1
|
Mutanda I, Sun J, Jiang J, Zhu D. Bacterial membrane transporter systems for aromatic compounds: Regulation, engineering, and biotechnological applications. Biotechnol Adv 2022; 59:107952. [PMID: 35398204 DOI: 10.1016/j.biotechadv.2022.107952] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/20/2022] [Accepted: 04/02/2022] [Indexed: 12/13/2022]
Abstract
Aromatic compounds are ubiquitous in nature; they are the building blocks of abundant lignin, and constitute a substantial proportion of synthetic chemicals and organic pollutants. Uptake and degradation of aromatic compounds by bacteria have relevance in bioremediation, bio-based plastic recycling, and microbial conversion of lignocellulosic biomass into high-value commodity chemicals. While remarkable progress has been achieved in understanding aromatic metabolism in biodegraders, the membrane transporter systems responsible for uptake and efflux of aromatic compounds and their degradation products are still poorly understood. Membrane transporters are responsible for the initial recognition, uptake, and efflux of aromatic compounds; thus, in addition to controlling influx and efflux, the transporter system also forms part of stress tolerance mechanisms through excreting toxic metabolites. This review discusses significant advancements in our understanding of the nature and identity of the bacterial membrane transporter systems for aromatics, the molecular and structural basis of substrate recognition, mechanisms of translocation, functional regulation, and biotechnological applications. Most of these developments were enabled through the availability of crystal structures, advancements in computational biophysics, genome sequencing, omics studies, bioinformatics, and synthetic biology. We provide a comprehensive overview of recently reported knowledge on aromatic transporter systems in bacteria, point gaps in our understanding of the underlying translocation mechanisms, highlight existing limitations in harnessing transporter systems in synthetic biology applications, and suggest future research directions.
Collapse
Affiliation(s)
- Ishmael Mutanda
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jianxiong Jiang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
2
|
Kusumawardhani H, Hosseini R, Verschoor JA, de Winde JH. Comparative analysis reveals the modular functional structure of conjugative megaplasmid pTTS12 of Pseudomonas putida S12: A paradigm for transferable traits, plasmid stability, and inheritance? Front Microbiol 2022; 13:1001472. [PMID: 36212887 PMCID: PMC9537497 DOI: 10.3389/fmicb.2022.1001472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Originating from various environmental niches, large numbers of bacterial plasmids have been found carrying heavy metal and antibiotic resistance genes, degradation pathways and specific transporter genes for organic solvents or aromatic compounds. Such genes may constitute promising candidates for novel synthetic biology applications. Our systematic analysis of gene clusters encoded on megaplasmid pTTS12 from Pseudomonas putida S12 underscores that a large portion of its genes is involved in stress response to increase survival under harsh conditions like the presence of heavy metal and organic solvent. We investigated putative roles of genes encoded on pTTS12 and further elaborated on their roles in the establishment and maintenance under several stress conditions, specifically focusing on solvent tolerance in P. putida strains. The backbone of pTTS12 was found to be closely related to that of the carbapenem-resistance plasmid pOZ176, member of the IncP-2 incompatibility group, although the carbapenem resistance cassette is absent from pTTS12. Megaplasmid pTTS12 contains multiple transposon-flanked cassettes mediating resistance to various heavy metals such as tellurite, chromate (Tn7), and mercury (Tn5053 and Tn5563). Additionally, pTTS12 also contains a P-type, Type IV secretion system (T4SS) supporting self-transfer to other P. putida strains. This study increases our understanding in the modular structure of pTTS12 as a member of IncP-2 plasmid family and several promising exchangeable gene clusters to construct robust microbial hosts for biotechnology applications.
