1
|
Li P, Zhang J, Deng Z, Gao F, Ou HY. Identification and characterization of a central replication origin of the mega-plasmid pSCATT of Streptomyces cattleya. Microbiol Res 2022; 257:126975. [DOI: 10.1016/j.micres.2022.126975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 11/25/2022]
|
2
|
Mingyar E, Novakova R, Knirschova R, Feckova L, Bekeova C, Kormanec J. Unusual features of the large linear plasmid pSA3239 from Streptomyces aureofaciens CCM 3239. Gene 2017; 642:313-323. [PMID: 29155332 DOI: 10.1016/j.gene.2017.11.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 11/17/2022]
Abstract
We previously identified the aur1 gene cluster, responsible for the production of the angucycline antibiotic auricin in Streptomyces aureofaciens CCM 3239. Pulse-field gel electrophoresis showed a single, 241kb linear plasmid, pSA3239, in this strain, and several approaches confirmed the presence of the aur1 cluster in this plasmid. We report here the nucleotide sequence of this 241,076-bp plasmid. pSA3239 contains an unprecedentedly small (13bp) telomeric sequence CCCGCGGAGCGGG, which is identical to the conserved Palindrome I sequence involved in the priming of end-patching replication. A bioinformatics analysis revealed 234 open reading frames with high number (28) of regulatory genes from various families. In contrast to most other linear plasmids, pSA3239 contains a pair of replication initiation genes (sa76 and sa75) located at its extreme left end, adjacent to the telomere. Together with similar proteins from several other linear plasmids (pFRL2, pSLA2-M, pSV2, pSDA1, and SAP1), they constitute a new family of replication initiation proteins. This left end also contains two genes, tpgSa and tapSa, encoding the terminal protein and the telomere associated-protein involved in telomere end-patching replication. pSA3239 also contains two genes homologous to the parAB partitioning system, and deletion of the parA homologue (sa43) affects structural stability of the plasmid. pSA3239 carries five potential secondary metabolite gene clusters. In addition to aur1 and a non-ribosomal peptide synthase (NRPS) gene cluster for the blue pigment indigoidine, it also contains a partial type II polyketide synthase (PKS) gene cluster, a partial type I PKS gene cluster, and a NRPS/PKSI gene cluster for unknown secondary metabolites. The last gene cluster contains a subcluster of seven genes (sa91-sa97), highly similar to part of the valanimycin biosynthetic cluster vlm. A S. aureofaciens strain lacking pSA3239 was prepared. This deletion did not substantially affect growth and differentiation. A comparative analysis of secondary metabolites between both strains did not identify any product, except auricin and indigoidine, which is dependent upon pSA3239. Thus, the other three identified gene clusters are likely silent under these conditions.
Collapse
Affiliation(s)
- Erik Mingyar
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| | - Renata Novakova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| | - Renata Knirschova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| | - Lubomira Feckova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| | - Carmen Bekeova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| | - Jan Kormanec
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| |
Collapse
|
3
|
Peng S, Zeng A, Zhong L, Zhang R, Zhou M, Cheng Q, Zhao L, Wang T, Tan H, Qin Z. Three functional replication origins of the linear and artificially circularized plasmid SCP1 of Streptomyces coelicolor. Microbiology (Reading) 2013; 159:2127-2140. [DOI: 10.1099/mic.0.067363-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Shiyuan Peng
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Ana Zeng
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Li Zhong
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Ran Zhang
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Min Zhou
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Qiuxiang Cheng
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Liqian Zhao
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Tao Wang
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Huarong Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zhongjun Qin
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| |
Collapse
|
4
|
Recombinatorial biosynthesis of polyketides. J Ind Microbiol Biotechnol 2011; 39:503-11. [PMID: 22042517 DOI: 10.1007/s10295-011-1049-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 10/15/2011] [Indexed: 12/28/2022]
Abstract
Modular polyketide synthases (PKSs) from Streptomyces and related genera of bacteria produce many important pharmaceuticals. A program called CompGen was developed to carry out in silico homologous recombination between gene clusters encoding PKSs and determine whether recombinants have cluster architectures compatible with the production of polyketides. The chemical structure of recombinant polyketides was also predicted. In silico recombination was carried out for 47 well-characterised clusters. The predicted recombinants would produce 11,796 different polyketide structures. The molecular weights and average degree of reduction of the chemical structures are dispersed around the parental structures indicating that they are likely to include pharmaceutically interesting compounds. The details of the recombinants and the chemical structures were entered in a database called r-CSDB. The virtual compound library is a useful resource for computer-aided drug design and chemoinformatics strategies for finding pharmaceutically relevant chemical entities. A strategy to construct recombinant Streptomyces strains to produce these polyketides is described and the critical steps of mobilizing large biosynthetic clusters and producing new linear cloning vectors are illustrated by experimental data.
