of growth, conditions that caused both biofilm and planktonic cells to be ∼80% coccoid. Transcriptome sequencing (RNA-seq) analysis found that 8.18% of genes were differentially expressed between biofilm and planktonic cell transcriptomes. Biofilm-downregulated genes included those involved in metabolism and translation, suggesting these cells have low metabolic activity. Biofilm-upregulated genes included those whose products were predicted to be at the cell envelope, involved in regulating a stress response, and surprisingly, genes related to formation of the flagellar apparatus. Scanning electron microscopy visualized flagella that appeared to be a component of the biofilm matrix, supported by the observation that an aflagellated mutant displayed a less robust biofilm with no apparent filaments. We observed flagella in the biofilm matrix of additional H. pylori strains, supporting that flagellar use is widespread. Our data thus support a model in which H. pylori biofilm involves a multigene stress-biased response and that flagella play an important role in H. pylori biofilm formation.
Collapse
|
15
|
Pepe S, Pinatel E, Fiore E, Puccio S, Peano C, Brignoli T, Vannini A, Danielli A, Scarlato V, Roncarati D. The Helicobacter pylori Heat-Shock Repressor HspR: Definition of Its Direct Regulon and Characterization of the Cooperative DNA-Binding Mechanism on Its Own Promoter. Front Microbiol 2018; 9:1887. [PMID: 30154784 PMCID: PMC6102357 DOI: 10.3389/fmicb.2018.01887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/27/2018] [Indexed: 12/12/2022] Open
Abstract
The ability of pathogens to perceive environmental conditions and modulate gene expression accordingly is a crucial feature for bacterial survival. In this respect, the heat-shock response, a universal cellular response, allows cells to adapt to hostile environmental conditions and to survive during stress. In the major human pathogen Helicobacter pylori the expression of chaperone-encoding operons is under control of two auto-regulated transcriptional repressors, HrcA and HspR, with the latter acting as the master regulator of the regulatory circuit. To further characterize the HspR regulon in H. pylori, we used global transcriptome analysis (RNA-sequencing) in combination with Chromatin Immunoprecipitation coupled with deep sequencing (ChIP-sequencing) of HspR genomic binding sites. Intriguingly, these analyses showed that HspR is involved in the regulation of different crucial cellular functions through a limited number of genomic binding sites. Moreover, we further characterized HspR-DNA interactions through hydroxyl-radical footprinting assays. This analysis in combination with a nucleotide sequence alignment of HspR binding sites, revealed a peculiar pattern of DNA protection and highlighted sequence conservation with the HAIR motif (an HspR-associated inverted repeat of Streptomyces spp.). Site-directed mutagenesis demonstrated that the HAIR motif is fundamental for HspR binding and that additional nucleotide determinants flanking the HAIR motif are required for complete binding of HspR to its operator sequence spanning over 70 bp of DNA. This finding is compatible with a model in which possibly a dimer of HspR recognizes the HAIR motif overlapping its promoter for binding and in turn cooperatively recruits two additional dimers on both sides of the HAIR motif.
Collapse
Affiliation(s)
- Simona Pepe
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Eva Pinatel
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Elisabetta Fiore
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Simone Puccio
- Institute of Biomedical Technologies, National Research Council, Milan, Italy.,Humanitas Clinical and Research Center, Milan, Italy
| | - Clelia Peano
- Institute of Biomedical Technologies, National Research Council, Milan, Italy.,Humanitas Clinical and Research Center, Milan, Italy.,Institute of Genetic and Biomedical Research, National Research Council, Milan, Italy
| | - Tarcisio Brignoli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Andrea Vannini
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Alberto Danielli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Roncarati D, Scarlato V. The Interplay between Two Transcriptional Repressors and Chaperones Orchestrates Helicobacter pylori Heat-Shock Response. Int J Mol Sci 2018; 19:E1702. [PMID: 29880759 PMCID: PMC6032397 DOI: 10.3390/ijms19061702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/22/2022] Open
Abstract
The ability to gauge the surroundings and modulate gene expression accordingly is a crucial feature for the survival bacterial pathogens. In this respect, the heat-shock response, a universally conserved mechanism of protection, allows bacterial cells to adapt rapidly to hostile conditions and to survive during environmental stresses. The important and widespread human pathogen Helicobacter pylori enrolls a collection of highly conserved heat-shock proteins to preserve cellular proteins and to maintain their homeostasis, allowing the pathogen to adapt and survive in the hostile niche of the human stomach. Moreover, various evidences suggest that some chaperones of H. pylori may play also non-canonical roles as, for example, in the interaction with the extracellular environment. In H. pylori, two dedicated transcriptional repressors, named HspR and HrcA, homologues to well-characterized regulators found in many other bacterial species, orchestrate the regulation of heat-shock proteins expression. Following twenty years of intense research, characterized by molecular, as well as genome-wide, approaches, it is nowadays possible to appreciate the complex picture representing the heat-shock regulation in H. pylori. Specifically, the HspR and HrcA repressors combine to control the transcription of target genes in a way that the HrcA regulon results embedded within the HspR regulon. Moreover, an additional level of control of heat-shock genes' expression is exerted by a posttranscriptional feedback regulatory circuit in which chaperones interact and modulate HspR and HrcA DNA-binding activity. This review recapitulates our understanding of the roles and regulation of the most important heat-shock proteins of H. pylori, which represent a crucial virulence factor for bacterial infection and persistence in the human host.