Collapse
Affiliation(s)
- Hadiastri Kusumawardhani
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Rohola Hosseini
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | | | - Johannes H. de Winde
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
- *Correspondence: Johannes H. de Winde,
| |
Collapse
|
3
|
Comparative Genomic Analyses of Flavobacterium psychrophilum Isolates Reveals New Putative Genetic Determinants of Virulence Traits. Microorganisms 2021; 9:microorganisms9081658. [PMID: 34442736 PMCID: PMC8400371 DOI: 10.3390/microorganisms9081658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022] Open
Abstract
The fish pathogen Flavobacterium psychrophilum is currently one of the main pathogenic bacteria hampering the productivity of salmonid farming worldwide. Although putative virulence determinants have been identified, the genetic basis for variation in virulence of F. psychrophilum is not fully understood. In this study, we analyzed whole-genome sequences of a collection of 25 F. psychrophilum isolates from Baltic Sea countries and compared genomic information with a previous determination of their virulence in juvenile rainbow trout. The results revealed a conserved population of F. psychrophilum that were consistently present across the Baltic Sea countries, with no clear association between genomic repertoire, phylogenomic, or gene distribution and virulence traits. However, analysis of the entire genome of four F. psychrophilum isolates by hybrid assembly provided an unprecedented resolution for discriminating even highly related isolates. The results showed that isolates with different virulence phenotypes harbored genetic variances on a number of consecutive leucine-rich repeat (LRR) proteins, repetitive motifs in gliding motility-associated protein, and the insertion of transposable elements into intergenic and genic regions. Thus, these findings provide novel insights into the genetic variation of these elements and their putative role in the modulation of F. psychrophilum virulence.
Collapse
|
4
|
How to outwit nature: Omics insight into butanol tolerance. Biotechnol Adv 2020; 46:107658. [PMID: 33220435 DOI: 10.1016/j.biotechadv.2020.107658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
The energy crisis, depletion of oil reserves, and global climate changes are pressing problems of developed societies. One possibility to counteract that is microbial production of butanol, a promising new fuel and alternative to many petrochemical reagents. However, the high butanol toxicity to all known microbial species is the main obstacle to its industrial implementation. The present state of the art review aims to expound the recent advances in modern omics approaches to resolving this insurmountable to date problem of low butanol tolerance. Genomics, transcriptomics, and proteomics show that butanol tolerance is a complex phenomenon affecting multiple genes and their expression. Efflux pumps, stress and multidrug response, membrane transport, and redox-related genes are indicated as being most important during butanol challenge, in addition to fine-tuning of global regulators of transcription (Spo0A, GntR), which may further improve tolerance. Lipidomics shows that the alterations in membrane composition (saturated lipids and plasmalogen increase) are very much species-specific and butanol-related. Glycomics discloses the pleiotropic effect of CcpA, the role of alternative sugar transport, and the production of exopolysaccharides as alternative routes to overcoming butanol stress. Unfortunately, the strain that simultaneously syntheses and tolerates butanol in concentrations that allow its commercialization has not yet been discovered or produced. Omics insight will allow the purposeful increase of butanol tolerance in natural and engineered producers and the effective heterologous expression of synthetic butanol pathways in strains hereditary butanol-resistant up to 3.2 - 4.9% (w/v). Future breakthrough can be achieved by a detailed study of the membrane proteome, of which 21% are proteins with unknown functions.
Collapse
|
5
|
Yao X, Tao F, Tang H, Hu H, Wang W, Xu P. Unique regulator SrpR mediates crosstalk between efflux pumps TtgABC and SrpABC in Pseudomonas putida B6-2 (DSM 28064). Mol Microbiol 2020; 115:131-141. [PMID: 32945019 DOI: 10.1111/mmi.14605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 11/28/2022]
Abstract
The coexistence of multiple homologous resistance-nodulation-division (RND) efflux pumps in bacteria is frequently described with overlapping substrate profiles. However, it is unclear how bacteria balance their transcription in response to the changing environment. Here, we characterized a repressor, SrpR, in Pseudomonas putida B6-2 (DSM 28064), whose coding gene is adjacent to srpS that encodes the local repressor of the RND-type efflux pump SrpABC gene cluster. SrpR was demonstrated as a specific repressor of another RND efflux pump gene cluster ttgABC that is locally repressed by TtgR. SrpR was found to be capable of binding to the ttgABC operator with a higher affinity (KD , 138.0 nM) compared to TtgR (KD , 15.4 μM). EMSA and β-galactosidase assays were performed to survey possible effectors of SrpR with 35 available chemicals being tested. Only 2,3,4-trichlorophenol was identified as an effector of SrpR. A regulation model was then proposed, representing a novel strategy for balancing the efflux systems with partially overlapping substrate profiles. This study highlights sophisticated interactions among the RND efflux pumps in a Pseudomonas strain, which may endow bacteria with certain advantages in a fluctuant environment.
