1
|
Jarmusch SA, Schostag MD, Yang Z, Wang J, Andersen AJC, Weber T, Ding L. Lydicamycins induce morphological differentiation in actinobacterial interactions. Appl Environ Microbiol 2025:e0029525. [PMID: 40358240 DOI: 10.1128/aem.00295-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/08/2025] [Indexed: 05/15/2025] Open
Abstract
Streptomyces are major players in soil microbiomes; however, their interactions with other actinobacteria remain largely unexplored. Given the complex developmental cycle of actinobacteria, a multi-omics approach is essential to unravel the interactions. This study originated from the observation of induced morphogenesis between two environmental isolates from the same site, Kitasatospora sp. P9-2B1 and Streptomyces sp. P9-2B2. When co-cultivated on potato dextrose agar, P9-2B2 triggered a wave-like sporulation pattern in strain P9-2B1. Mass spectrometry imaging revealed that a suite of lydicamycins accumulated in the induced sporulation zone. Using CRISPR base editing, lydicamycin-deficient mutants were generated, and the inducible sporulation was ceased, confirming the role of lydicamycin in triggering morphological differentiation. In agar diffusion assays, pure lydicamycin was inhibitory when added concurrently with bacterial inoculation but induced sporulation when added later. The same inducible sporulation wave phenomenon was also observed in additional environmental isolates and Streptomyces coelicolor M145 and M1146. Transcriptomics analysis revealed differential gene expression linked to early aerial mycelium development at 4 days into co-culture, the transitional genes responsible for the development of spores at day 9, together with numerous genes for overall stress responses, particularly cell envelope stress responses. These findings highlight previously unrecognized actinobacteria interactions mediated by lydicamycins, suggesting a broader ecological role of bioactive metabolites in microbiomes. IMPORTANCE Moving beyond an antibiotic discovery mindset, exploring the chemical ecology of secondary metabolites is key to maximizing their biotechnological potential. Dual cultures offer reduced complexity, enabling an in-depth analysis of these interactions via multi-omics, which provides complementary data for more robust conclusions. This study sheds light on the role of lydicamycins in dual cultures with other actinobacteria and establishes an integral roadmap for future chemical ecology work between microorganisms, particularly through mass spectrometry imaging.
Collapse
Affiliation(s)
- Scott A Jarmusch
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Morten D Schostag
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Zhijie Yang
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jinglin Wang
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Aaron J C Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ling Ding
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
2
|
Hohmann M, Iliasov D, Larralde M, Johannes W, Janßen KP, Zeller G, Mascher T, Gulder TAM. Heterologous Expression of a Cryptic BGC from Bilophila sp. Provides Access to a Novel Family of Antibacterial Thiazoles. ACS Synth Biol 2025; 14:967-978. [PMID: 39999339 PMCID: PMC11934131 DOI: 10.1021/acssynbio.5c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
Human health is greatly influenced by the gut microbiota and microbiota imbalance can lead to the development of diseases. It is widely acknowledged that the interaction of bacteria within competitive ecosystems is influenced by their specialized metabolites, which act, e.g., as antibacterials or siderophores. However, our understanding of the occurrence and impact of such natural products in the human gut microbiome remains very limited. As arylthiazole siderophores are an emerging family of growth-promoting molecules in pathogenic bacteria, we analyzed a metagenomic data set from the human microbiome and thereby identified the bil-BGC, which originates from an uncultured Bilophila strain. Through gene synthesis and BGC assembly, heterologous expression and mutasynthetic experiments, we discovered the arylthiazole natural products bilothiazoles A-F. While established activities of related molecules indicate their involvement in metal-binding and -uptake, which could promote the growth of pathogenic strains, we also found antibiotic activity for some bilothiazoles. This is supported by biosensor-experiments, where bilothiazoles C and E show PrecA-suppressing activity, while bilothiazole F induces PblaZ, a biosensor characteristic for β-lactam antibiotics. These findings serve as a starting point for investigating the role of bilothiazoles in the pathogenicity of Bilophila species in the gut.
Collapse
Affiliation(s)
- Maximilian Hohmann
- Chair
of Technical Biochemistry, TUD Dresden University
of Technology, Bergstraße 66, 01069 Dresden, Germany
| | - Denis Iliasov
- General
Microbiology, TUD Dresden University of
Technology, Zellescher
Weg 20b, 01217 Dresden, Germany
| | - Martin Larralde
- Leiden
University Center for Infectious Diseases (LUCID), Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Widya Johannes
- Department
of Surgery, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Klaus-Peter Janßen
- Department
of Surgery, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Georg Zeller
- Leiden
University Center for Infectious Diseases (LUCID) and Center for Microbiome
Analyses and Therapeutics (CMAT), Leiden
University Medical Center, 2333 ZA Leiden, Netherlands
| | - Thorsten Mascher
- General
Microbiology, TUD Dresden University of
Technology, Zellescher
Weg 20b, 01217 Dresden, Germany
| | - Tobias A. M. Gulder
- Chair
of Technical Biochemistry, TUD Dresden University
of Technology, Bergstraße 66, 01069 Dresden, Germany
- Department
of Natural Product Biotechnology, Helmholtz Institute for Pharmaceutical
Research Saarland (HIPS), Helmholtz Centre for Infection Research
(HZI) and Department of Pharmacy, PharmaScienceHub (PSH), Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
3
|
Gu Y, Liu Y, Mao W, Peng Y, Han X, Jin H, Xu J, Chang L, Hou Y, Shen X, Liu X, Yang Y. Functional versatility of Zur in metal homeostasis, motility, biofilm formation, and stress resistance in Yersinia pseudotuberculosis. Microbiol Spectr 2024; 12:e0375623. [PMID: 38534119 PMCID: PMC11064496 DOI: 10.1128/spectrum.03756-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
Zur (zinc uptake regulator) is a significant member of the Fur (ferric uptake regulator) superfamily, which is widely distributed in bacteria. Zur plays crucial roles in zinc homeostasis and influences cell development and environmental adaptation in various species. Yersinia pseudotuberculosis is a Gram-negative enteric that pathogen usually serves as a model organism in pathogenicity studies. The regulatory effects of Zur on the zinc transporter ZnuABC and the protein secretion system T6SS have been documented in Y. pseudotuberculosis. In this study, a comparative transcriptomics analysis between a ∆zur mutant and the wild-type (WT) strain of Y. pseudotuberculosis was conducted using RNA-seq. This analysis revealed global regulation by Zur across multiple functional categories, including membrane transport, cell motility, and molecular and energy metabolism. Additionally, Zur mediates the homeostasis not only of zinc but also ferric and magnesium in vivo. There was a notable decrease in 35 flagellar biosynthesis and assembly-related genes, leading to reduced swimming motility in the ∆zur mutant strain. Furthermore, Zur upregulated multiple simple sugar and oligopeptide transport system genes by directly binding to their promoters. The absence of Zur inhibited biofilm formation as well as reduced resistance to chloramphenicol and acidic stress. This study illustrates the comprehensive regulatory functions of Zur, emphasizing its importance in stress resistance and pathogenicity in Y. pseudotuberculosis. IMPORTANCE Bacteria encounter diverse stresses in the environment and possess essential regulators to modulate the expression of genes in responding to the stresses for better fitness and survival. Zur (zinc uptake regulator) plays a vital role in zinc homeostasis. Studies of Zur from multiple species reviewed that it influences cell development, stress resistance, and virulence of bacteria. Y. pseudotuberculosis is an enteric pathogen that serves a model organism in the study of pathogenicity, virulence factors, and mechanism of environmental adaptation. In this study, transcriptomics analysis of Zur's regulons was conducted in Y. pseudotuberculosis. The functions of Zur as a global regulator in metal homeostasis, motility, nutrient acquisition, glycan metabolism, and nucleotide metabolism, in turn, increasing the biofilm formation, stress resistance, and virulence were reviewed. The importance of Zur in environmental adaptation and pathogenicity of Y. pseudotuberculosis was emphasized.