Collapse
Affiliation(s)
- Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy.
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
17
|
Roncarati D, Scarlato V. Regulation of heat-shock genes in bacteria: from signal sensing to gene expression output. FEMS Microbiol Rev 2017; 41:549-574. [PMID: 28402413 DOI: 10.1093/femsre/fux015] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
The heat-shock response is a mechanism of cellular protection against sudden adverse environmental growth conditions and results in the prompt production of various heat-shock proteins. In bacteria, specific sensory biomolecules sense temperature fluctuations and transduce intercellular signals that coordinate gene expression outputs. Sensory biomolecules, also known as thermosensors, include nucleic acids (DNA or RNA) and proteins. Once a stress signal is perceived, it is transduced to invoke specific molecular mechanisms controlling transcription of genes coding for heat-shock proteins. Transcriptional regulation of heat-shock genes can be under either positive or negative control mediated by dedicated regulatory proteins. Positive regulation exploits specific alternative sigma factors to redirect the RNA polymerase enzyme to a subset of selected promoters, while negative regulation is mediated by transcriptional repressors. Interestingly, while various bacteria adopt either exclusively positive or negative mechanisms, in some microorganisms these two opposite strategies coexist, establishing complex networks regulating heat-shock genes. Here, we comprehensively summarize molecular mechanisms that microorganisms have adopted to finely control transcription of heat-shock genes.
Collapse
Affiliation(s)
- Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
18
|
De la Cruz MA, Ares MA, von Bargen K, Panunzi LG, Martínez-Cruz J, Valdez-Salazar HA, Jiménez-Galicia C, Torres J. Gene Expression Profiling of Transcription Factors of Helicobacter pylori under Different Environmental Conditions. Front Microbiol 2017; 8:615. [PMID: 28443084 PMCID: PMC5385360 DOI: 10.3389/fmicb.2017.00615] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
Helicobacter pylori is a Gram-negative bacterium that colonizes the human gastric mucosa and causes peptic ulcers and gastric carcinoma. H. pylori strain 26695 has a small genome (1.67 Mb), which codes for few known transcriptional regulators that control bacterial metabolism and virulence. We analyzed by qRT-PCR the expression of 16 transcriptional regulators in H. pylori 26695, including the three sigma factors under different environmental conditions. When bacteria were exposed to acidic pH, urea, nickel, or iron, the sigma factors were differentially expressed with a particularly strong induction of fliA. The regulatory genes hrcA, hup, and crdR were highly induced in the presence of urea, nickel, and iron. In terms of biofilm formation fliA, flgR, hp1021, fur, nikR, and crdR were induced in sessile bacteria. Transcriptional expression levels of rpoD, flgR, hspR, hp1043, and cheY were increased in contact with AGS epithelial cells. Kanamycin, chloramphenicol, and tetracycline increased or decreased expression of regulatory genes, showing that these antibiotics affect the transcription of H. pylori. Our data indicate that environmental cues which may be present in the human stomach modulate H. pylori transcription.
Collapse
Affiliation(s)
- Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro SocialMexico City, Mexico
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro SocialMexico City, Mexico
| | | | - Leonardo G Panunzi
- CNRS UMR7280, Inserm, U1104, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2Marseille, France
| | - Jessica Martínez-Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro SocialMexico City, Mexico
| | - Hilda A Valdez-Salazar
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro SocialMexico City, Mexico
| | - César Jiménez-Galicia
- Laboratorio Clínico, Unidad Médica de Alta Especialidad, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro SocialMexico City, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro SocialMexico City, Mexico
| |
Collapse
|
19
|
Flint A, Stintzi A, Saraiva LM. Oxidative and nitrosative stress defences of Helicobacter and Campylobacter species that counteract mammalian immunity. FEMS Microbiol Rev 2016; 40:938-960. [PMID: 28201757 PMCID: PMC5091033 DOI: 10.1093/femsre/fuw025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/29/2016] [Accepted: 07/02/2016] [Indexed: 12/18/2022] Open
Abstract
Helicobacter and Campylobacter species are Gram-negative microaerophilic host-associated heterotrophic bacteria that invade the digestive tract of humans and animals. Campylobacter jejuni is the major worldwide cause of foodborne gastroenteritis in humans, while Helicobacter pylori is ubiquitous in over half of the world's population causing gastric and duodenal ulcers. The colonisation of the gastrointestinal system by Helicobacter and Campylobacter relies on numerous cellular defences to sense the host environment and respond to adverse conditions, including those imposed by the host immunity. An important antimicrobial tool of the mammalian innate immune system is the generation of harmful oxidative and nitrosative stresses to which pathogens are exposed during phagocytosis. This review summarises the regulators, detoxifying enzymes and subversion mechanisms of Helicobacter and Campylobacter that ultimately promote the successful infection of humans.