Collapse
Affiliation(s)
- Xuemei Yao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, People's Republic of China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Haiyang Hu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Weiwei Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
6
|
Ding W, Zhang W, Alikunhi NM, Batang Z, Pei B, Wang R, Chen L, Al-Suwailem A, Qian PY. Metagenomic Analysis of Zinc Surface-Associated Marine Biofilms. MICROBIAL ECOLOGY 2019; 77:406-416. [PMID: 30612183 DOI: 10.1007/s00248-018-01313-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/20/2018] [Indexed: 05/10/2023]
Abstract
Biofilms are a significant source of marine biofouling. Marine biofilm communities are established when microorganisms adhere to immersed surfaces. Despite the microbe-inhibiting effect of zinc surfaces, microbes can still attach to the surface and form biofilms. However, the diversity of biofilm-forming microbes that can attach to zinc surfaces and their common functional features remain elusive. Here, by analyzing 9,000,000 16S rRNA gene amplicon sequences and 270 Gb of metagenomic data, we comprehensively explored the taxa and functions related to biofilm formation in subtidal zones of the Red Sea. A clear difference was observed between the biofilm and adjacent seawater microbial communities in terms of the taxonomic structure at phylum and genus levels, and a huge number of genera were only present in the biofilms. Saturated alpha-diversity curves suggested the existence of more than 14,000 operational taxonomic units in one biofilm sample, which is much higher than previous estimates. Remarkably, the biofilms contained abundant and diverse transposase genes, which were localized along microbial chromosomal segments and co-existed with genes related to metal ion transport and resistance. Genomic analyses of two cyanobacterial strains that were abundant in the biofilms revealed a variety of metal ion transporters and transposases. Our analyses revealed the high diversity of biofilm-forming microbes that can attach to zinc surfaces and the ubiquitous role of transposase genes in microbial adaptation to toxic metal surfaces.
Collapse
Affiliation(s)
- Wei Ding
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Weipeng Zhang
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | | | - Zenon Batang
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Bite Pei
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ruojun Wang
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Lianguo Chen
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | | | - Pei-Yuan Qian
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China.
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
7
|
Yin S, Chen P, You B, Zhang Y, Jiang B, Huang G, Yang Z, Chen Y, Chen J, Yuan Z, Zhao Y, Li M, Hu F, Gong Y, Peng Y. Molecular Typing and Carbapenem Resistance Mechanisms of Pseudomonas aeruginosa Isolated From a Chinese Burn Center From 2011 to 2016. Front Microbiol 2018; 9:1135. [PMID: 29896186 PMCID: PMC5987737 DOI: 10.3389/fmicb.2018.01135] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 05/14/2018] [Indexed: 01/01/2023] Open
Abstract
Pseudomonas aeruginosa is the leading cause of infection in burn patients. The increasing carbapenem resistance of P. aeruginosa has become a serious challenge to clinicians. The present study investigated the molecular typing and carbapenem resistance mechanisms of 196 P. aeruginosa isolates from the bloodstream and wound surface of patients in our burn center over a period of 6 years. By multilocus sequence typing (MLST), a total of 58 sequence types (STs) were identified. An outbreak of ST111, a type that poses a high international risk, occurred in 2014. The isolates from wound samples of patients without bacteremia were more diverse and more susceptible to antibiotics than strains collected from the bloodstream or the wound surface of patients with bacteremia. Importantly, a large proportion of the patients with multisite infection (46.51%) were simultaneously infected by different STs in the bloodstream and wound surface. Antimicrobial susceptibility testing of these isolates revealed high levels of resistance to carbapenems, with 35.71% susceptibility to imipenem and 32.14% to meropenem. To evaluate mechanisms associated with carbapenem resistance, experiments were conducted to determine the prevalence of carbapenemase genes, detect alterations of the oprD porin gene, and measure expression of the ampC β-lactamase gene and the mexB multidrug efflux gene. The main mechanism associated with carbapenem resistance was mutational inactivation of oprD (88.65%), accompanied by overexpression of ampC (68.09%). In some cases, oprD was inactivated by insertion sequence element IS1411, which has not been found previously in P. aeruginosa. These findings may help control nosocomial P. aeruginosa infections and improve clinical practice.