Collapse
Affiliation(s)
- Yanchao Gu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yongde Liu
- Qingyang Longfeng Sponge City Construction Management and Operation Co., Ltd, Qingyang, China
| | - Wei Mao
- Qingyang Longfeng Sponge City Construction Management and Operation Co., Ltd, Qingyang, China
| | - Ying Peng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xiaoru Han
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Han Jin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Jingling Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Liyang Chang
- College of Enology, Northwest A&F University, Yangling, China
| | - Yixin Hou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xingyu Liu
- General Research Institute for Nonferrous Metals, Beijing, China
| | - Yantao Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Yang L, Yi L, Gong B, Chen L, Li M, Zhu X, Duan Y, Huang Y. Chalkophomycin Biosynthesis Revealing Unique Enzyme Architecture for a Hybrid Nonribosomal Peptide Synthetase and Polyketide Synthase. Molecules 2024; 29:1982. [PMID: 38731473 PMCID: PMC11085572 DOI: 10.3390/molecules29091982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Chalkophomycin is a novel chalkophore with antibiotic activities isolated from Streptomyces sp. CB00271, while its potential in studying cellular copper homeostasis makes it an important probe and drug lead. The constellation of N-hydroxylpyrrole, 2H-oxazoline, diazeniumdiolate, and methoxypyrrolinone functional groups into one compact molecular architecture capable of coordinating cupric ions draws interest to unprecedented enzymology responsible for chalkophomycin biosynthesis. To elucidate the biosynthetic machinery for chalkophomycin production, the chm biosynthetic gene cluster from S. sp. CB00271 was identified, and its involvement in chalkophomycin biosynthesis was confirmed by gene replacement. The chm cluster was localized to a ~31 kb DNA region, consisting of 19 open reading frames that encode five nonribosomal peptide synthetases (ChmHIJLO), one modular polyketide synthase (ChmP), six tailoring enzymes (ChmFGMNQR), two regulatory proteins (ChmAB), and four resistance proteins (ChmA'CDE). A model for chalkophomycin biosynthesis is proposed based on functional assignments from sequence analysis and structure modelling, and is further supported by analogy to over 100 chm-type gene clusters in public databases. Our studies thus set the stage to fully investigate chalkophomycin biosynthesis and to engineer chalkophomycin analogues through a synthetic biology approach.
Collapse
Affiliation(s)
- Long Yang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China;
- Hefei Comprehensive National Science Center, Institute of Health and Medicine, Hefei 230093, China;
| | - Liwei Yi
- Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China; (L.Y.); (B.G.); (M.L.); (X.Z.); (Y.D.)
- Department of Pharmacy, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Bang Gong
- Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China; (L.Y.); (B.G.); (M.L.); (X.Z.); (Y.D.)
- College of Pharmacy, Hunan Vocational College of Science and Technology, Changsha 410004, China
| | - Lili Chen
- Hefei Comprehensive National Science Center, Institute of Health and Medicine, Hefei 230093, China;
| | - Miao Li
- Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China; (L.Y.); (B.G.); (M.L.); (X.Z.); (Y.D.)
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China; (L.Y.); (B.G.); (M.L.); (X.Z.); (Y.D.)
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha 410011, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha 410011, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China; (L.Y.); (B.G.); (M.L.); (X.Z.); (Y.D.)
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha 410011, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha 410011, China
| | - Yong Huang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China;
- Hefei Comprehensive National Science Center, Institute of Health and Medicine, Hefei 230093, China;
- Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China; (L.Y.); (B.G.); (M.L.); (X.Z.); (Y.D.)
| |
Collapse
|
5
|
Clara L, David C, Laila S, Virginie R, Marie-Joelle V. Comparative Proteomic Analysis of Transcriptional and Regulatory Proteins Abundances in S. lividans and S. coelicolor Suggests a Link between Various Stresses and Antibiotic Production. Int J Mol Sci 2022; 23:ijms232314792. [PMID: 36499130 PMCID: PMC9739823 DOI: 10.3390/ijms232314792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Streptomyces coelicolor and Streptomyces lividans constitute model strains to study the regulation of antibiotics biosynthesis in Streptomyces species since these closely related strains possess the same pathways directing the biosynthesis of various antibiotics but only S. coelicolor produces them. To get a better understanding of the origin of the contrasted abilities of these strains to produce bioactive specialized metabolites, these strains were grown in conditions of phosphate limitation or proficiency and a comparative analysis of their transcriptional/regulatory proteins was carried out. The abundance of the vast majority of the 355 proteins detected greatly differed between these two strains and responded differently to phosphate availability. This study confirmed, consistently with previous studies, that S. coelicolor suffers from nitrogen stress. This stress likely triggers the degradation of the nitrogen-rich peptidoglycan cell wall in order to recycle nitrogen present in its constituents, resulting in cell wall stress. When an altered cell wall is unable to fulfill its osmo-protective function, the bacteria also suffer from osmotic stress. This study thus revealed that these three stresses are intimately linked in S. coelicolor. The aggravation of these stresses leading to an increase of antibiotic biosynthesis, the connection between these stresses, and antibiotic production are discussed.
Collapse
Affiliation(s)
- Lejeune Clara
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Cornu David
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Sago Laila
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Redeker Virginie
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Laboratory of Neurodegenerative Diseases, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA) and Centre National de la Recherche Scientifique (CNRS), Molecular Imaging Center (MIRCen), Institut François Jacob, Université Paris-Saclay, 92260 Fontenay-aux-Roses, France
| | - Virolle Marie-Joelle
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Correspondence:
| |
Collapse
|
6
|
Zinc-Responsive Regulator Zur Regulates Zinc Homeostasis, Secondary Metabolism, and Morphological Differentiation in Streptomyces avermitilis. Appl Environ Microbiol 2022; 88:e0027822. [PMID: 35323024 DOI: 10.1128/aem.00278-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Zinc is an essential cofactor for many metal enzymes and transcription regulators. Zn2+ availability has long been known to affect antibiotic production and morphological differentiation of Streptomyces species. However, the molecular mechanism whereby zinc regulates these processes remains unclear. We investigated the regulatory roles of the zinc-sensing regulator Zur in Streptomyces avermitilis. Our findings demonstrate that Zur plays an essential role in maintaining zinc homeostasis by repressing the expression of the zinc uptake system ZnuACB and alternative non-zinc-binding ribosomal proteins and promoting the expression of zinc exporter ZitB. Deletion of the zur gene resulted in decreased production of avermectin and oligomycin and delayed morphological differentiation, and these parameters were restored close to wild-type levels in a zur-complemented strain. Zur bound specifically to Zur box in the promoter regions of avermectin pathway-specific activator gene aveR, oligomycin polyketide synthase gene olmA1, and filipin biosynthetic pathway-specific regulatory genes pteR and pteF. Analyses by reverse transcription quantitative PCR and luciferase reporter systems indicated that Zur directly activates the transcription of these genes, i.e., that Zur directly activates biosynthesis of avermectin and oligomycin. Zur positively regulated morphological development by repressing the transcription of differentiation-related genes ssgB and minD2. Our findings, taken together, demonstrate that Zur in S. avermitilis directly controls zinc homeostasis, biosynthesis of avermectin and oligomycin, and morphological differentiation. IMPORTANCE Biosynthesis of secondary metabolites and morphological differentiation in bacteria are affected by environmental signals. The molecular mechanisms whereby zinc availability affects secondary metabolism and morphological differentiation remain poorly understood. We identified several new target genes of the zinc response regulator Zur in Streptomyces avermitilis, the industrial producer of avermectin. Zur was found to directly and positively control avermectin production, oligomycin production, and morphological differentiation in response to extracellular Zn2+ levels. Our findings clarify the regulatory functions of Zur in Streptomyces, which involve linking environmental Zn2+ status with control of antibiotic biosynthetic pathways and morphological differentiation.