Collapse
Affiliation(s)
- Annika Flint
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Lígia M. Saraiva
- Instituto de Tecnologia Química e Biológica, NOVA, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
20
|
Vannini A, Roncarati D, Danielli A. The cag-pathogenicity island encoded CncR1 sRNA oppositely modulates Helicobacter pylori motility and adhesion to host cells. Cell Mol Life Sci 2016; 73:3151-68. [PMID: 26863876 PMCID: PMC11108448 DOI: 10.1007/s00018-016-2151-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 01/13/2016] [Accepted: 01/28/2016] [Indexed: 02/08/2023]
Abstract
Small regulatory RNAs (sRNAs) are emerging as key post-transcriptional regulators in many bacteria. In the human pathobiont Helicobacter pylori a plethora of trans- and cis-encoded sRNAs have been pinpointed by a global transcriptome study. However, only two have been studied in depth at the functional level. Here we report the characterization of CncR1, an abundant and conserved sRNA encoded by the virulence-associated cag pathogenicity island (cag-PAI) of H. pylori. Growth-phase dependent transcription of CncR1 is directed by the PcagP promoter, which resulted to be a target of the essential transcriptional regulator HsrA (HP1043). We demonstrate that the 213 nt transcript arising from this promoter ends at an intrinsic terminator, few bases upstream of the annotated cagP open reading frame, establishing CncR1 as the predominant gene product encoded by the cagP (cag15) locus. Interestingly, the deletion of the locus resulted in the deregulation en masse of σ(54)-dependent genes, linking CncR1 to flagellar functions. Accordingly, the enhanced motility recorded for cncR1 deletion mutants was complemented by ectopic reintroduction of the allele in trans. In silico prediction identified fliK, encoding a flagellar checkpoint protein, as likely regulatory target of CncR1. The interaction of CncR1 with the fliK mRNA was thus further investigated in vitro, demonstrating the formation of strand-specific interactions between the two RNA molecules. Accordingly, the full-length translational fusions of fliK with a lux reporter gene were induced in a cncR1 deletion mutant in vivo. These data suggest the involvement of CncR1 in the post-transcriptional modulation of H. pylori motility functions through down-regulation of a critical flagellar checkpoint factor. Concurrently, the cncR1 mutant revealed a decrease of transcript levels for several H. pylori adhesins, resulting in a phenotypically significant impairment of bacterial adhesion to a host gastric cell line. The data presented support a model in which the cag-PAI encoded CncR1 sRNA is able to oppositely modulate bacterial motility and adhesion to host cells.
Collapse
Affiliation(s)
- Andrea Vannini
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Alberto Danielli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
21
|
Cappelletti M, Presentato A, Milazzo G, Turner RJ, Fedi S, Frascari D, Zannoni D. Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes. Front Microbiol 2015; 6:393. [PMID: 26029173 PMCID: PMC4428276 DOI: 10.3389/fmicb.2015.00393] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/16/2015] [Indexed: 11/16/2022] Open
Abstract
Rhodococcus sp. strain BCP1 was initially isolated for its ability to grow on gaseous n-alkanes, which act as inducers for the co-metabolic degradation of low-chlorinated compounds. Here, both molecular and metabolic features of BCP1 cells grown on gaseous and short-chain n-alkanes (up to n-heptane) were examined in detail. We show that propane metabolism generated terminal and sub-terminal oxidation products such as 1- and 2-propanol, whereas 1-butanol was the only terminal oxidation product detected from n-butane metabolism. Two gene clusters, prmABCD and smoABCD—coding for Soluble Di-Iron Monooxgenases (SDIMOs) involved in gaseous n-alkanes oxidation—were detected in the BCP1 genome. By means of Reverse Transcriptase-quantitative PCR (RT-qPCR) analysis, a set of substrates inducing the expression of the sdimo genes in BCP1 were assessed as well as their transcriptional repression in the presence of sugars, organic acids, or during the cell growth on rich medium (Luria–Bertani broth). The transcriptional start sites of both the sdimo gene clusters were identified by means of primer extension experiments. Finally, proteomic studies revealed changes in the protein pattern induced by growth on gaseous- (n-butane) and/or liquid (n-hexane) short-chain n-alkanes as compared to growth on succinate. Among the differently expressed protein spots, two chaperonins and an isocytrate lyase were identified along with oxidoreductases involved in oxidation reactions downstream of the initial monooxygenase reaction step.