Collapse
Affiliation(s)
- Supeng Yin
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ping Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Bo You
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Number 324 Hospital, People's Liberation Army, Chongqing, China
| | - Yulong Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Number 474 Hospital, People's Liberation Army, Ürümqi, China
| | - Bei Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Guangtao Huang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zichen Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yu Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jing Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhiqiang Yuan
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yan Zhao
- Department of Microbiology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ming Li
- Department of Microbiology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fuquan Hu
- Department of Microbiology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yali Gong
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yizhi Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
8
|
Insertional inactivation of oprD in carbapenem-resistant Pseudomonas aeruginosa strains isolated from burn patients in Tehran, Iran. New Microbes New Infect 2017; 21:75-80. [PMID: 29234497 PMCID: PMC5722278 DOI: 10.1016/j.nmni.2017.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 01/19/2023] Open
Abstract
In this study, we report the insertion sequence ISPpu21 in the oprD porin gene of carbapenem-resistant Pseudomonas aeruginosa isolates from burn patients in Tehran, Iran. Antibiotic susceptibility tests for P. aeruginosa isolates were determined. Production of metallo-β-lactamases (MBLs) and carbapenemase was evaluated and the β-lactamase-encoding and aminoglycoside-modifying enzyme genes were investigated by PCR and sequencing methods. The mRNA transcription level of oprD and mex efflux pump genes were evaluated by real-time PCR. The outer membrane protein profile was determined by SDS–PAGE. The genetic relationship between the P. aeruginosa isolates was assessed by random amplified polymorphic DNA PCR. In all, 10.52% (10/95) of clinical isolates of P. aeruginosa harboured the ISPpu21 insertion element in the oprD gene. The extended-spectrum β-lactamase-encoding gene in ISPpu21-carrying isolates was blaTEM. PCR assays targeting MBL and carbapenemase-encoding genes were also negative in all ten isolates. The rmtA, aadA, aadB and armA genes were positive in all ISPpu21 harbouring isolates. The relative expression levels of the mexX, mexB, mexT and mexD genes in ten isolates ranged from 0.1- to 1.4-fold, 1.1- to 3.68-fold, 0.3- to 8.22-fold and 1.7- to 35.17-fold, respectively. The relative expression levels of the oprD in ten isolates ranged from 0.57- to 35.01-fold, which was much higher than those in the control strain P. aeruginosa PAO1. Evaluation of the outer membrane protein by SDS–PAGE suggested that oprD was produced at very low levels by all isolates. Using random amplified polymorphic DNA PCR genotyping, eight of the ten isolates containing ISPpu21 were shown to be clonally related. The present study describes a novel molecular mechanism, ISPpu21 insertion of the oprD gene, associated with carbapenem resistance in clinical P. aeruginosa isolates.
Collapse
|
9
|
Vandecraen J, Chandler M, Aertsen A, Van Houdt R. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit Rev Microbiol 2017; 43:709-730. [PMID: 28407717 DOI: 10.1080/1040841x.2017.1303661] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transposable elements (TE), small mobile genetic elements unable to exist independently of the host genome, were initially believed to be exclusively deleterious genomic parasites. However, it is now clear that they play an important role as bacterial mutagenic agents, enabling the host to adapt to new environmental challenges and to colonize new niches. This review focuses on the impact of insertion sequences (IS), arguably the smallest TE, on bacterial genome plasticity and concomitant adaptability of phenotypic traits, including resistance to antibacterial agents, virulence, pathogenicity and catabolism. The direct consequence of IS transposition is the insertion of one DNA sequence into another. This event can result in gene inactivation as well as in modulation of neighbouring gene expression. The latter is usually mediated by de-repression or by the introduction of a complete or partial promoter located within the element. Furthermore, transcription and transposition of IS are affected by host factors and in some cases by environmental signals offering the host an adaptive strategy and promoting genetic variability to withstand the environmental challenges.