Collapse
|
5
|
Domazet-Lošo M, Haubold B. Alignment-free detection of horizontal gene transfer between closely related bacterial genomes. Mob Genet Elements 2011; 1:230-235. [PMID: 22312592 DOI: 10.4161/mge.1.3.18065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/13/2011] [Indexed: 11/19/2022] Open
Abstract
Bacterial epidemics are often caused by strains that have acquired their increased virulence through horizontal gene transfer. Due to this association with disease, the detection of horizontal gene transfer continues to receive attention from microbiologists and bioinformaticians alike. Most software for detecting transfer events is based on alignments of sets of genes or of entire genomes. But despite great advances in the design of algorithms and computer programs, genome alignment remains computationally challenging. We have therefore developed an alignment-free algorithm for rapidly detecting horizontal gene transfer between closely related bacterial genomes. Our implementation of this algorithm is called alfy for "ALignment Free local homologY" and is freely available from http://guanine.evolbio.mpg.de/alfy/. In this comment we demonstrate the application of alfy to the genomes of Staphylococcus aureus. We also argue that-contrary to popular belief and in spite of increasing computer speed-algorithmic optimization is becoming more, not less, important if genome data continues to accumulate at the present rate.
Collapse
Affiliation(s)
- Mirjana Domazet-Lošo
- Faculty of Electrical Engineering and Computing; Department of Applied Computing; University of Zagreb; Zagreb, Croatia
| | | |
Collapse
|
6
|
Sepulveda E, Vogelmann J, Muth G. A septal chromosome segregator protein evolved into a conjugative DNA-translocator protein. Mob Genet Elements 2011; 1:225-229. [PMID: 22479692 DOI: 10.4161/mge.1.3.18066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/12/2011] [Accepted: 09/13/2011] [Indexed: 02/01/2023] Open
Abstract
Streptomycetes, Gram-positive soil bacteria well known for the production of antibiotics feature a unique conjugative DNA transfer system. In contrast to classical conjugation which is characterized by the secretion of a pilot protein covalently linked to a single-stranded DNA molecule, in Streptomyces a double-stranded DNA molecule is translocated during conjugative transfer. This transfer involves a single plasmid encoded protein, TraB. A detailed biochemical and biophysical characterization of TraB, revealed a close relationship to FtsK, mediating chromosome segregation during bacterial cell division. TraB translocates plasmid DNA by recognizing 8-bp direct repeats located in a specific plasmid region clt. Similar sequences accidentally also occur on chromosomes and have been shown to be bound by TraB. We suggest that TraB mobilizes chromosomal genes by the interaction with these chromosomal clt-like sequences not relying on the integration of the conjugative plasmid into the chromosome.