Collapse
Affiliation(s)
- Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| | | | - Giorgio Milazzo
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary Calgary, Alberta, Canada
| | - Stefano Fedi
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| | - Dario Frascari
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna Bologna, Italy
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| |
Collapse
|
22
|
Vannini A, Roncarati D, Spinsanti M, Scarlato V, Danielli A. In depth analysis of the Helicobacter pylori cag pathogenicity island transcriptional responses. PLoS One 2014; 9:e98416. [PMID: 24892739 PMCID: PMC4043881 DOI: 10.1371/journal.pone.0098416] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/01/2014] [Indexed: 01/15/2023] Open
Abstract
The severity of symptoms elicited by the widespread human pathogen Helicobacter pylori is strongly influenced by the genetic diversity of the infecting strain. Among the most important pathogen factors that carry an increased risk for gastric cancer are specific genotypes of the cag pathogenicity island (cag-PAI), encoding a type IV secretion system (T4SS) responsible for the translocation of the CagA effector oncoprotein. To date, little is known about the regulatory events important for the expression of a functional cag-T4SS. Here we demonstrate that the cag-PAI cistrons are subjected to a complex network of direct and indirect transcriptional regulations. We show that promoters of cag operons encoding structural T4SS components display homogeneous transcript levels, while promoters of cag operons encoding accessory factors vary considerably in their basal transcription levels and responses. Most cag promoters are transcriptionally responsive to growth-phase, pH and other stress-factors, although in many cases in a pleiotropic fashion. Interestingly, transcription from the Pcagζ promoter controlling the expression of transglycolase and T4SS stabilizing factors, is triggered by co-culture with a gastric cell line, providing an explanation for the increased formation of the secretion system observed upon bacterial contact with host cells. Finally, we demonstrate that the highly transcribed cagA oncogene is repressed by iron limitation through a direct apo-Fur regulation mechanism. Together the results shed light on regulatory aspects of the cag-PAI, which may be involved in relevant molecular and etiological aspects of H. pylori pathogenesis.
Collapse
Affiliation(s)
- Andrea Vannini
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Marco Spinsanti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
- * E-mail: (VS); (AD)
| | - Alberto Danielli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
- * E-mail: (VS); (AD)
| |
Collapse
|
23
|
Roncarati D, Danielli A, Scarlato V. The HrcA repressor is the thermosensor of the heat-shock regulatory circuit in the human pathogen Helicobacter pylori. Mol Microbiol 2014; 92:910-20. [PMID: 24698217 DOI: 10.1111/mmi.12600] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2014] [Indexed: 01/03/2023]
Abstract
Bacteria exploit different strategies to perceive and rapidly respond to sudden changes of temperature. In Helicobacter pylori the response to thermic stress is transcriptionally controlled by a regulatory circuit that involves two repressors, HspR and HrcA. Here we report that HrcA acts as a protein thermometer. We demonstrate that temperature specifically modulates HrcA binding to DNA, with a complete and irreversible temperature-dependent loss of DNA binding activity at 42°C. Intriguingly, although the reduction of HrcA binding capability is not reversible in vitro, transcriptional analysis showed that HrcA exerts its repressive influence in vivo, even when the de novo repressor synthesis is blocked after the temperature challenge. Accordingly, we demonstrate the central role of the chaperonine GroESL in restoring the HrcA binding activity, lost upon heat challenge. Together our results establish HrcA as a rare example of intrinsic temperature sensing transcriptional regulator, whose activity is post-transcriptionally modulated by the GroESL chaperonine.
Collapse
Affiliation(s)
- Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | | | | |
Collapse
|
24
|
Agriesti F, Roncarati D, Musiani F, Del Campo C, Iurlaro M, Sparla F, Ciurli S, Danielli A, Scarlato V. FeON-FeOFF: the Helicobacter pylori Fur regulator commutates iron-responsive transcription by discriminative readout of opposed DNA grooves. Nucleic Acids Res 2013; 42:3138-51. [PMID: 24322295 PMCID: PMC3950669 DOI: 10.1093/nar/gkt1258] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Most transcriptional regulators bind nucleotide motifs in the major groove, although some are able to recognize molecular determinants conferred by the minor groove of DNA. Here we report a transcriptional commutator switch that exploits the alternative readout of grooves to mediate opposite output regulation for the same input signal. This mechanism accounts for the ability of the Helicobacter pylori Fur regulator to repress the expression of both iron-inducible and iron-repressible genes. When iron is scarce, Fur binds to DNA as a dimer, through the readout of thymine pairs in the major groove, repressing iron-inducible transcription (FeON). Conversely, on iron-repressible elements the metal ion acts as corepressor, inducing Fur multimerization with consequent minor groove readout of AT-rich inverted repeats (FeOFF). Our results provide first evidence for a novel regulatory paradigm, in which the discriminative readout of DNA grooves enables to toggle between the repression of genes in a mutually exclusive manner.
