1
|
Karash S, Jiang T, Kwon YM. Genome-wide characterization of Salmonella Typhimurium genes required for the fitness under iron restriction. BMC Genom Data 2022; 23:55. [PMID: 35869435 PMCID: PMC9308263 DOI: 10.1186/s12863-022-01069-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
Background Iron is a crucial element for bacterial survival and virulence. During Salmonella infection, the host utilizes a variety of mechanisms to starve the pathogen from iron. However, Salmonella activates distinctive defense mechanisms to acquire iron and survive in iron-restricted host environments. Yet, the comprehensive set of the conditionally essential genes that underpin Salmonella survival under iron-restricted niches has not been fully explored. Results Here, we employed transposon sequencing (Tn-seq) method for high-resolution elucidation of the genes in Salmonella Typhimurium (S. Typhimurium) 14028S strain required for the growth under the in vitro conditions with four different levels of iron restriction achieved by iron chelator 2,2′-dipyridyl (Dip): mild (100 and 150 μM), moderate (250 μM) and severe iron restriction (400 μM). We found that the fitness of the mutants reduced significantly for 28 genes, suggesting the importance of these genes for the growth under iron restriction. These genes include sufABCDSE, iron transport fepD, siderophore tonB, sigma factor E ropE, phosphate transport pstAB, and zinc exporter zntA. The siderophore gene tonB was required in mild and moderate iron-restricted conditions, but it became dispensable in severe iron-restricted conditions. Remarkably, rpoE was required in moderate and severe iron restrictions, leading to complete attenuation of the mutant under these conditions. We also identified 30 genes for which the deletion of the genes resulted in increased fitness under iron-restricted conditions. Conclusions The findings broaden our knowledge of how S. Typhimurium survives in iron-deficient environments, which could be utilized for the development of new therapeutic strategies targeting the pathways vital for iron metabolism, trafficking, and scavenging. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01069-3.
Collapse
|
2
|
Abstract
Building iron-sulfur (Fe-S) clusters and assembling Fe-S proteins are essential actions for life on Earth. The three processes that sustain life, photosynthesis, nitrogen fixation, and respiration, require Fe-S proteins. Genes coding for Fe-S proteins can be found in nearly every sequenced genome. Fe-S proteins have a wide variety of functions, and therefore, defective assembly of Fe-S proteins results in cell death or global metabolic defects. Compared to alternative essential cellular processes, there is less known about Fe-S cluster synthesis and Fe-S protein maturation. Moreover, new factors involved in Fe-S protein assembly continue to be discovered. These facts highlight the growing need to develop a deeper biological understanding of Fe-S cluster synthesis, holo-protein maturation, and Fe-S cluster repair. Here, we outline bacterial strategies used to assemble Fe-S proteins and the genetic regulation of these processes. We focus on recent and relevant findings and discuss future directions, including the proposal of using Fe-S protein assembly as an antipathogen target.
Collapse
|
3
|
Graça-Lopes G, Graça G, Barahona S, Moreira RN, Arraiano CM, Gonçalves LG. NMR-Metabolomics Shows That BolA Is an Important Modulator of Salmonella Typhimurium Metabolic Processes under Virulence Conditions. Metabolites 2019; 9:metabo9110243. [PMID: 31652780 PMCID: PMC6918366 DOI: 10.3390/metabo9110243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 12/28/2022] Open
Abstract
BolA is a ubiquitous global transcription factor. Despite its clear role in the induction of important stress-resistant physiological changes and its recent implication in the virulence of Salmonella, further research is required to shed light on the pathways modulated by BolA. In this study, we resorted to untargeted 1H-NMR metabolomics to understand the impact of BolA on the metabolic profile of Salmonella Typhimurium, under virulence conditions. Three strains of S. Typhimurium SL1344 were studied: An SL1344 strain transformed with an empty plasmid (control), a bolA knockout mutant (ΔbolA), and a strain overexpressing bolA (bolA+). These strains were grown in a minimal virulence-inducing medium and cells were collected at the end of the exponential and stationary phases. The extracts were analyzed by NMR, and multivariate and univariate statistical analysis were performed to identify significant alterations. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) of 1H-NMR data allowed the discrimination between the metabolic profiles of these strains, revealing increased levels of acetate, valine, alanine, NAD+, succinate, coenzyme A, glutathione, and putrescine in bolA+. These results indicate that BolA regulates pathways related to stress resistance and virulence, being an important modulator of the metabolic processes needed for S. Typhimurium infection.