Collapse
|
7
|
Lejeune C, Sago L, Cornu D, Redeker V, Virolle MJ. A Proteomic Analysis Indicates That Oxidative Stress Is the Common Feature Triggering Antibiotic Production in Streptomyces coelicolor and in the pptA Mutant of Streptomyces lividans. Front Microbiol 2022; 12:813993. [PMID: 35392450 PMCID: PMC8981147 DOI: 10.3389/fmicb.2021.813993] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/30/2021] [Indexed: 11/29/2022] Open
Abstract
In most Streptomyces species, antibiotic production is triggered in phosphate limitation and repressed in phosphate proficiency. However, the model strain, Streptomyces coelicolor, escapes this general rule and produces actinorhoddin (ACT), a polyketide antibiotic, even more abundantly in phosphate proficiency than in phosphate limitation. ACT was shown to bear "anti-oxidant" properties suggesting that its biosynthesis is triggered by oxidative stress. Interestingly, Streptomyces lividans, a strain closely related to S. coelicolor, does not produce ACT in any phosphate condition whereas its pptA/sco4144 mutant produces ACT but only in phosphate limitation. In order to define the potentially common features of the ACT producing strains, these three strains were grown in condition of low and high phosphate availability, and a comparative quantitative analysis of their proteomes was carried out. The abundance of proteins of numerous pathways differed greatly between S. coelicolor and the S. lividans strains, especially those of central carbon metabolism and respiration. S. coelicolor is characterized by the high abundance of the complex I of the respiratory chain thought to generate reactive oxygen/nitrogen species and by a weak glycolytic activity causing a low carbon flux through the Pentose Phosphate Pathway resulting into the low generation of NADPH, a co-factor of thioredoxin reductases necessary to combat oxidative stress. Oxidative stress is thus predicted to be high in S. coelicolor. In contrast, the S. lividans strains had rather similar proteins abundance for most pathways except for the transhydrogenases SCO7622-23, involved in the conversion of NADPH into NADH. The poor abundance of these enzymes in the pptA mutant suggested a deficit in NADPH. Indeed, PptA is an accessory protein forcing polyphosphate into a conformation allowing their efficient use by various enzymes taking polyphosphate as a donor of phosphate and energy, including the ATP/Polyphosphate-dependent NAD kinase SCO1781. In phosphate limitation, this enzyme would mainly use polyphosphate to phosphorylate NAD into NADP, but this phosphorylation would be inefficient in the pptA mutant resulting in low NADP(H) levels and thus high oxidative stress. Altogether, our results indicated that high oxidative stress is the common feature triggering ACT biosynthesis in S. coelicolor and in the pptA mutant of S. lividans.
Collapse
Affiliation(s)
- Clara Lejeune
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Laila Sago
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - David Cornu
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Virginie Redeker
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
- Institut Francois Jacob, Molecular Imaging Center (MIRCen), Laboratory of Neurodegenerative Diseases, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Marie-Joelle Virolle
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| |
Collapse
|
8
|
Liu M, Xu W, Zhu Y, Cui X, Pang X. The Response Regulator MacR and its Potential in Improvement of Antibiotic Production in Streptomyces coelicolor. Curr Microbiol 2021; 78:3696-3707. [PMID: 34426858 DOI: 10.1007/s00284-021-02633-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022]
Abstract
We previously reported that the two-component system MacRS regulates morphogenesis and production of the blue-pigmented antibiotic actinorhodin (ACT) in Streptomyces coelicolor. In this study, the role of MacRS was further extended to include control of the production of the red-pigmented antibiotic undecylprodigiosin (RED) and the calcium-dependent antibiotic (CDA), and control of other important cellular activities. Our data indicated that disruption of the MacRS TCS reduced production not only of ACT but also of RED and CDA. RNA-Seq analysis revealed that genes involved in both secondary metabolism and primary metabolism are differentially expressed in the MacRS deletion mutant ΔmacRS. Moreover, we found that genes of the Zur regulon are also markedly downregulated in ΔmacRS, suggesting a role for macRS in zinc homeostasis. In addition to previously identified MacR sites with strong matches to the MacR consensus recognition sequence, a genome-wide search revealed over one hundred less-stringent matches, including potential sites upstream of absR1, crgA, and smeA. Electrophoretic mobility shift assays demonstrated that MacR binds some of these sites in vitro. Although there is no strong MacR site upstream of the ACT regulatory gene actII-orf4 (sco5085), we showed that an engineered MacR site enhanced ACT production, providing an approach for modulating production of useful compounds. Altogether, our work suggests an important role for MacRS in a range of cellular activities in Streptomyces and its potential application in strain engineering.
Collapse
Affiliation(s)
- Meng Liu
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Wenhao Xu
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yanping Zhu
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiqing Cui
- Deqiang Biology Co. Ltd, Harbin, 150060, China.
| | - Xiuhua Pang
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
9
|
Edmonds KA, Jordan MR, Giedroc DP. COG0523 proteins: a functionally diverse family of transition metal-regulated G3E P-loop GTP hydrolases from bacteria to man. Metallomics 2021; 13:6327566. [PMID: 34302342 PMCID: PMC8360895 DOI: 10.1093/mtomcs/mfab046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/15/2021] [Indexed: 01/13/2023]
Abstract
Transition metal homeostasis ensures that cells and organisms obtain sufficient metal to meet cellular demand while dispensing with any excess so as to avoid toxicity. In bacteria, zinc restriction induces the expression of one or more Zur (zinc-uptake repressor)-regulated Cluster of Orthologous Groups (COG) COG0523 proteins. COG0523 proteins encompass a poorly understood sub-family of G3E P-loop small GTPases, others of which are known to function as metallochaperones in the maturation of cobalamin (CoII) and NiII cofactor-containing metalloenzymes. Here, we use genomic enzymology tools to functionally analyse over 80 000 sequences that are evolutionarily related to Acinetobacter baumannii ZigA (Zur-inducible GTPase), a COG0523 protein and candidate zinc metallochaperone. These sequences segregate into distinct sequence similarity network (SSN) clusters, exemplified by the ZnII-Zur-regulated and FeIII-nitrile hydratase activator CxCC (C, Cys; X, any amino acid)-containing COG0523 proteins (SSN cluster 1), NiII-UreG (clusters 2, 8), CoII-CobW (cluster 4), and NiII-HypB (cluster 5). A total of five large clusters that comprise ≈ 25% of all sequences, including cluster 3 which harbors the only structurally characterized COG0523 protein, Escherichia coli YjiA, and many uncharacterized eukaryotic COG0523 proteins. We also establish that mycobacterial-specific protein Y (Mpy) recruitment factor (Mrf), which promotes ribosome hibernation in actinomycetes under conditions of ZnII starvation, segregates into a fifth SSN cluster (cluster 17). Mrf is a COG0523 paralog that lacks all GTP-binding determinants as well as the ZnII-coordinating Cys found in CxCC-containing COG0523 proteins. On the basis of this analysis, we discuss new perspectives on the COG0523 proteins as cellular reporters of widespread nutrient stress induced by ZnII limitation.