Collapse
Affiliation(s)
- Francesca Agriesti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Van Bokhorst-van de Veen H, Bongers RS, Wels M, Bron PA, Kleerebezem M. Transcriptome signatures of class I and III stress response deregulation in Lactobacillus plantarum reveal pleiotropic adaptation. Microb Cell Fact 2013; 12:112. [PMID: 24238744 PMCID: PMC3842655 DOI: 10.1186/1475-2859-12-112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/11/2013] [Indexed: 01/17/2023] Open
Abstract
Background To cope with environmental challenges bacteria possess sophisticated defense mechanisms that involve stress-induced adaptive responses. The canonical stress regulators CtsR and HrcA play a central role in the adaptations to a plethora of stresses in a variety of organisms. Here, we determined the CtsR and HrcA regulons of the lactic acid bacterium Lactobacillus plantarum WCFS1 grown under reference (28°C) and elevated (40°C) temperatures, using ctsR, hrcA, and ctsR-hrcA deletion mutants. Results While the maximum specific growth rates of the mutants and the parental strain were similar at both temperatures (0.33 ± 0.02 h-1 and 0.34 ± 0.03 h-1, respectively), DNA microarray analyses revealed that the CtsR or HrcA deficient strains displayed altered transcription patterns of genes encoding functions involved in transport and binding of sugars and other compounds, primary metabolism, transcription regulation, capsular polysaccharide biosynthesis, as well as fatty acid metabolism. These transcriptional signatures enabled the refinement of the gene repertoire that is directly or indirectly controlled by CtsR and HrcA of L. plantarum. Deletion of both regulators, elicited transcriptional changes of a large variety of additional genes in a temperature-dependent manner, including genes encoding functions involved in cell-envelope remodeling. Moreover, phenotypic assays revealed that both transcription regulators contribute to regulation of resistance to hydrogen peroxide stress. The integration of these results allowed the reconstruction of CtsR and HrcA regulatory networks in L. plantarum, highlighting the significant intertwinement of class I and III stress regulons. Conclusions Taken together, our results enabled the refinement of the CtsR and HrcA regulatory networks in L. plantarum, illustrating the complex nature of adaptive stress responses in this bacterium.
Collapse
|
26
|
Vitoriano I, Vítor JMB, Oleastro M, Roxo-Rosa M, Vale FF. Proteome variability among Helicobacter pylori isolates clustered according to genomic methylation. J Appl Microbiol 2013; 114:1817-32. [PMID: 23480599 DOI: 10.1111/jam.12187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/04/2013] [Accepted: 03/04/2013] [Indexed: 02/06/2023]
Abstract
AIMS To understand whether the variability found in the proteome of Helicobacter pylori relates to the genomic methylation, virulence and associated gastric disease. METHODS AND RESULTS We applied the Minimum-Common-Restriction-Modification (MCRM) algorithm to genomic methylation data of 30 Portuguese H. pylori strains, obtained by genome sensitivity to Type II restriction enzymes' digestion. All the generated dendrograms presented three clusters with no association with gastric disease. Comparative analysis of two-dimensional gel electrophoresis (2DE) maps obtained for total protein extracts of 10 of these strains, representative of the three main clusters, revealed that among 70 matched protein spots (in a universe of 300), 16 were differently abundant (P < 0·05) among clusters. Of these, 13 proteins appear to be related to the cagA genotype or gastric disease. The abundance of three protein species, DnaK, GlnA and HylB, appeared to be dictated by the methylation status of their gene promoter. CONCLUSIONS Variations in the proteome profile of strains with common geographic origin appear to be related to differences in cagA genotype or gastric disease, rather than to clusters organized according to strain genomic methylation. SIGNIFICANCE AND IMPACT OF THE STUDY The simultaneous study of the genomic methylation and proteome is important to correlate epigenetic modifications with gene expression and pathogen virulence.
Collapse
Affiliation(s)
- I Vitoriano
- Faculdade de Engenharia, Universidade Católica Portuguesa, Rio de Mouro, Portugal
| | | | | | | | | |
Collapse
|
27
|
Characterization of Campylobacter jejuni RacRS reveals roles in the heat shock response, motility, and maintenance of cell length homogeneity. J Bacteriol 2012; 194:2342-54. [PMID: 22343300 DOI: 10.1128/jb.06041-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Campylobacter jejuni commensally colonizes the cecum of birds. The RacR (reduced ability to colonize) response regulator was previously shown to be important in avian colonization. To explore the means by which RacR and its cognate sensor kinase RacS may modulate C. jejuni physiology and colonization, ΔracR and ΔracS mutations were constructed in the invasive, virulent strain 81-176, and extensive phenotypic analyses were undertaken. Both the ΔracR and ΔracS mutants exhibited a ~100-fold defect in chick colonization despite no (ΔracS) or minimal (ΔracR) growth defects at 42 °C, the avian body temperature. Each mutant was defective for colony formation at 44°C and in the presence of 0.8% NaCl, both of which are stresses associated with the heat shock response. Promoter-reporter and real-time quantitative PCR (RT-qPCR) analyses revealed that RacR activates racRS and represses dnaJ. Although disregulation of several other heat shock genes was not observed at 38°C, the ΔracR and ΔracS mutants exhibited diminished upregulation of these genes upon a rapid temperature upshift. Furthermore, the ΔracR and ΔracS mutants displayed increased length heterogeneity during exponential growth, with a high proportion of filamented bacteria. Filamented bacteria had reduced swimming speed and were defective for invasion of Caco-2 epithelial cells. Soft-agar studies also revealed that the loss of racR or racS resulted in whole-population motility defects in viscous medium. These findings reveal new roles for RacRS in C. jejuni physiology, each of which is likely important during colonization of the avian host.