Collapse
Affiliation(s)
- Gil Graça-Lopes
- ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Gonçalo Graça
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK.
| | - Susana Barahona
- ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Ricardo N Moreira
- ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Cecília M Arraiano
- ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Luís G Gonçalves
- ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
4
|
Pseudomonas aeruginosa gshA Mutant Is Defective in Biofilm Formation, Swarming, and Pyocyanin Production. mSphere 2018; 3:3/2/e00155-18. [PMID: 29669887 PMCID: PMC5907650 DOI: 10.1128/msphere.00155-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous bacterium that can cause severe opportunistic infections, including many hospital-acquired infections. It is also a major cause of infections in patients with cystic fibrosis. P. aeruginosa is intrinsically resistant to a number of drugs and is capable of forming biofilms that are difficult to eradicate with antibiotics. The number of drug-resistant strains is also increasing, making treatment of P. aeruginosa infections very difficult. Thus, there is an urgent need to understand how P. aeruginosa causes disease in order to find novel ways to treat infections. We show that the principal redox buffer, glutathione (GSH), is involved in intrinsic resistance to the fosfomycin and rifampin antibiotics. We further demonstrate that GSH plays a role in P. aeruginosa disease and infection, since a mutant lacking GSH has less biofilm formation, is less able to swarm, and produces less pyocyanin, a pigment associated with infection. Pseudomonas aeruginosa is a ubiquitous Gram-negative bacterium that can cause severe opportunistic infections. The principal redox buffer employed by this organism is glutathione (GSH). To assess the role of GSH in the virulence of P. aeruginosa, a number of analyses were performed using a mutant strain deficient in gshA, which does not produce GSH. The mutant strain exhibited a growth delay in minimal medium compared to the wild-type strain. Furthermore, the gshA mutant was defective in biofilm and persister cell formation and in swimming and swarming motility and produced reduced levels of pyocyanin, a key virulence factor. Finally, the gshA mutant strain demonstrated increased sensitivity to methyl viologen (a redox cycling agent) as well as the thiol-reactive antibiotics fosfomycin and rifampin. Taken together, these data suggest a key role for GSH in the virulence of P. aeruginosa. IMPORTANCEPseudomonas aeruginosa is a ubiquitous bacterium that can cause severe opportunistic infections, including many hospital-acquired infections. It is also a major cause of infections in patients with cystic fibrosis. P. aeruginosa is intrinsically resistant to a number of drugs and is capable of forming biofilms that are difficult to eradicate with antibiotics. The number of drug-resistant strains is also increasing, making treatment of P. aeruginosa infections very difficult. Thus, there is an urgent need to understand how P. aeruginosa causes disease in order to find novel ways to treat infections. We show that the principal redox buffer, glutathione (GSH), is involved in intrinsic resistance to the fosfomycin and rifampin antibiotics. We further demonstrate that GSH plays a role in P. aeruginosa disease and infection, since a mutant lacking GSH has less biofilm formation, is less able to swarm, and produces less pyocyanin, a pigment associated with infection.
Collapse
|
5
|
The Global Transcription Factor Lrp Is both Essential for and Inhibitory to Xenorhabdus nematophila Insecticidal Activity. Appl Environ Microbiol 2017; 83:AEM.00185-17. [PMID: 28411220 DOI: 10.1128/aem.00185-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/06/2017] [Indexed: 01/04/2023] Open
Abstract
In the entomopathogenic bacterium Xenorhabdus nematophila, cell-to-cell variation in the abundance of the Lrp transcription factor leads to virulence modulation; low Lrp levels are associated with a virulent phenotype and suppression of antimicrobial peptides (AMPs) in Manduca sexta insects, while cells that lack lrp or express high Lrp levels are virulence attenuated and elicit AMP expression. To better understand the basis of these phenotypes, we examined X. nematophila strains expressing fixed Lrp levels. Unlike the lrp-null mutant, the high-lrp strain is fully virulent in Drosophila melanogaster, suggesting that these two strains have distinct underlying causes of virulence attenuation in M. sexta Indeed, the lrp-null mutant was defective in cytotoxicity against M. sexta hemocytes relative to that in the high-lrp and low-lrp strains. Further, supernatant derived from the lrp-null mutant but not from the high-lrp strain was defective in inhibiting weight gain when fed to 1st instar M. sexta These data suggest that contributors to the lrp-null mutant virulence attenuation phenotype are the lack of Lrp-dependent cytotoxic and extracellular oral growth inhibitory activities, which may be particularly important for virulence in D. melanogaster In contrast, the high-Lrp strain was sensitive to the antimicrobial peptide cecropin, had a transient survival defect in M. sexta, and had reduced extracellular levels of insecticidal activity, measured by injection of supernatant into 4th instar M. sexta Thus, high-lrp strain virulence attenuation may be explained by its hypersensitivity to M. sexta host immunity and its inability to secrete one or more insecticidal factors.IMPORTANCE Adaptation of a bacterial pathogen to host environments can be achieved through the coordinated regulation of virulence factors that can optimize success under prevailing conditions. In the insect pathogen Xenorhabdus nematophila, the global transcription factor Lrp is necessary for virulence when injected into Manduca sexta or Drosophila melanogaster insect hosts. However, high levels of Lrp, either naturally occurring or artificially induced, cause attenuation of X. nematophila virulence in M. sexta but not D. melanogaster Here, we present evidence suggesting that the underlying cause of high-Lrp-dependent virulence attenuation in M. sexta is hypersensitivity to host immune responses and decreased insecticidal activity and that high-Lrp virulence phenotypes are insect host specific. This knowledge suggests that X. nematophila faces varied challenges depending on the type of insect host it infects and that its success in these environments depends on Lrp-dependent control of a multifactorial virulence repertoire.