Collapse
Affiliation(s)
- Edgardo Sepulveda
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT; Mikrobiologie/Biotechnologie; Eberhard Karls Universitaet Tuebingen; Tuebingen, Germany
| | | | | |
Collapse
|
7
|
Wagenknecht M, Meinhardt F. Replication-involved genes of pAL1, the linear plasmid of Arthrobacter nitroguajacolicus Rü61a--phylogenetic and transcriptional analysis. Plasmid 2010; 65:176-84. [PMID: 21185858 DOI: 10.1016/j.plasmid.2010.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 12/16/2010] [Accepted: 12/17/2010] [Indexed: 11/28/2022]
Abstract
The 113-kb pAL1 is the only Arthrobacter linear plasmid known; it has terminal inverted repeats and 5' covalently attached terminal proteins (TPs). The latter and a telomere-associated protein (Tap) are encoded by plasmid ORFs 102 and 101, respectively. As for Streptomyces linear replicons, in which both above proteins are instrumental in telomere patching, they are involved in pAL1 replication as well. However, the alignment of actinobacterial Taps and TPs revealed that pAL1 and the linear elements from Rhodococci comprise a discrete phylogenetic group, clearly delineated from the streptomycetes linear plasmids. In line with such findings is the same genetic arrangement of ORF 101 and 102 counterparts in the rhodococcal elements. Furthermore, the adjacent gene (ORF100) has matches in the rhodococcal plasmids as well. In linear elements of Streptomyces there is no ORF100 homolog. Two alternative annotations are possible for ORF100 gene products. As RT-PCR revealed cotranscription of ORFs 100-102, the ORF100 gene product is presumably involved in replicative processes. Taken also into consideration the likely absence of an internal replication origin (other than in Streptomyces linear elements), we assume a distinct replication/telomere patching mechanism for pAL1 type replicons.
Collapse
Affiliation(s)
- Martin Wagenknecht
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstr. 3, D-48149 Münster, Germany
| | | |
Collapse
|
8
|
Two internal origins of replication in Streptomyces linear plasmid pFRL1. Appl Environ Microbiol 2010; 76:5676-83. [PMID: 20601502 DOI: 10.1128/aem.02905-09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous reports showed that Streptomyces linear plasmids usually contain one internal replication locus. Here, we identified two new replication loci on pFRL1, one (rep1A-ncs1) next to a telomere and another (rep2A-ncs2) approximately 10 kb from it. The rep1A-ncs1 locus was able to direct replication independently in both linear and circular modes, whereas rep2A-ncs2 required an additional locus, rlrA-rorA, in order to direct propagation in linear mode. Rep1A protein bound to ncs1 in vitro. By quantitative reverse transcription-PCR and Northern hybridization, we showed that transcription of rep1A and rep2A varied during development and that each dominated at different time points. pFRL1-derived linear plasmids were inherited through spores more stably than circular plasmids and were more stable with pSLA2 telomeres than with pFRL1 telomeres in Streptomyces lividans.
Collapse
|
9
|
Linear plasmid SLP2 is maintained by partitioning, intrahyphal spread, and conjugal transfer in Streptomyces. J Bacteriol 2010; 192:307-15. [PMID: 19880600 DOI: 10.1128/jb.01192-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Low-copy-number plasmids generally encode a partitioning system to ensure proper segregation after replication. Little is known about partitioning of linear plasmids in Streptomyces. SLP2 is a 50-kb low-copy-number linear plasmid in Streptomyces lividans, which contains a typical parAB partitioning operon. In S. lividans and Streptomyces coelicolor, a parAB deletion resulted in moderate plasmid loss and growth retardation of colonies. The latter was caused by conjugal transfer from plasmid-containing hyphae to plasmidless hyphae. Deletion of the transfer (traB) gene eliminated conjugal transfer, lessened the growth retardation of colonies, and increased plasmid loss through sporulation cycles. The additional deletion of an intrahyphal spread gene (spd1) caused almost complete plasmid loss in a sporulation cycle and eliminated all growth retardation. Moreover, deletion of spd1 alone severely reduced conjugal transfer and stability of SLP2 in S. coelicolor M145 but had no effect on S. lividans TK64. These results revealed the following three systems for SLP2 maintenance: partitioning and spread for moving the plasmid DNA along the hyphae and into spores and conjugal transfer for rescuing plasmidless hyphae. In S. lividans, both spread and partitioning appear to overlap functionally, but in S. coelicolor, spread appears to play the main role.