Collapse
|
28
|
A Chlamydia-specific C-terminal region of the stress response regulator HrcA modulates its repressor activity. J Bacteriol 2011; 193:6733-41. [PMID: 21965565 DOI: 10.1128/jb.05792-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chlamydial heat shock proteins have important roles in Chlamydia infection and immunopathogenesis. Transcription of chlamydial heat shock genes is controlled by the stress response regulator HrcA, which binds to its cognate operator CIRCE, causing repression by steric hindrance of RNA polymerase. All Chlamydia spp. encode an HrcA protein that is larger than other bacterial orthologs because of an additional, well-conserved C-terminal region. We found that this unique C-terminal tail decreased HrcA binding to CIRCE in vitro as well as HrcA-mediated transcriptional repression in vitro and in vivo. When we isolated HrcA from chlamydiae, we only detected the full-length protein, but we found that endogenous HrcA had a higher binding affinity for CIRCE than recombinant HrcA. To examine this difference further, we tested the effect of the heat shock protein GroEL on the function of HrcA since endogenous chlamydial HrcA has been previously shown to associate with GroEL as a complex. GroEL enhanced the ability of HrcA to bind CIRCE and to repress transcription in vitro, but this stimulatory effect was greater on full-length HrcA than HrcA lacking the C-terminal tail. These findings demonstrate that the novel C-terminal tail of chlamydial HrcA is an inhibitory region and provide evidence that its negative effect on repressor function can be counteracted by GroEL. These results support a model in which GroEL functions as a corepressor that interacts with HrcA to regulate chlamydial heat shock genes.
Collapse
|
29
|
CbpA acts as a modulator of HspR repressor DNA binding activity in Helicobacter pylori. J Bacteriol 2011; 193:5629-36. [PMID: 21840971 DOI: 10.1128/jb.05295-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of pathogens to cope with disparate environmental stresses is a crucial feature for bacterial survival and for the establishment of a successful infection and colonization of the host; in this respect, chaperones and heat shock proteins (HSPs) play a fundamental role in host-pathogen interactions. In Helicobacter pylori, the expression of the major HSPs is tightly regulated through dedicated transcriptional repressors (named HspR and HrcA), as well as via a GroESL-dependent posttranscriptional feedback control acting positively on the DNA binding affinity of the HrcA regulator itself. In the present work we show that the CbpA chaperone also participates in the posttranscriptional feedback control of the H. pylori heat shock regulatory network. Our experiments suggest that CbpA specifically modulates HspR in vitro binding to DNA without affecting HrcA regulator activity. In particular, CbpA directly interacts with HspR, preventing the repressor from binding to its target operators. This interaction takes place only when HspR is not bound to DNA since CbpA is unable to affect HspR once the repressor is bound to its operator site. Accordingly, in vivo overexpression of CbpA compromises the response kinetics of the regulatory circuit, inducing a failure to restore HspR-dependent transcriptional repression after heat shock. The data presented in this work support a model in which CbpA acts as an important modulator of HspR regulation by fine-tuning the shutoff response of the regulatory circuit that governs HSP expression in H. pylori.
Collapse
|
30
|
Analyses of both the alkB gene transcriptional start site and alkB promoter-inducing properties of Rhodococcus sp. strain BCP1 grown on n-alkanes. Appl Environ Microbiol 2010; 77:1619-27. [PMID: 21193665 DOI: 10.1128/aem.01987-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodococcus sp. strain BCP1, known for its capacity to grow on short-chain n-alkanes (C(2) to C(7)) and to cometabolize chlorinated solvents, was found to also utilize medium- and long-chain n-alkanes (C(12) to C(24)) as energy and carbon sources. To examine this feature in detail, a chromosomal region which includes the alkB gene cluster encoding a non-heme di-iron monooxygenase (alkB), two rubredoxins, and one rubredoxin reductase was cloned from the BCP1 genome. Furthermore, the activity of the alkB gene promoter (P(alkB)) was examined in the presence of gaseous, liquid, and solid n-alkanes along with intermediates of the putative n-alkane degradation pathway. A recombinant plasmid, pTP(alkB)LacZ, was constructed by inserting the lacZ gene downstream of P(alkB), and it was used to transform Rhodococcus sp. strain BCP1. Measurements of β-galactosidase activity showed that P(alkB) is induced by C(6) to C(22) n-alkanes. Conversely, C(2) to C(5) and >C(22) n-alkanes and alkenes, such as hexene, were not inducers of alkB expression. The effects on P(alkB) expression induced by alternative carbon sources along with putative products of n-hexane metabolism were also evaluated. This report highlights the great versatility of Rhodococcus sp. strain BCP1 and defines for the first time the alkB gene transcriptional start site and the alkB promoter-inducing capacities for substrates different from n-alkanes in a Rhodococcus strain.
Collapse
|
31
|
Built shallow to maintain homeostasis and persistent infection: insight into the transcriptional regulatory network of the gastric human pathogen Helicobacter pylori. PLoS Pathog 2010; 6:e1000938. [PMID: 20548942 PMCID: PMC2883586 DOI: 10.1371/journal.ppat.1000938] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Transcriptional regulatory networks (TRNs) transduce environmental signals into coordinated output expression of the genome. Accordingly, they are central for the adaptation of bacteria to their living environments and in host-pathogen interactions. Few attempts have been made to describe a TRN for a human pathogen, because even in model organisms, such as Escherichia coli, the analysis is hindered by the large number of transcription factors involved. In light of the paucity of regulators, the gastric human pathogen Helicobacter pylori represents a very appealing system for understanding how bacterial TRNs are wired up to support infection in the host. Herein, we review and analyze the available molecular and "-omic" data in a coherent ensemble, including protein-DNA and protein-protein interactions relevant for transcriptional control of pathogenic responses. The analysis covers approximately 80% of the annotated H. pylori regulators, and provides to our knowledge the first in-depth description of a TRN for an important pathogen. The emerging picture indicates a shallow TRN, made of four main modules (origons) that process the physiological responses needed to colonize the gastric niche. Specific network motifs confer distinct transcriptional response dynamics to the TRN, while long regulatory cascades are absent. Rather than having a plethora of specialized regulators, the TRN of H. pylori appears to transduce separate environmental inputs by using different combinations of a small set of regulators.