Collapse
|
6
|
Abstract
Iron-sulfur (Fe-S) clusters are fundamental to numerous biological processes in most organisms, but these protein cofactors can be prone to damage by various oxidants (e.g., O2, reactive oxygen species, and reactive nitrogen species) and toxic levels of certain metals (e.g., cobalt and copper). Furthermore, their synthesis can also be directly influenced by the level of available iron in the environment. Consequently, the cellular need for Fe-S cluster biogenesis varies with fluctuating growth conditions. To accommodate changes in Fe-S demand, microorganisms employ diverse regulatory strategies to tailor Fe-S cluster biogenesis according to their surroundings. Here, we review the mechanisms that regulate Fe-S cluster formation in bacteria, primarily focusing on control of the Isc and Suf Fe-S cluster biogenesis systems in the model bacterium Escherichia coli.
Collapse
Affiliation(s)
- Erin L Mettert
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, ,
| | - Patricia J Kiley
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, ,
| |
Collapse
|
7
|
Rosario-Cruz Z, Chahal HK, Mike LA, Skaar EP, Boyd JM. Bacillithiol has a role in Fe-S cluster biogenesis in Staphylococcus aureus. Mol Microbiol 2015; 98:218-42. [PMID: 26135358 DOI: 10.1111/mmi.13115] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2015] [Indexed: 01/20/2023]
Abstract
Staphylococcus aureus does not produce the low-molecular-weight (LMW) thiol glutathione, but it does produce the LMW thiol bacillithiol (BSH). To better understand the roles that BSH plays in staphylococcal metabolism, we constructed and examined strains lacking BSH. Phenotypic analysis found that the BSH-deficient strains cultured either aerobically or anaerobically had growth defects that were alleviated by the addition of exogenous iron (Fe) or the amino acids leucine and isoleucine. The activities of the iron-sulfur (Fe-S) cluster-dependent enzymes LeuCD and IlvD, which are required for the biosynthesis of leucine and isoleucine, were decreased in strains lacking BSH. The BSH-deficient cells also had decreased aconitase and glutamate synthase activities, suggesting a general defect in Fe-S cluster biogenesis. The phenotypes of the BSH-deficient strains were exacerbated in strains lacking the Fe-S cluster carrier Nfu and partially suppressed by multicopy expression of either sufA or nfu, suggesting functional overlap between BSH and Fe-S carrier proteins. Biochemical analysis found that SufA bound and transferred Fe-S clusters to apo-aconitase, verifying that it serves as an Fe-S cluster carrier. The results presented are consistent with the hypothesis that BSH has roles in Fe homeostasis and the carriage of Fe-S clusters to apo-proteins in S. aureus.