Collapse
|
10
|
Xie P, Zeng A, Qin Z. cmdABCDEF, a cluster of genes encoding membrane proteins for differentiation and antibiotic production in Streptomyces coelicolor A3(2). BMC Microbiol 2009; 9:157. [PMID: 19650935 PMCID: PMC2782261 DOI: 10.1186/1471-2180-9-157] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 08/04/2009] [Indexed: 12/12/2022] Open
Abstract
Background Streptomyces coelicolor is the most studied Streptomyces species and an excellent model for studying differentiation and antibiotic production. To date, many genes have been identified to be required for its differentiation (e.g. bld genes for aerial growth and whi genes for sporulation) and antibiotics production (including actII-orf4, redD, cdaR as pathway-specific regulatory genes and afsR, absA1/A2 as pleiotropic regulatory genes). Results A gene cluster containing six genes (SCO4126-4131) was proved to be co-transcribed in S. coelicolor. Deletions of cmdABCDEF (SCO4126-4131) displayed defective sporulation including formation of aberrant branches, and abnormalities in chromosome segregation and spore septation. Disruption mutants of apparently orthologous genes of S. lividans and S. avermitilis also showed defective sporulation, implying that the role of these genes is similar among Streptomyces. Transcription of cmdB, and therefore presumably of the whole operon, was regulated developmentally. Five of the encoded proteins (CmdA, C, D, E, F) were predicted membrane proteins. The other, CmdB, a predicted ATP/GTP-binding protein with an ABC-transporter-ATPase domain shown here to be essential for its function, was also located on the cell membrane. These results indicate that CmdABCDEF proteins mainly affect Streptomyces differentiation at an early stage of aerial hyphae formation, and suggest that these proteins may form a complex on cell membrane for proper segregation of chromosomes. In addition, deletions of cmdABCDEF also revealed over-production of blue-pigmented actinorhodin (Act) via activation of transcription of the pathway-specific regulatory gene actII-orf4 of actinorhodin biosynthesis. Conclusion In this study, six co-transcribed genes cmdABCDEF were identified by their effects on differentiation and antibiotic production in Streptomyces coelicolor A3(2). These six membrane-located proteins are possibly assembled into a complex to function.
Collapse
Affiliation(s)
- Pengfei Xie
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai, PR China.
| | | | | |
Collapse
|
11
|
Zhang R, Xia H, Guo P, Qin Z. Variation in the replication loci of Streptomyces linear plasmids. FEMS Microbiol Lett 2008; 290:209-16. [PMID: 19054078 DOI: 10.1111/j.1574-6968.2008.01432.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Streptomyces linear plasmids start replication at centrally located loci, usually consisting of iterons and adjacent rep genes. Here, we identified four new replication loci from Streptomyces linear plasmids. A discontinuous locus, consisting of two genes and iterons separated by two nonessential genes, was required for replication of pRL2 in both linear and circular modes. A temperature-sensitive plasmid, pRL4, contained a replication locus, a noncoding sequence and a SAP1.35-like gene. A telomere-adjacent locus, another noncoding sequence and SAP1.1-like gene, was identified for replication of the large plasmid pFRL2. The replication locus of pSHK1 consisted of SCP1-rep-like genes and iterons. These results indicate an unexpected variety of components, positions and combinations of replication loci among Streptomyces linear plasmids.
Collapse
Affiliation(s)
- Ran Zhang
- Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | |
Collapse
|
12
|
Characterization of replication and conjugation of Streptomyces circular plasmids pFP1 and pFP11 and their ability to propagate in linear mode with artificially attached telomeres. Appl Environ Microbiol 2008; 74:3368-76. [PMID: 18390681 DOI: 10.1128/aem.00402-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many Streptomyces species harbor circular plasmids (8 to 31 kb) as well as linear plasmids (12 to 1,700 kb). We report the characterization of two newly detected circular plasmids, pFP11 (35,139 bp) and pFP1 (39,360 bp). As on linear plasmids, their replication loci comprise repA genes and adjacent iterons, to which RepA proteins bind specifically in vitro. Plasmids containing the minimal iterons plus the repA locus of pFP11 were inherited extremely unstably; par and additional loci were required for stable inheritance. Surprisingly, plasmids containing replication loci from pFP11 or Streptomyces circular plasmid SCP2 but not from pFP1, SLP1, or pIJ101 propagated in a stable linear mode when the telomeres of a linear plasmid were attached. These results indicate bidirectional replication for pFP11 and SCP2. Both pFP11 and pFP1 contain, for plasmid transfer, a major functional traB gene (encoding a DNA translocase typical for Streptomyces plasmids) as well as, surprisingly, a putative traA gene (encoding a DNA nickase, characteristic of single-stranded DNA transfer of gram-negative plasmids), but this did not appear to be functional, at least in isolation.
Collapse
|