Collapse
Affiliation(s)
- Joachim Vandecraen
- a Microbiology Unit, Interdisciplinary Biosciences , Belgian Nuclear Research Centre (SCK•CEN) , Mol , Belgium.,b Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre , Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering , KU Leuven , Leuven , Belgium
| | - Michael Chandler
- c Laboratoire de Microbiologie et Génétique Moléculaires, Centre national de la recherche scientifique , Toulouse , France
| | - Abram Aertsen
- b Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre , Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering , KU Leuven , Leuven , Belgium
| | - Rob Van Houdt
- a Microbiology Unit, Interdisciplinary Biosciences , Belgian Nuclear Research Centre (SCK•CEN) , Mol , Belgium
| |
Collapse
|
10
|
Hosseini R, Kuepper J, Koebbing S, Blank LM, Wierckx N, de Winde JH. Regulation of solvent tolerance in Pseudomonas putida S12 mediated by mobile elements. Microb Biotechnol 2017; 10:1558-1568. [PMID: 28401676 PMCID: PMC5658596 DOI: 10.1111/1751-7915.12495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 11/28/2022] Open
Abstract
Organic solvent‐tolerant bacteria are outstanding and versatile hosts for the bio‐based production of a broad range of generally toxic aromatic compounds. The energetically costly solvent tolerance mechanisms are subject to multiple levels of regulation, involving among other mobile genetic elements. The genome of the solvent‐tolerant Pseudomonas putida S12 contains many such mobile elements that play a major role in the regulation and adaptation to various stress conditions, including the regulation of expression of the solvent efflux pump SrpABC. We recently sequenced the genome of P. putida S12. Detailed annotation identified a threefold higher copy number of the mobile element ISS12 in contrast to earlier observations. In this study, we describe the mobile genetic elements and elaborate on the role of ISS12 in the establishment and maintenance of solvent tolerance in P. putida. We identified three different variants of ISS12 of which a single variant exhibits a high translocation rate. One copy of this variant caused a loss of solvent tolerance in the sequenced strain by disruption of srpA. Solvent tolerance could be restored by applying selective pressure, leading to a clean excision of the mobile element.
Collapse
Affiliation(s)
- Rohola Hosseini
- Microbial Biotechnology and Health, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Jannis Kuepper
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Sebastian Koebbing
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Lars M Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Nick Wierckx
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Johannes H de Winde
- Microbial Biotechnology and Health, Institute of Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
11
|
Fiedurek J, Trytek M, Szczodrak J. Strain improvement of industrially important microorganisms based on resistance to toxic metabolites and abiotic stress. J Basic Microbiol 2017; 57:445-459. [DOI: 10.1002/jobm.201600710] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/04/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Jan Fiedurek
- Department of Industrial Microbiology; Institute of Microbiology and Biotechnology; Maria Curie-Skłodowska University; Lublin Poland
| | - Mariusz Trytek
- Department of Industrial Microbiology; Institute of Microbiology and Biotechnology; Maria Curie-Skłodowska University; Lublin Poland
| | - Janusz Szczodrak
- Department of Industrial Microbiology; Institute of Microbiology and Biotechnology; Maria Curie-Skłodowska University; Lublin Poland
| |
Collapse
|
12
|
Volmer J, Schmid A, Bühler B. Guiding bioprocess design by microbial ecology. Curr Opin Microbiol 2015; 25:25-32. [DOI: 10.1016/j.mib.2015.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/26/2015] [Accepted: 02/26/2015] [Indexed: 12/20/2022]
|
13
|
Ramos JL, Sol Cuenca M, Molina-Santiago C, Segura A, Duque E, Gómez-García MR, Udaondo Z, Roca A. Mechanisms of solvent resistance mediated by interplay of cellular factors inPseudomonas putida. FEMS Microbiol Rev 2015; 39:555-66. [DOI: 10.1093/femsre/fuv006] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2015] [Indexed: 11/14/2022] Open
|
14
|
Kuepper J, Ruijssenaars H, Blank L, de Winde J, Wierckx N. Complete genome sequence of solvent-tolerant Pseudomonas putida S12 including megaplasmid pTTS12. J Biotechnol 2015; 200:17-8. [DOI: 10.1016/j.jbiotec.2015.02.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 02/24/2015] [Indexed: 11/29/2022]
|
15
|