Collapse
Affiliation(s)
- Zuelay Rosario-Cruz
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Harsimranjit K Chahal
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Laura A Mike
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
8
|
Fang Z, Dos Santos PC. Protective role of bacillithiol in superoxide stress and Fe-S metabolism in Bacillus subtilis. Microbiologyopen 2015; 4:616-31. [PMID: 25988368 PMCID: PMC4554457 DOI: 10.1002/mbo3.267] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 01/22/2023] Open
Abstract
Glutathione (GSH) serves as the prime thiol in most organisms as its depletion increases antibiotic and metal toxicity, impairs oxidative stress responses, and affects Fe and Fe–S cluster metabolism. Many gram-positive bacteria lack GSH, but instead produce other structurally unrelated yet functionally equivalent thiols. Among those, bacillithiol (BSH) has been recently identified in several low G+C gram-positive bacteria. In this work, we have explored the link between BSH and Fe–S metabolism in Bacillus subtilis. We have identified that B. subtilis lacking BSH is more sensitive to oxidative stress (paraquat), and metal toxicity (Cu(I) and Cd(II)), but not H2O2. Furthermore, a slow growth phenotype of BSH null strain in minimal medium was observed, which could be recovered upon the addition of selected amino acids (Leu/Ile and Glu/Gln), supplementation of iron, or chemical complementation with BSH disulfide (BSSB) to the growth medium. Interestingly, Fe–S cluster containing isopropylmalate isomerase (LeuCD) and glutamate synthase (GOGAT) showed decreased activities in BSH null strain. Deficiency of BSH also resulted in decreased levels of intracellular Fe accompanied by increased levels of manganese and altered expression levels of Fe–S cluster biosynthetic SUF components. Together, this study is the first to establish a link between BSH and Fe–S metabolism in B. subtilis.
Collapse
Affiliation(s)
- Zhong Fang
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, 27016
| | - Patricia C Dos Santos
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, 27016
| |
Collapse
|
9
|
Reprint of: Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:923-37. [PMID: 23660107 DOI: 10.1016/j.bbabio.2013.05.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/21/2012] [Accepted: 12/27/2012] [Indexed: 12/15/2022]
Abstract
Iron/sulfur centers are key cofactors of proteins intervening in multiple conserved cellular processes, such as gene expression, DNA repair, RNA modification, central metabolism and respiration. Mechanisms allowing Fe/S centers to be assembled, and inserted into polypeptides have attracted much attention in the last decade, both in eukaryotes and prokaryotes. Basic principles and recent advances in our understanding of the prokaryotic Fe/S biogenesis ISC and SUF systems are reviewed in the present communication. Most studies covered stem from investigations in Escherichia coli and Azotobacter vinelandii. Remarkable insights were brought about by complementary structural, spectroscopic, biochemical and genetic studies. Highlights of the recent years include scaffold mediated assembly of Fe/S cluster, A-type carriers mediated delivery of clusters and regulatory control of Fe/S homeostasis via a set of interconnected genetic regulatory circuits. Also, the importance of Fe/S biosynthesis systems in mediating soft metal toxicity was documented. A brief account of the Fe/S biosynthesis systems diversity as present in current databases is given here. Moreover, Fe/S biosynthesis factors have themselves been the object of molecular tailoring during evolution and some examples are discussed here. An effort was made to provide, based on the E. coli system, a general classification associating a given domain with a given function such as to help next search and annotation of genomes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
|
10
|
Roche B, Aussel L, Ezraty B, Mandin P, Py B, Barras F. Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:455-69. [PMID: 23298813 DOI: 10.1016/j.bbabio.2012.12.010] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/21/2012] [Accepted: 12/27/2012] [Indexed: 12/17/2022]
Abstract
Iron/sulfur centers are key cofactors of proteins intervening in multiple conserved cellular processes, such as gene expression, DNA repair, RNA modification, central metabolism and respiration. Mechanisms allowing Fe/S centers to be assembled, and inserted into polypeptides have attracted much attention in the last decade, both in eukaryotes and prokaryotes. Basic principles and recent advances in our understanding of the prokaryotic Fe/S biogenesis ISC and SUF systems are reviewed in the present communication. Most studies covered stem from investigations in Escherichia coli and Azotobacter vinelandii. Remarkable insights were brought about by complementary structural, spectroscopic, biochemical and genetic studies. Highlights of the recent years include scaffold mediated assembly of Fe/S cluster, A-type carriers mediated delivery of clusters and regulatory control of Fe/S homeostasis via a set of interconnected genetic regulatory circuits. Also, the importance of Fe/S biosynthesis systems in mediating soft metal toxicity was documented. A brief account of the Fe/S biosynthesis systems diversity as present in current databases is given here. Moreover, Fe/S biosynthesis factors have themselves been the object of molecular tailoring during evolution and some examples are discussed here. An effort was made to provide, based on the E. coli system, a general classification associating a given domain with a given function such as to help next search and annotation of genomes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