Collapse
Affiliation(s)
- Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Matthew R Jordan
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
10
|
Vibrio cholerae's mysterious Seventh Pandemic island (VSP-II) encodes novel Zur-regulated zinc starvation genes involved in chemotaxis and cell congregation. PLoS Genet 2021; 17:e1009624. [PMID: 34153031 PMCID: PMC8248653 DOI: 10.1371/journal.pgen.1009624] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/01/2021] [Accepted: 05/27/2021] [Indexed: 11/19/2022] Open
Abstract
Vibrio cholerae is the causative agent of cholera, a notorious diarrheal disease that is typically transmitted via contaminated drinking water. The current pandemic agent, the El Tor biotype, has undergone several genetic changes that include horizontal acquisition of two genomic islands (VSP-I and VSP-II). VSP presence strongly correlates with pandemicity; however, the contribution of these islands to V. cholerae's life cycle, particularly the 26-kb VSP-II, remains poorly understood. VSP-II-encoded genes are not expressed under standard laboratory conditions, suggesting that their induction requires an unknown signal from the host or environment. One signal that bacteria encounter under both host and environmental conditions is metal limitation. While studying V. cholerae's zinc-starvation response in vitro, we noticed that a mutant constitutively expressing zinc starvation genes (Δzur) congregates at the bottom of a culture tube when grown in a nutrient-poor medium. Using transposon mutagenesis, we found that flagellar motility, chemotaxis, and VSP-II encoded genes were required for congregation. The VSP-II genes encode an AraC-like transcriptional activator (VerA) and a methyl-accepting chemotaxis protein (AerB). Using RNA-seq and lacZ transcriptional reporters, we show that VerA is a novel Zur target and an activator of the nearby AerB chemoreceptor. AerB interfaces with the chemotaxis system to drive oxygen-dependent congregation and energy taxis. Importantly, this work suggests a functional link between VSP-II, zinc-starved environments, and energy taxis, yielding insights into the role of VSP-II in a metal-limited host or aquatic reservoir.
Collapse
|
11
|
Cai R, Gao F, Pan J, Hao X, Yu Z, Qu Y, Li J, Wang D, Wang Y, Shen X, Liu X, Yang Y. The transcriptional regulator Zur regulates the expression of ZnuABC and T6SS4 in response to stresses in Yersinia pseudotuberculosis. Microbiol Res 2021; 249:126787. [PMID: 33991717 DOI: 10.1016/j.micres.2021.126787] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 01/21/2023]
Abstract
Zinc homeostasis is crucial for the development and stress resistance of bacteria in the environment. Serial zinc sensing transcriptional regulators, zinc transporters and zinc binding proteins were found to maintain the zinc homeostasis in bacteria. Zur is a zinc uptake regulator that is widely distributed in species, and ZnuABC, as well as the Type VI Secretion System (T6SS4) function in zinc acquisition. Here, we report that the regulator Zur inhibits the expression of the ZnuABC which inhibition could be eliminated at low zinc level, and upregulates the T6SS4 operon in Yersinia pseudotuberculosis to facilitate Zn2+ uptake and oxidative stress resistance. Zur regulates the expression of ZnuABC and T6SS4 by directly binding to their promoter regions. Zur senses the Zn2+ concentration and represses ZnuABC in a Zn2+-containing environment. Zur works as an auxiliary regular activator of T6SS4, facilitating oxidative stress resistance. This study revealed the dual function of regulator Zur on ZnuABC and T6SS4, and enriched the knowledge of Zn2+ homeostasis maintenance in Y. pseudotuberculosis.
Collapse
Affiliation(s)
- Ran Cai
- Beijing Capital Co., LTD, Beijing, 100044, China
| | - Fen Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Junfeng Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Xinwei Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Zonglan Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yichen Qu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Jialin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Dandan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Xingyu Liu
- General Research Institute for Nonferrous Metals, Beijing, 100088, China.
| | - Yantao Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
12
|
Goethe E, Gieseke A, Laarmann K, Lührs J, Goethe R. Identification and Characterization of Mycobacterium smegmatis and Mycobacterium avium subsp. paratuberculosis Zinc Transporters. J Bacteriol 2021; 203:JB.00049-21. [PMID: 33722846 PMCID: PMC8117522 DOI: 10.1128/jb.00049-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/04/2021] [Indexed: 11/20/2022] Open
Abstract
Zinc uptake in bacteria is essential to maintain cellular homeostasis and survival. ZnuABC is an important zinc importer of numerous bacterial genera, which is expressed to restore zinc homeostasis when the cytosolic concentration decreases beyond a critical threshold. Upon zinc limitation the fast-growing nonpathogenic organism Mycobacterium smegmatis (MSMEG) as well as the ruminant pathogen M. avium subsp. paratuberculosis (MAP) increases expression of genes encoding ZnuABC homologues, but also of genes encoding other transporters. This suggests an involvement of these transporters in zinc homeostasis. Here we characterized the putative zinc transporters of MSMEG (ZnuABC and ZnuABC2) and MAP (ZnuABC, MptABC, and MAP3774-76). Deletion of either ZnuABC or ZnuABC2 in MSMEG did not lead to growth defects, but to an increased expression of zinc marker genes in MSMEGΔznuABC, indicating cytosolic zinc limitation. However, chromatin immunoprecipitation proved direct binding of the global zinc regulator Zur to promoter regions of both znuABC and znuABC2. Simultaneous deletion of both transporters caused severe growth defects, which could be restored either by homologous complementation with single ZnuABC transporters or supplementation of growth media with zinc but not iron, manganese, cobalt, or magnesium. Heterologous complementation of the double mutant with MAP transporters also resulted in reconstitution of growth. Nonradioactive FluoZinTM-3AM zinc uptake assays directly revealed the competence of all transporters to import zinc. Finally, structural and phylogenetic analyses provided evidence of a novel class of ZnuABC transporters represented by the ZnuABC2 of MSMEG, which is present only in actinobacteria, mainly in the genera Nocardia, Streptomyces and fast growing Mycobacteria IMPORTANCEZinc is necessary for bacterial growth but simultaneously toxic when in excess. Hence, bacterial cells have developed systems to alter intracellular concentration. Regulation of these systems is primarily executed at transcriptional level by regulator proteins which sense femtomolar changes in the zinc level. In environmental and pathogenic mycobacteria zinc starvation induces expression of common zinc import systems such as the ZnuABC transporter, but also of other additional not yet characterized transport systems. In this study, we characterized the role of such systems in zinc transport. We showed that transport systems of both species whose transcription is induced upon zinc starvation can exchangeably restore cellular zinc homeostasis in transporter deficient mutants by transporting zinc into the cell.