Engineering of Pseudomonas taiwanensis VLB120 for constitutive solvent tolerance and increased specific styrene epoxidation activity. Appl Environ Microbiol 2014; 80:6539-48. [PMID: 25128338 DOI: 10.1128/aem.01940-14] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The application of whole cells as biocatalysts is often limited by the toxicity of organic solvents, which constitute interesting substrates/products or can be used as a second phase for in situ product removal and as tools to control multistep biocatalysis. Solvent-tolerant bacteria, especially Pseudomonas strains, are proposed as promising hosts to overcome such limitations due to their inherent solvent tolerance mechanisms. However, potential industrial applications suffer from tedious, unproductive adaptation processes, phenotypic variability, and instable solvent-tolerant phenotypes. In this study, genes described to be involved in solvent tolerance were identified in Pseudomonas taiwanensis VLB120, and adaptive solvent tolerance was proven by cultivation in the presence of 1% (vol/vol) toluene. Deletion of ttgV, coding for the specific transcriptional repressor of solvent efflux pump TtgGHI gene expression, led to constitutively solvent-tolerant mutants of P. taiwanensis VLB120 and VLB120ΔC. Interestingly, the increased amount of solvent efflux pumps enhanced not only growth in the presence of toluene and styrene but also the biocatalytic performance in terms of stereospecific styrene epoxidation, although proton-driven solvent efflux is expected to compete with the styrene monooxygenase for metabolic energy. Compared to that of the P. taiwanensis VLB120ΔC parent strain, the maximum specific epoxidation activity of P. taiwanensis VLB120ΔCΔttgV doubled to 67 U/g of cells (dry weight). This study shows that solvent tolerance mechanisms, e.g., the solvent efflux pump TtgGHI, not only allow for growth in the presence of organic compounds but can also be used as tools to improve redox biocatalysis involving organic solvents.
Collapse
|
16
|
Fang ZL, Zhang LY, Huang YM, Qing Y, Cao KY, Tian GB, Huang X. OprD mutations and inactivation in imipenem-resistant Pseudomonas aeruginosa isolates from China. INFECTION GENETICS AND EVOLUTION 2014; 21:124-8. [DOI: 10.1016/j.meegid.2013.10.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 10/28/2013] [Accepted: 10/30/2013] [Indexed: 11/25/2022]
|
17
|
Genome sequence of Pseudomonas putida S12, a potential platform strain for industrial production of valuable chemicals. J Bacteriol 2013; 194:5985-6. [PMID: 23045497 DOI: 10.1128/jb.01482-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida strain S12, a well-studied solvent-tolerant bacterium, is considered a platform strain for the production of many chemicals. Here, we present a 6.28-Mb assembly of its genome sequence. We have annotated 32 coding sequences (CDSs) encoding efflux systems of organic compounds and 195 CDSs responsible for the metabolism of aromatic compounds.
Collapse
|
18
|
Harrison ME, Dunlop MJ. Synthetic feedback loop model for increasing microbial biofuel production using a biosensor. Front Microbiol 2012; 3:360. [PMID: 23112794 PMCID: PMC3481154 DOI: 10.3389/fmicb.2012.00360] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/24/2012] [Indexed: 11/13/2022] Open
Abstract
Current biofuel production methods use engineered bacteria to break down cellulose and convert it to biofuel. A major challenge in microbial fuel production is that increasing biofuel yields can be limited by the toxicity of the biofuel to the organism that is producing it. Previous research has demonstrated that efflux pumps are effective at increasing tolerance to various biofuels. However, when overexpressed, efflux pumps burden cells, which hinders growth and slows biofuel production. Therefore, the toxicity of the biofuel must be balanced with the toxicity of pump overexpression. We have developed a mathematical model for cell growth and biofuel production that implements a synthetic feedback loop using a biosensor to control efflux pump expression. In this way, the production rate will be maximal when the concentration of biofuel is low because the cell does not expend energy expressing efflux pumps when they are not needed. Additionally, the microbe is able to adapt to toxic conditions by triggering the expression of efflux pumps, which allow it to continue biofuel production. Sensitivity analysis indicates that the feedback sensor model is insensitive to many system parameters, but a few key parameters can influence growth and production. In comparison to systems that express efflux pumps at a constant level, the feedback sensor increases overall biofuel production by delaying pump expression until it is needed. This result is more pronounced when model parameters are variable because the system can use feedback to adjust to the actual rate of biofuel production.