Affiliation(s)
- Béatrice Roche
- Institut de Microbiologie de la Méditerranée, Marseille, France
| | | | | | | | | | | |
Collapse
|
11
|
Majtan T, Frerman FE, Kraus JP. Effect of cobalt on Escherichia coli metabolism and metalloporphyrin formation. Biometals 2010; 24:335-47. [PMID: 21184140 DOI: 10.1007/s10534-010-9400-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 12/14/2010] [Indexed: 02/01/2023]
Abstract
Toxicity in Escherichia coli resulting from high concentrations of cobalt has been explained by competition of cobalt with iron in various metabolic processes including Fe-S cluster assembly, sulfur assimilation, production of free radicals and reduction of free thiol pool. Here we present another aspect of increased cobalt concentrations in the culture medium resulting in the production of cobalt protoporphyrin IX (CoPPIX), which was incorporated into heme proteins including membrane-bound cytochromes and an expressed human cystathionine beta-synthase (CBS). The presence of CoPPIX in cytochromes inhibited their electron transport capacity and resulted in a substantially decreased respiration. Bacterial cells adapted to the increased cobalt concentration by inducing a modified mixed acid fermentative pathway under aerobiosis. We capitalized on the ability of E. coli to insert cobalt into PPIX to carry out an expression of CoPPIX-substituted heme proteins. The level of CoPPIX-substitution increased with the number of passages of cells in a cobalt-containing medium. This approach is an inexpensive method to prepare cobalt-substituted heme proteins compared to in vitro enzyme reconstitution or in vivo replacement using metalloporphyrin heme analogs and seems to be especially suitable for complex heme proteins with an additional coenzyme, such as human CBS.
Collapse
Affiliation(s)
- Tomas Majtan
- Department of Pediatrics and the Colorado Intellectual and Developmental Disabilities Research Center (IDDRC), University of Colorado at Denver, 12800 E 19th Ave, Aurora, CO 80045, USA
| | | | | |
Collapse
|
12
|
Cysteine biosynthesis, oxidative stress and antibiotic resistance in Salmonella typhimurium. Res Microbiol 2010; 161:643-50. [PMID: 20600858 DOI: 10.1016/j.resmic.2010.06.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/03/2010] [Accepted: 06/07/2010] [Indexed: 11/20/2022]
Abstract
The efficacy of antibiotics varies under different growth conditions due to the induction of specific or more general defense pathways, but the mechanisms are not completely understood. Actively swarming Salmonella show elevated resistance to many types of antibiotics. Previously, we had shown that cysteine biosynthesis was important for the induced antibiotic resistance phenotype of swarm cells. Here we examine the connection of cysteine to oxidative stress and demonstrate that the antioxidant properties of cysteine or cysteine-derived metabolites contribute to the antibiotic resistance in both vegetative and swarm cell populations. We observed that cys auxotrophs were oxidatively stressed, and in wild-type cells expression of the cys regulon was induced during periods of oxidative stress. In swarm cells, we found a 6-fold increase in reduced glutathione compared to swim cells and a corresponding increased resistance to oxidants. Wild-type and cys auxotrophs exhibited the same sensitivities to gentamicin, polymyxin and ciprofloxacin when grown anaerobically, suggesting that induced oxidative stress defense was contributing to elevated antibiotic resistance in swarm cells aerobically. Induction of the CysB regulon by addition of exogenous inducer resulted in elevated antibiotic resistance independently of swarming.
Collapse
|
13
|
Thorgersen MP, Downs DM. Oxidative stress and disruption of labile iron generate specific auxotrophic requirements in Salmonella enterica. MICROBIOLOGY-SGM 2009; 155:295-304. [PMID: 19118370 DOI: 10.1099/mic.0.020727-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The response of a cell to integrated stresses was investigated using environmental and/or genetic perturbations that disrupted labile iron homeostasis and increased oxidative stress. The effects of the perturbations were monitored as nutritional requirements, and were traced to specific enzymic targets. A yggX gshA cyaY mutant strain required exogenous thiamine and methionine for growth. The thiamine requirement, which had previously been linked to the Fe-S cluster proteins ThiH and ThiC, was responsive to oxidative stress and was not directly affected by manipulation of the iron pool. The methionine requirement was associated with the activity of sulfite reductase, an enzyme that appeared responsive to disruption of labile iron homeostasis. The results are incorporated in a model to suggest how the activity of iron-containing enzymes not directly sensitive to oxygen can be decreased by oxidation of the labile iron pool.
Collapse
Affiliation(s)
- Michael P Thorgersen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Diana M Downs
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|