Collapse
Affiliation(s)
- Elke Goethe
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ayla Gieseke
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kristin Laarmann
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Janita Lührs
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ralph Goethe
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
13
|
Kandari D, Joshi H, Bhatnagar R. Zur: Zinc-Sensing Transcriptional Regulator in a Diverse Set of Bacterial Species. Pathogens 2021; 10:344. [PMID: 33804265 PMCID: PMC8000910 DOI: 10.3390/pathogens10030344] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 12/18/2022] Open
Abstract
Zinc (Zn) is the quintessential d block metal, needed for survival in all living organisms. While Zn is an essential element, its excess is deleterious, therefore, maintenance of its intracellular concentrations is needed for survival. The living organisms, during the course of evolution, developed proteins that can track the limitation or excess of necessary metal ions, thus providing survival benefits under variable environmental conditions. Zinc uptake regulator (Zur) is a regulatory transcriptional factor of the FUR superfamily of proteins, abundant among the bacterial species and known for its intracellular Zn sensing ability. In this study, we highlight the roles played by Zur in maintaining the Zn levels in various bacterial species as well as the fact that in recent years Zur has emerged not only as a Zn homeostatic regulator but also as a protein involved directly or indirectly in virulence of some pathogens. This functional aspect of Zur could be exploited in the ventures for the identification of newer antimicrobial targets. Despite extensive research on Zur, the insights into its overall regulon and its moonlighting functions in various pathogens yet remain to be explored. Here in this review, we aim to summarise the disparate functional aspects of Zur proteins present in various bacterial species.
Collapse
Affiliation(s)
- Divya Kandari
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (D.K.); (H.J.)
| | - Hemant Joshi
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (D.K.); (H.J.)
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (D.K.); (H.J.)
- Banaras Hindu University, Banaras 221005, India
| |
Collapse
|
14
|
Abstract
Zinc homeostasis is crucial for bacterial cells, since imbalances affect viability. However, in mycobacteria, knowledge of zinc metabolism is incomplete. Mycobacterium smegmatis (MSMEG) is an environmental, nonpathogenic Mycobacterium that is widely used as a model organism to study mycobacterial metabolism and pathogenicity. How MSMEG maintains zinc homeostasis is largely unknown. SmtB and Zur are important regulators of bacterial zinc metabolism. In mycobacteria, these regulators are encoded by an operon, whereas in other bacterial species, SmtB and Zur are encoded on separate loci. Here, we show that the smtB-zur operon is consistently present within the genus Mycobacterium but otherwise found only in Nocardia, Saccharothrix, and Corynebacterium diphtheriae By RNA deep sequencing, we determined the Zur and SmtB regulons of MSMEG and compared them with transcriptional responses after zinc starvation or excess. We found an exceptional genomic clustering of genes whose expression was strongly induced by zur deletion and zinc starvation. These genes encoded zinc importers such as ZnuABC and three additional putative zinc transporters, including the porin MspD, as well as alternative ribosomal proteins. In contrast, only a few genes were affected by deletion of smtB and zinc excess. The zinc exporter ZitA was most prominently regulated by SmtB. Moreover, transcriptional analyses in combination with promoter and chromatin immunoprecipitation assays revealed a special regulation of the smtB-zur operon itself: an apparently zinc-independent, constitutive expression of smtB-zur resulted from sensitive coregulation by both SmtB and Zur. Overall, our data revealed yet unknown peculiarities of mycobacterial zinc homeostasis.IMPORTANCE Zinc is crucial for many biological processes, as it is an essential cofactor of enzymes and a structural component of regulatory and DNA binding proteins. Hence, all living cells require zinc to maintain constant intracellular levels. However, in excess, zinc is toxic. Therefore, cellular zinc homeostasis needs to be tightly controlled. In bacteria, this is achieved by transcriptional regulators whose activity is mediated via zinc-dependent conformational changes promoting or preventing their binding to DNA. SmtB and Zur are important antagonistically acting bacterial regulators in mycobacteria. They sense changes in zinc concentrations in the femtomolar range and regulate transcription of genes for zinc acquisition, storage, and export. Here, we analyzed the role of SmtB and Zur in zinc homeostasis in Mycobacterium smegmatis Our results revealed novel insights into the transcriptional processes of zinc homeostasis in mycobacteria and their regulation.
Collapse
|
15
|
Edenhart S, Denneler M, Spohn M, Doskocil E, Kavšček M, Amon T, Kosec G, Smole J, Bardl B, Biermann M, Roth M, Wohlleben W, Stegmann E. Metabolic engineering of Amycolatopsis japonicum for optimized production of [S,S]-EDDS, a biodegradable chelator. Metab Eng 2020; 60:148-156. [PMID: 32302770 DOI: 10.1016/j.ymben.2020.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 11/16/2022]
Abstract
The actinomycete Amycolatopsis japonicum is the producer of the chelating compound [S,S]-ethylenediamine-disuccinc acid (EDDS). [S,S]-EDDS is an isomer of ethylenediamine-tetraacetic acid (EDTA), an economically important chelating compound that suffers from an extremely poor degradability. Frequent use of the persistent EDTA in various industrial and domestic applications has caused an accumulation of EDTA in soil as well as in aqueous environments. As a consequence, EDTA is the highest concentrated anthropogenic compound present in water reservoirs. The [S,S]-form of EDDS has chelating properties similar to EDTA, however, in contrast to EDTA it is readily biodegradable. In order to compete with the cost-effective chemical synthesis of EDTA, we aimed to optimize the biotechnological production of [S,S]-EDDS in A. japonicum by using metabolic engineering approaches. Firstly, we integrated several copies of the [S,S]-EDDS biosynthetic genes into the chromosome of A. japonicum and replaced the native zinc responsive promoter with the strong synthetic constitutive promoter SP44*. Secondly, we increased the supply of O-phospho-serine, the direct precursor of [S,S]-EDDS. The combination of these approaches together with the optimized fermentation process led to a significant improvement in [S,S]-EDDS up to 9.8 g/L with a production rate of 4.3 mg/h/g DCW.
Collapse
Affiliation(s)
- Simone Edenhart
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology, University of Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany
| | - Marius Denneler
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology, University of Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany
| | - Marius Spohn
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology, University of Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany
| | - Eva Doskocil
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology, University of Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany
| | - Martin Kavšček
- Acies Bio d.o.o., Tehnoloski Park 21, 1000, Ljubljana, Slovenia
| | - Tadeja Amon
- Acies Bio d.o.o., Tehnoloski Park 21, 1000, Ljubljana, Slovenia
| | - Gregor Kosec
- Acies Bio d.o.o., Tehnoloski Park 21, 1000, Ljubljana, Slovenia
| | - Jernej Smole
- Acies Bio d.o.o., Tehnoloski Park 21, 1000, Ljubljana, Slovenia
| | - Bettina Bardl
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Bio Pilot Plant, Beutenbergstr. 11A, 07745, Jena, Germany
| | - Michael Biermann
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Bio Pilot Plant, Beutenbergstr. 11A, 07745, Jena, Germany
| | - Martin Roth
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Bio Pilot Plant, Beutenbergstr. 11A, 07745, Jena, Germany
| | - Wolfgang Wohlleben
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology, University of Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Germany
| | - Evi Stegmann
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology, University of Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Germany.
| |
Collapse
|
16
|
Hofmann M, Retamal-Morales G, Tischler D. Metal binding ability of microbial natural metal chelators and potential applications. Nat Prod Rep 2020; 37:1262-1283. [DOI: 10.1039/c9np00058e] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metallophores can chelate many different metal and metalloid ions next to iron, make them valuable for many applications.