Collapse
|
32
|
Danielli A, Scarlato V. Regulatory circuits in Helicobacter pylori : network motifs and regulators involved in metal-dependent responses. FEMS Microbiol Rev 2010; 34:738-52. [PMID: 20579104 DOI: 10.1111/j.1574-6976.2010.00233.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ability of Helicobacter pylori, one of the most successful human bacterial pathogens, to colonize the acidic gastric niche persistently, depends on the proper homeostasis of intracellular metal ions, needed as cofactors of essential metallo-proteins involved in acid acclimation, respiration and detoxification. This fundamental task is controlled at the transcriptional level mainly by the regulators Fur and NikR, involved in iron homeostasis and nickel response, respectively. Herein, we review the molecular mechanisms that underlie the activity of these key pleiotropic regulators. In addition, we will focus on their involvement in the transcriptional regulatory network of the bacterium, pinpointing a surprising complexity of network motifs that interconnects them and their gene targets. These motifs appear to confer versatile dynamics of metal-dependent responses by extensive horizontal connections between the regulators and feedback control of metal-cofactor availability.
Collapse
|
33
|
HspR mutations are naturally selected in Bifidobacterium longum when successive heat shock treatments are applied. J Bacteriol 2010; 192:256-63. [PMID: 19880603 DOI: 10.1128/jb.01147-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of molecular tools allowed light to be shed on several widespread genetic mechanisms aiming at limiting the effect of molecular damage on bacterial survival. For some bacterial taxa, there are limited tools in the genetic toolbox, which restricts the possibilities to investigate the molecular basis of their stress response. In that case, an alternative strategy is to study genetic variants of a strain under stress conditions. The comparative study of the genetic determinants responsible for their phenotypes, e.g., an improved tolerance to stress, offers precious clues on the molecular mechanisms effective in this bacterial taxon. We applied this approach and isolated two heat shock-tolerant strains derived from Bifidobacterium longum NCC2705. A global analysis of their transcriptomes revealed that the dnaK operon and the clpB gene were overexpressed in both heat shock-tolerant strains. We sequenced the hspR gene coding for the negative regulator of dnaK and clpB and found point mutations affecting protein domains likely responsible for the binding of the regulators to the promoter DNA. Complementation of the mutant strains by the wild-type regulator hspR restored its heat sensitivity and thus demonstrated that these mutations were responsible for the observed heat tolerance phenotype.
Collapse
|
34
|
Holmes CW, Penn CW, Lund PA. The hrcA and hspR regulons of Campylobacter jejuni. MICROBIOLOGY-SGM 2009; 156:158-166. [PMID: 19850618 DOI: 10.1099/mic.0.031708-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The human pathogen Campylobacter jejuni has a classic heat shock response, showing induction of chaperones and proteases plus several unidentified proteins in response to a small increase in growth temperature. The genome contains two homologues to known heat shock response regulators, HrcA and HspR. Previous work has shown that HspR controls several heat-shock genes, but the hrcA regulon has not been defined. We have constructed single and double deletions of C. jejuni hrcA and hspR and analysed gene expression using microarrays. Only a small number of genes are controlled by these two regulators, and the two regulons overlap. Strains mutated in hspR, but not those mutated in hrcA, showed enhanced thermotolerance. Some genes previously identified as being downregulated in a strain lacking hspR showed no change in expression in our experiments.