Collapse
Affiliation(s)
- Mary E Harrison
- School of Engineering, College of Engineering and Mathematical Sciences, University of Vermont VT, USA
| | | |
Collapse
|
19
|
Ryall B, Eydallin G, Ferenci T. Culture history and population heterogeneity as determinants of bacterial adaptation: the adaptomics of a single environmental transition. Microbiol Mol Biol Rev 2012; 76:597-625. [PMID: 22933562 PMCID: PMC3429624 DOI: 10.1128/mmbr.05028-11] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diversity in adaptive responses is common within species and populations, especially when the heterogeneity of the frequently large populations found in environments is considered. By focusing on events in a single clonal population undergoing a single transition, we discuss how environmental cues and changes in growth rate initiate a multiplicity of adaptive pathways. Adaptation is a comprehensive process, and stochastic, regulatory, epigenetic, and mutational changes can contribute to fitness and overlap in timing and frequency. We identify culture history as a major determinant of both regulatory adaptations and microevolutionary change. Population history before a transition determines heterogeneities due to errors in translation, stochastic differences in regulation, the presence of aged, damaged, cheating, or dormant cells, and variations in intracellular metabolite or regulator concentrations. It matters whether bacteria come from dense, slow-growing, stressed, or structured states. Genotypic adaptations are history dependent due to variations in mutation supply, contingency gene changes, phase variation, lateral gene transfer, and genome amplifications. Phenotypic adaptations underpin genotypic changes in situations such as stress-induced mutagenesis or prophage induction or in biofilms to give a continuum of adaptive possibilities. Evolutionary selection additionally provides diverse adaptive outcomes in a single transition and generally does not result in single fitter types. The totality of heterogeneities in an adapting population increases the chance that at least some individuals meet immediate or future challenges. However, heterogeneity complicates the adaptomics of single transitions, and we propose that subpopulations will need to be integrated into future population biology and systems biology predictions of bacterial behavior.
Collapse
Affiliation(s)
- Ben Ryall
- School of Molecular Bioscience, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
20
|
Analysis of solvent tolerance inPseudomonas putidaDOT-T1E based on its genome sequence and a collection of mutants. FEBS Lett 2012; 586:2932-8. [DOI: 10.1016/j.febslet.2012.07.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 11/19/2022]
|
21
|
Segura A, Molina L, Fillet S, Krell T, Bernal P, Muñoz-Rojas J, Ramos JL. Solvent tolerance in Gram-negative bacteria. Curr Opin Biotechnol 2012; 23:415-21. [DOI: 10.1016/j.copbio.2011.11.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/29/2011] [Accepted: 11/11/2011] [Indexed: 10/14/2022]
|
22
|
Taylor M, Ramond JB, Tuffin M, Burton S, Eley K, Cowan D. Mechanisms and Applications of Microbial Solvent Tolerance. MICROBIOLOGY MONOGRAPHS 2012. [DOI: 10.1007/978-3-642-21467-7_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
23
|
Tao F, Liu Y, Luo Q, Su F, Xu Y, Li F, Yu B, Ma C, Xu P. Novel organic solvent-responsive expression vectors for biocatalysis: application for development of an organic solvent-tolerant biodesulfurizing strain. BIORESOURCE TECHNOLOGY 2011; 102:9380-9387. [PMID: 21875790 DOI: 10.1016/j.biortech.2011.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/02/2011] [Accepted: 08/02/2011] [Indexed: 05/31/2023]
Abstract
Biodesulfurization is an attractive alternative to hydrodesulfurization for lowering the sulfur content of petroleum products. However, the fuel oils are toxic to microorganisms, which have seriously hindered the application of biodesulfurization. Here, a solvent-tolerant desulfurizing bacterium, Pseudomonas putida DS23, was developed using one of the organic solvent-responsive expression vectors newly constructed for biocatalysis, in which gene expression could be regulated in an organic solvent-dependent fashion. The biodesulfurizing activity of P. putida DS23 could be induced by all the organic solvents used. P. putida DS23 cells induced by n-hexane were able to degrade 56% of 0.5 mM DBT in 12 h in the biphasic reaction containing 33.3% (v/v) n-hexane, while the strain induced by isopropyl β-D-1-thiogalactopyranoside could only degrade 26% of 0.5 mM DBT. These results suggested that use of the constructed organic solvent-responsive expression vectors can facilitate the biphasic biocatalysis involving organic solvents.