Collapse
Affiliation(s)
- Marika Hofmann
- Institute of Biosciences
- Chemistry and Physics Faculty
- TU Bergakademie Freiberg
- 09599 Freiberg
- Germany
| | - Gerardo Retamal-Morales
- Laboratorio de Microbiología Básica y Aplicada
- Facultad de Química y Biología
- Universidad de Santiago de Chile
- Santiago
- Chile
| | - Dirk Tischler
- Microbial Biotechnology
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| |
Collapse
|
17
|
Abstract
Bacteria encode a variety of adaptations that enable them to survive during zinc starvation, a condition which is encountered both in natural environments and inside the human host. In Vibrio cholerae, the causative agent of the diarrheal disease cholera, we have identified a novel member of this zinc starvation response, a cell wall hydrolase that retains function and is conditionally essential for cell growth in low-zinc environments. Other Gram-negative bacteria contain homologs that appear to be under similar regulatory control. These findings are significant because they represent, to our knowledge, the first evidence that zinc homeostasis influences cell wall turnover. Anti-infective therapies commonly target the bacterial cell wall; therefore, an improved understanding of how the cell wall adapts to host-induced zinc starvation could lead to new antibiotic development. Such therapeutic interventions are required to combat the rising threat of drug-resistant infections. The cell wall is a strong, yet flexible, meshwork of peptidoglycan (PG) that gives a bacterium structural integrity. To accommodate a growing cell, the wall is remodeled by both PG synthesis and degradation. Vibrio cholerae encodes a group of three nearly identical zinc-dependent endopeptidases (EPs) that are predicted to hydrolyze PG to facilitate cell growth. Two of these (ShyA and ShyC) are conditionally essential housekeeping EPs, while the third (ShyB) is not expressed under standard laboratory conditions. To investigate the role of ShyB, we conducted a transposon screen to identify mutations that activate shyB transcription. We found that shyB is induced as part of the Zur-mediated zinc starvation response, a mode of regulation not previously reported for cell wall lytic enzymes. In vivo, ShyB alone was sufficient to sustain cell growth in low-zinc environments. In vitro, ShyB retained its d,d-endopeptidase activity against purified sacculi in the presence of the metal chelator EDTA at concentrations that inhibit ShyA and ShyC. This insensitivity to metal chelation is likely what enables ShyB to substitute for other EPs during zinc starvation. Our survey of transcriptomic data from diverse bacteria identified other candidate Zur-regulated EPs, suggesting that this adaptation to zinc starvation is employed by other Gram-negative bacteria.
Collapse
|
18
|
Kandari D, Gopalani M, Gupta M, Joshi H, Bhatnagar S, Bhatnagar R. Identification, Functional Characterization, and Regulon Prediction of the Zinc Uptake Regulator ( zur) of Bacillus anthracis - An Insight Into the Zinc Homeostasis of the Pathogen. Front Microbiol 2019; 9:3314. [PMID: 30687290 PMCID: PMC6336718 DOI: 10.3389/fmicb.2018.03314] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/19/2018] [Indexed: 11/29/2022] Open
Abstract
Zinc has an abounding occurrence in the prokaryotes and plays paramount roles including catalytic, structural, and regulatory. Zinc uptake regulator (Zur), a Fur family transcriptional regulator, is connoted in maintaining zinc homeostasis in the pathogenic bacteria by binding to zinc and regulating the genes involved in zinc uptake and mobilization. Zinc homeostasis has been marginally scrutinized in Bacillus anthracis, the top-rated bio-terror agent, with no decipherment of the role of Zur. Of the three Fur family regulators in B. anthracis, BAS4181 is annotated as a zinc-specific transcriptional regulator. This annotation was further substantiated by our stringent computational and experimental analyses. The residues critical for zinc and DNA binding were delineated by homology modeling and sequence/structure analysis. ba zur existed as a part of a three-gene operon. Purified BaZur prodigiously existed in the dimeric form, indicated by size exclusion chromatography and blue native-polyacrylamide gel electrophoresis (PAGE). Computational and manual strategies were employed to decipher the putative regulon of ba zur, comprising of 11 genes, controlled by six promoters, each harboring at least one Zur box. The DNA binding capability of the purified BaZur to the upstream regions of the ba zur operon, yciC, rpmG, znuA, and genes encoding a GTPase cobalamine synthesis protein and a permease was ascertained by electrophoretic mobility shift assays. The regulon genes, implicated in zinc uptake and mobilization, were mostly negatively regulated by BaZur. The ba zur expression was downregulated upon exposure of cells to an excess of zinc. Conversely, it exhibited a marked upregulation under N, N, N', N'-Tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) mediated zinc-depleted environment, adding credence to its negative autoregulation. Moreover, an increase in the transcript levels of the regulon genes znuA, rpmG, and yciC upon exposure of cells to TPEN connoted their role in combating hypo-zincemic conditions by bringing about zinc uptake and mobilization. Thus, this study functionally characterizes Zur of B. anthracis and elucidates its role in maintaining zinc homeostasis.
Collapse
Affiliation(s)
- Divya Kandari
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Monisha Gopalani
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Manish Gupta
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Hemant Joshi
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, University of Delhi, New Delhi, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
19
|
Chelating Mechanisms of Transition Metals by Bacterial Metallophores “Pseudopaline and Staphylopine”: A Quantum Chemical Assessment. COMPUTATION 2018. [DOI: 10.3390/computation6040056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In bacterial pathology, metallophores fabricated by bacteria such as Staphylococcus aureus and Pseudomonas aeruginosa are exported to surrounding physiological media via a specific process to sequester and import metals, resulting in enhanced virulence of the bacteria. While these mechanisms are understood at qualitative levels, our investigation presents a complementary original view based on quantum chemical computations. Further understanding of the active centers in particular was provided for pseudopaline and staphylopine metallophores, which were described chemically and with vibration spectroscopy. Then, for complexes formed with a range of transition metal divalent ions (Ni, Cu, and Zn), description and analyses of the frontier molecular orbitals (FMOs) are provided, highlighting a mechanism of metal-to-ligand charge transfer (MLCT), based on excited-states calculations (time-dependent density functional theory (TD-DFT)) at the basis of the delivery of the metallic ionic species to the bacterial medium, leading eventually to its enhanced virulence. Such investigation gains importance especially in view of stepwise syntheses of metallophores in the laboratory, providing significant progress in the understanding of mechanisms underlying the enhancement of bacterial pathologies.
Collapse
|
20
|
Bacterial zinc uptake regulator proteins and their regulons. Biochem Soc Trans 2018; 46:983-1001. [PMID: 30065104 PMCID: PMC6103462 DOI: 10.1042/bst20170228] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 01/10/2023]
Abstract
All organisms must regulate the cellular uptake, efflux, and intracellular trafficking of essential elements, including d-block metal ions. In bacteria, such regulation is achieved by the action of metal-responsive transcriptional regulators. Among several families of zinc-responsive transcription factors, the ‘zinc uptake regulator’ Zur is the most widespread. Zur normally represses transcription in its zinc-bound form, in which DNA-binding affinity is enhanced allosterically. Experimental and bioinformatic searches for Zur-regulated genes have revealed that in many cases, Zur proteins govern zinc homeostasis in a much more profound way than merely through the expression of uptake systems. Zur regulons also comprise biosynthetic clusters for metallophore synthesis, ribosomal proteins, enzymes, and virulence factors. In recognition of the importance of zinc homeostasis at the host–pathogen interface, studying Zur regulons of pathogenic bacteria is a particularly active current research area.