Collapse
Affiliation(s)
| | - Charles W Penn
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Peter A Lund
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
35
|
Smith TG, Pereira L, Hoover TR. Helicobacter pylori FlhB processing-deficient variants affect flagellar assembly but not flagellar gene expression. MICROBIOLOGY-SGM 2009; 155:1170-1180. [PMID: 19332819 DOI: 10.1099/mic.0.022806-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Regulation of the Helicobacter pylori flagellar gene cascade involves the transcription factors sigma(54) (RpoN), employed for expression of genes required midway through flagellar assembly, and sigma(28) (FliA), required for expression of late genes. Previous studies revealed that mutations in genes encoding components of the flagellar protein export apparatus block expression of the H. pylori RpoN and FliA regulons. FlhB is a membrane-bound component of the export apparatus that possesses a large cytoplasmic domain (FlhB(C)). The hook length control protein FliK interacts with FlhB(C) to modulate the substrate specificity of the export apparatus. FlhB(C) undergoes autocleavage as part of the switch in substrate specificity. Consistent with previous reports, deletion of flhB in H. pylori interfered with expression of RpoN-dependent reporter genes, while deletion of fliK stimulated expression of these reporter genes. In the DeltaflhB mutant, disrupting fliK did not restore expression of RpoN-dependent reporter genes, suggesting that the inhibitory effect of the DeltaflhB mutation is not due to the inability to export FliK. Amino acid substitutions (N265A and P266G) at the putative autocleavage site of H. pylori FlhB prevented processing of FlhB and export of filament-type substrates. The FlhB variants supported wild-type expression of RpoN- and FliA-dependent reporter genes. In the strain producing FlhB(N265A), expression of RpoN- and FliA-dependent reporter genes was inhibited when fliK was disrupted. In contrast, expression of these reporter genes was unaffected or slightly stimulated when fliK was disrupted in the strain producing FlhB(P266G). H. pylori HP1575 (FlhX) shares homology with the C-terminal portion of FlhB(C) (FlhB(CC)) and can substitute for FlhB(CC) in flagellar assembly. Disrupting flhX inhibited expression of a flaB reporter gene in the wild-type but not in the DeltafliK mutant or strains producing FlhB variants, suggesting a role for FlhX or FlhB(CC) in normal expression of the RpoN regulon. Taken together, these data indicate that the mechanism by which the flagellar protein export apparatus exerts control over the H. pylori RpoN regulon is complex and involves more than simply switching substrate specificity of the flagellar protein export apparatus.
Collapse
Affiliation(s)
- Todd G Smith
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Lara Pereira
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Timothy R Hoover
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
36
|
Aravindhan V, Christy AJ, Roy S, Ajitkumar P, Narayanan PR, Narayanan S. Mycobacterium tuberculosis groEpromoter controls the expression of the bicistronicgroESL1operon and shows differential regulation under stress conditions. FEMS Microbiol Lett 2009; 292:42-9. [DOI: 10.1111/j.1574-6968.2008.01465.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
37
|
Bucca G, Laing E, Mersinias V, Allenby N, Hurd D, Holdstock J, Brenner V, Harrison M, Smith CP. Development and application of versatile high density microarrays for genome-wide analysis of Streptomyces coelicolor: characterization of the HspR regulon. Genome Biol 2009; 10:R5. [PMID: 19146703 PMCID: PMC2687793 DOI: 10.1186/gb-2009-10-1-r5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Revised: 12/08/2008] [Accepted: 01/16/2009] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND DNA microarrays are a key resource for global analysis of genome content, gene expression and the distribution of transcription factor binding sites. We describe the development and application of versatile high density ink-jet in situ-synthesized DNA arrays for the G+C rich bacterium Streptomyces coelicolor. High G+C content DNA probes often perform poorly on arrays, yielding either weak hybridization or non-specific signals. Thus, more than one million 60-mer oligonucleotide probes were experimentally tested for sensitivity and specificity to enable selection of optimal probe sets for the genome microarrays. The heat-shock HspR regulatory system of S. coelicolor, a well-characterized repressor with a small number of known targets, was exploited to test and validate the arrays for use in global chromatin immunoprecipitation-on-chip (ChIP-chip) and gene expression analysis. RESULTS In addition to confirming dnaK, clpB and lon as in vivo targets of HspR, it was revealed, using a novel ChIP-chip data clustering method, that HspR also apparently interacts with ribosomal RNA (rrnD operon) and specific transfer RNA genes (the tRNAGln/tRNAGlu cluster). It is suggested that enhanced synthesis of Glu-tRNAGlu may reflect increased demand for tetrapyrrole biosynthesis following heat-shock. Moreover, it was found that heat-shock-induced genes are significantly enriched for Gln/Glu codons relative to the whole genome, a finding that would be consistent with HspR-mediated control of the tRNA species. CONCLUSIONS This study suggests that HspR fulfils a broader, unprecedented role in adaptation to stresses than previously recognized -- influencing expression of key components of the translational apparatus in addition to molecular chaperone and protease-encoding genes. It is envisaged that these experimentally optimized arrays will provide a key resource for systems level studies of Streptomyces biology.
Collapse
Affiliation(s)
- Giselda Bucca
- Microbial Sciences Division, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Emma Laing
- Microbial Sciences Division, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Vassilis Mersinias
- Microbial Sciences Division, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
- Current address: Institute of Immunology, Biomedical Sciences Research Centre "Alexander Fleming", Athens 16672, Greece
| | - Nicholas Allenby
- Microbial Sciences Division, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Douglas Hurd
- Oxford Gene Technology Ltd, Begbroke Business Park, Sandy Lane, Yarnton, Oxford OX5 1PF, UK
| | - Jolyon Holdstock
- Oxford Gene Technology Ltd, Begbroke Business Park, Sandy Lane, Yarnton, Oxford OX5 1PF, UK
| | - Volker Brenner
- Oxford Gene Technology Ltd, Begbroke Business Park, Sandy Lane, Yarnton, Oxford OX5 1PF, UK
| | - Marcus Harrison
- Oxford Gene Technology Ltd, Begbroke Business Park, Sandy Lane, Yarnton, Oxford OX5 1PF, UK
| | - Colin P Smith
- Microbial Sciences Division, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|