Collapse
Affiliation(s)
- Fei Tao
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang L, Wang FF, Qian W. Evolutionary rewiring and reprogramming of bacterial transcription regulation. J Genet Genomics 2011; 38:279-88. [DOI: 10.1016/j.jgg.2011.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/07/2011] [Accepted: 06/07/2011] [Indexed: 11/26/2022]
|
25
|
An antirepressor, SrpR, is involved in transcriptional regulation of the SrpABC solvent tolerance efflux pump of Pseudomonas putida S12. J Bacteriol 2011; 193:2717-25. [PMID: 21441510 DOI: 10.1128/jb.00149-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Organic compounds exhibit various levels of toxicity toward living organisms based upon their ability to insert into biological membranes and disrupt normal membrane function. The primary mechanism responsible for organic solvent tolerance in many bacteria is energy-dependent extrusion via efflux pumps. One such bacterial strain, Pseudomonas putida S12, is known for its high tolerance to organic solvents as provided through the SrpABC resistance-nodulation-cell division (RND) family efflux pump. To determine how two putative regulatory proteins (SrpR and SrpS, encoded directly upstream of the SrpABC structural genes) influence SrpABC efflux pump expression, we conducted transcriptional analysis, β-galactosidase fusion experiments, electrophoretic mobility shift assays, and pulldown analysis. Together, the results of these experiments suggest that expression of the srpABC operon can be derepressed by two distinct but complementary mechanisms: direct inhibition of the SrpS repressor by organic solvents and binding of SrpS by its antirepressor SrpR.
Collapse
|
26
|
Gaffé J, McKenzie C, Maharjan RP, Coursange E, Ferenci T, Schneider D. Insertion Sequence-Driven Evolution of Escherichia coli in Chemostats. J Mol Evol 2011; 72:398-412. [DOI: 10.1007/s00239-011-9439-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/01/2011] [Indexed: 11/30/2022]
|
27
|
Volkers RJM, Ballerstedt H, De Winde JH, Ruijssenaars HJ. Isolation and genetic characterization of an improved benzene-tolerant mutant of Pseudomonas putida S12. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:456-460. [PMID: 23766120 DOI: 10.1111/j.1758-2229.2010.00172.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pseudomonas putida S12.49, a mutant stain of P. putida S12 that tolerates up to 20 mM benzene, was obtained by evolutionary selection. The genetic basis for the strongly enhanced benzene tolerance was investigated by proteome and transcriptome analysis. Indications were found that the highly benzene-tolerant phenotype is the resultant of multi-level systemic changes. The solvent extrusion pump SrpABC was constitutively expressed in P. putida S12.49, which could be attributed to the disruption of the srpS regulator gene by the indigenous mutator element ISS12. The occurrence of this and two additional transposition events was in good agreement with the increased transcriptional activity of transposase-encoding genes in strain S12.49. These observations suggested that transposition events are an important force driving the generation of the genetic diversity apparently required to obtain highly solvent-tolerant phenotypes. In addition, various expression responses relating to energy generation indicated system changes that accommodated the energy demand associated with the high-level expression of the proton-driven solvent extrusion pump. The relatively modest effect of a respiratory chain uncoupler on benzene tolerance in P. putida S12.49 indicated the involvement of an alternative, non-respiratory mechanism to maintain the proton gradient.
Collapse
Affiliation(s)
- Rita J M Volkers
- TNO Quality of Life, P.O. Box 5054, 2600 GA Delft, the Netherlands. Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, the Netherlands. Delft University of Technology, P.O. Box 5045, 2600 GA Delft, the Netherlands
| | | | | | | |
Collapse
|