Collapse
|
21
|
Rigali S, Anderssen S, Naômé A, van Wezel GP. Cracking the regulatory code of biosynthetic gene clusters as a strategy for natural product discovery. Biochem Pharmacol 2018; 153:24-34. [DOI: 10.1016/j.bcp.2018.01.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/03/2018] [Indexed: 12/19/2022]
|
22
|
Spohn M, Edenhart S, Alanjary M, Ziemert N, Wibberg D, Kalinowski J, Niedermeyer THJ, Stegmann E, Wohlleben W. Identification of a novel aminopolycarboxylic acid siderophore gene cluster encoding the biosynthesis of ethylenediaminesuccinic acid hydroxyarginine (EDHA). Metallomics 2018; 10:722-734. [PMID: 29667664 DOI: 10.1039/c8mt00009c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mechanism of siderophore-mediated iron supply enhances fitness and survivability of microorganisms under iron limited growth conditions. One class of naturally occurring ionophores is the small aminopolycarboxylic acids (APCAs). Although they are structurally related to the most famous anthropogenic chelating agent, ethylenediaminetetraacetate (EDTA), they have been largely neglected by the scientific community. Here, we demonstrate the detection of APCA gene clusters by a computational screening of a nucleotide database. This genome mining approach enabled the discovery of a yet unknown APCA gene cluster in well-described actinobacterial strains, either known for their potential to produce valuable secondary metabolites (Streptomyces avermitilis) or for their pathogenic lifestyle (Streptomyces scabies, Corynebacterium pseudotuberculosis, Corynebacterium ulcerans and Nocardia brasiliensis). The herein identified gene cluster was shown to encode the biosynthesis of APCA, ethylenediaminesuccinic acid hydroxyarginine (EDHA). Detailed and comparatively performed production and transcriptional profiling of EDHA and its biosynthesis genes showed strict iron-responsive biosynthesis.
Collapse
Affiliation(s)
- Marius Spohn
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology, University of Tuebingen, Tuebingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gonzalez MR, Ducret V, Leoni S, Perron K. Pseudomonas aeruginosa zinc homeostasis: Key issues for an opportunistic pathogen. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:722-733. [PMID: 29410128 DOI: 10.1016/j.bbagrm.2018.01.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/26/2018] [Indexed: 12/13/2022]
Abstract
Zinc is an essential trace element for almost all living organisms. In the opportunistic bacterial pathogen Pseudomonas aeruginosa, zinc has been shown to play an important role in virulence, in colonization of the host organism and has also been shown to be involved in antibiotic resistance. P. aeruginosa possesses numerous systems enabling it to thrive in zinc-depleted conditions as well as high-zinc situations, two environments that are encountered during human infection. These capabilities account for its pathogenic strength. The main aim of this review is to focus on zinc homeostasis in P. aeruginosa and the genetic regulation of the systems involved. The interconnection with virulence, as well as the mechanism of co-regulation between metal and antibiotic resistance, are of prime interest for understanding the molecular mechanisms allowing P. aeruginosa to switch from its existence as a common environmental bacterium to a severe opportunistic pathogen. This article is part of a Special Issue entitled: Dynamic gene expression, edited by Prof. Patrick Viollier.
Collapse
Affiliation(s)
- Manuel R Gonzalez
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Verena Ducret
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Sara Leoni
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, Geneva, Switzerland.
| |
Collapse
|
24
|
Lhospice S, Gomez NO, Ouerdane L, Brutesco C, Ghssein G, Hajjar C, Liratni A, Wang S, Richaud P, Bleves S, Ball G, Borezée-Durant E, Lobinski R, Pignol D, Arnoux P, Voulhoux R. Pseudomonas aeruginosa zinc uptake in chelating environment is primarily mediated by the metallophore pseudopaline. Sci Rep 2017; 7:17132. [PMID: 29214991 PMCID: PMC5719457 DOI: 10.1038/s41598-017-16765-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/16/2017] [Indexed: 11/09/2022] Open
Abstract
Metal uptake is vital for all living organisms. In metal scarce conditions a common bacterial strategy consists in the biosynthesis of metallophores, their export in the extracellular medium and the recovery of a metal-metallophore complex through dedicated membrane transporters. Staphylopine is a recently described metallophore distantly related to plant nicotianamine that contributes to the broad-spectrum metal uptake capabilities of Staphylococcus aureus. Here we characterize a four-gene operon (PA4837-PA4834) in Pseudomonas aeruginosa involved in the biosynthesis and trafficking of a staphylopine-like metallophore named pseudopaline. Pseudopaline differs from staphylopine with regard to the stereochemistry of its histidine moiety associated with an alpha ketoglutarate moiety instead of pyruvate. In vivo, the pseudopaline operon is regulated by zinc through the Zur repressor. The pseudopaline system is involved in nickel uptake in poor media, and, most importantly, in zinc uptake in metal scarce conditions mimicking a chelating environment, thus reconciling the regulation of the cnt operon by zinc with its function as the main zinc importer under these metal scarce conditions.
Collapse
Affiliation(s)
- Sébastien Lhospice
- CNRS et Aix-Marseille Université, Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR7255), Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Nicolas Oswaldo Gomez
- CNRS et Aix-Marseille Université, Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR7255), Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Laurent Ouerdane
- Université de Pau et des Pays de l'Adour/CNRS, Laboratoire de Chimie Analytique Bio-inorganique et Environnement, IPREM-UMR5254, Hélioparc, 2, Avenue Angot, 64053, Pau, France
| | - Catherine Brutesco
- CEA, CNRS and Aix-Marseille Université, Institut de Biosciences et Biotechnologies d'Aix-Marseille, UMR 7265 LBC, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| | - Ghassan Ghssein
- CEA, CNRS and Aix-Marseille Université, Institut de Biosciences et Biotechnologies d'Aix-Marseille, UMR 7265 LBC, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| | - Christine Hajjar
- CEA, CNRS and Aix-Marseille Université, Institut de Biosciences et Biotechnologies d'Aix-Marseille, UMR 7265 LBC, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| | - Ahmed Liratni
- CNRS et Aix-Marseille Université, Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR7255), Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Shuanglong Wang
- Université de Pau et des Pays de l'Adour/CNRS, Laboratoire de Chimie Analytique Bio-inorganique et Environnement, IPREM-UMR5254, Hélioparc, 2, Avenue Angot, 64053, Pau, France
| | - Pierre Richaud
- CEA, CNRS and Aix-Marseille Université, Institut de Biosciences et Biotechnologies d'Aix-Marseille, UMR 7265 LB3M, CEA Cadarache, Saint-Paul-lez Durance, F-13108, France
| | - Sophie Bleves
- CNRS et Aix-Marseille Université, Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR7255), Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Geneviève Ball
- CNRS et Aix-Marseille Université, Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR7255), Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Elise Borezée-Durant
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Ryszard Lobinski
- Université de Pau et des Pays de l'Adour/CNRS, Laboratoire de Chimie Analytique Bio-inorganique et Environnement, IPREM-UMR5254, Hélioparc, 2, Avenue Angot, 64053, Pau, France
| | - David Pignol
- CEA, CNRS and Aix-Marseille Université, Institut de Biosciences et Biotechnologies d'Aix-Marseille, UMR 7265 LBC, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| | - Pascal Arnoux
- CEA, CNRS and Aix-Marseille Université, Institut de Biosciences et Biotechnologies d'Aix-Marseille, UMR 7265 LBC, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France.
| | - Romé Voulhoux
- CNRS et Aix-Marseille Université, Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR7255), Institut de Microbiologie de la Méditerranée, Marseille, France.
| |
Collapse
|
25
|
Mastropasqua MC, D'Orazio M, Cerasi M, Pacello F, Gismondi A, Canini A, Canuti L, Consalvo A, Ciavardelli D, Chirullo B, Pasquali P, Battistoni A. Growth of Pseudomonas aeruginosa
in zinc poor environments is promoted by a nicotianamine-related metallophore. Mol Microbiol 2017; 106:543-561. [DOI: 10.1111/mmi.13834] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2017] [Indexed: 11/29/2022]
Affiliation(s)
| | - Melania D'Orazio
- Department of Biology; University of Rome Tor Vergata; Rome Italy
| | - Mauro Cerasi
- Department of Biology; University of Rome Tor Vergata; Rome Italy
| | | | - Angelo Gismondi
- Department of Biology; University of Rome Tor Vergata; Rome Italy
| | - Antonella Canini
- Department of Biology; University of Rome Tor Vergata; Rome Italy
| | - Lorena Canuti
- Department of Biology; University of Rome Tor Vergata; Rome Italy
| | - Ada Consalvo
- Centro Scienze dell'Invecchiamento e Medicina Traslazionale - CeSI-MeT; Chieti Italy
- Department of Medical, Oral and Biotechnological Sciences; “G. d'Annunzio” University of Chieti-Pescara; Chieti Italy
| | - Domenico Ciavardelli
- Centro Scienze dell'Invecchiamento e Medicina Traslazionale - CeSI-MeT; Chieti Italy
- School of Human and Social Science; “Kore” University of Enna; Enna Italy
| | - Barbara Chirullo
- Department of Food Safety and Veterinary Public Health; Istituto Superiore di Sanità; Rome Italy
| | - Paolo Pasquali
- Department of Food Safety and Veterinary Public Health; Istituto Superiore di Sanità; Rome Italy
| | | |
Collapse
|
26
|
The Components of the Unique Zur Regulon of Cupriavidus metallidurans Mediate Cytoplasmic Zinc Handling. J Bacteriol 2017; 199:JB.00372-17. [PMID: 28808127 DOI: 10.1128/jb.00372-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022] Open
Abstract
Zinc is an essential trace element, yet it is toxic at high concentrations. In the betaproteobacterium Cupriavidus metallidurans, the highly efficient removal of surplus zinc from the periplasm is responsible for the outstanding metal resistance of the organism. Rather than having a typical Zur-dependent, high-affinity ATP-binding cassette transporter of the ABC protein superfamily for zinc uptake at low concentrations, C. metallidurans has the secondary zinc importer ZupT of the zinc-regulated transporter, iron-regulated transporter (ZRT/IRT)-like protein (ZIP) family. It is important to understand, therefore, how this zinc-resistant bacterium copes with exposure to low zinc concentrations. Members of the Zur regulon in C. metallidurans were identified by comparing the transcriptomes of a Δzur mutant and its parent strain. The consensus sequence of the Zur-binding box was derived for the zupTp promoter-regulatory region by use of a truncation assay. The motif was used to predict possible Zur boxes upstream of Zur regulon members. The binding of Zur to these boxes was confirmed. Two Zur boxes upstream of the cobW 1 gene, encoding a putative zinc chaperone, proved to be required for complete repression of cobW 1 and its downstream genes in cells cultivated in mineral salts medium. A Zur box upstream of each of zur-cobW 2, cobW 3, and zupT permitted both low expression levels of these genes and their upregulation under conditions of zinc starvation. This demonstrates a compartmentalization of zinc homeostasis in C. metallidurans, where the periplasm is responsible for the removal of surplus zinc, cytoplasmic components are responsible for the management of zinc as an essential cofactor, and the two compartments are connected by ZupT.IMPORTANCE Elucidating zinc homeostasis is necessary for understanding both host-pathogen interactions and the performance of free-living bacteria in their natural environments. Escherichia coli acquires zinc under conditions of low zinc concentrations via the Zur-controlled ZnuABC importer of the ABC superfamily, and this was also the paradigm for other bacteria. In contrast, the heavy-metal-resistant bacterium C. metallidurans achieves high tolerance to zinc through sophisticated zinc handling and efflux systems operating on periplasmic zinc ions, so that removal of surplus zinc is a periplasmic feature in this bacterium. It is shown here that this process is augmented by the management of zinc by cytoplasmic zinc chaperones, whose synthesis is controlled by the Zur regulator. This demonstrates a new mechanism, involving compartmentalization, for organizing zinc homeostasis.
Collapse
|
27
|
Choi SH, Lee KL, Shin JH, Cho YB, Cha SS, Roe JH. Zinc-dependent regulation of zinc import and export genes by Zur. Nat Commun 2017; 8:15812. [PMID: 28598435 PMCID: PMC5472717 DOI: 10.1038/ncomms15812] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 05/04/2017] [Indexed: 12/21/2022] Open
Abstract
In most bacteria, zinc depletion is sensed by Zur, whereas the surplus is sensed by different regulators to achieve zinc homeostasis. Here we present evidence that zinc-bound Zur not only represses genes for zinc acquisition but also induces the zitB gene encoding a zinc exporter in Streptomyces coelicolor, a model actinobacteria. Zinc-dependent gene regulation by Zur occurs in two phases. At sub-femtomolar zinc concentrations (phase I), dimeric Zur binds to the Zur-box motif immediately upstream of the zitB promoter, resulting in low zitB expression. At the same time, Zur represses genes for zinc uptake. At micromolar zinc concentrations (phase II), oligomeric Zur binding with footprint expansion upward from the Zur box results in high zitB induction. Our findings reveal a mode of zinc-dependent gene activation that uses a single metalloregulator to control genes for both uptake and export over a wide range of zinc concentrations. Zinc homeostasis in most bacteria is achieved by a set of regulators, each responding to a certain level of intracellular zinc. Here the authors show that, in Streptomyces coelicolor, the Zur regulator modulates the expression of genes for zinc import and export over a large range of zinc concentrations.
Collapse
Affiliation(s)
- Seung-Hwan Choi
- Laboratory of Molecular Microbiology, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Korea
| | - Kang-Lok Lee
- Laboratory of Molecular Microbiology, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Korea
| | - Jung-Ho Shin
- Laboratory of Molecular Microbiology, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Korea
| | - Yoo-Bok Cho
- Laboratory of Molecular Microbiology, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Korea
| | - Sun-Shin Cha
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jung-Hye Roe
- Laboratory of Molecular Microbiology, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
28
|
OsdR of Streptomyces coelicolor and the Dormancy Regulator DevR of Mycobacterium tuberculosis Control Overlapping Regulons. mSystems 2016; 1:mSystems00014-16. [PMID: 27822533 PMCID: PMC5069765 DOI: 10.1128/msystems.00014-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/29/2016] [Indexed: 11/20/2022] Open
Abstract
Dormancy is a state of growth cessation that allows bacteria to escape the host defense system and antibiotic challenge. Understanding the mechanisms that control dormancy is of key importance for the treatment of latent infections, such as those from Mycobacterium tuberculosis. In mycobacteria, dormancy is controlled by the response regulator DevR, which responds to conditions of hypoxia. Here, we show that OsdR of Streptomyces coelicolor recognizes the same regulatory element and controls a regulon that consists of genes involved in the control of stress and development. Only the core regulon in the direct vicinity of dosR and osdR is conserved between M. tuberculosis and S. coelicolor, respectively. Thus, we show how the system has diverged from allowing escape from the host defense system by mycobacteria to the control of sporulation by complex multicellular streptomycetes. This provides novel insights into how bacterial growth and development are coordinated with the environmental conditions. Two-component regulatory systems allow bacteria to respond adequately to changes in their environment. In response to a given stimulus, a sensory kinase activates its cognate response regulator via reversible phosphorylation. The response regulator DevR activates a state of dormancy under hypoxia in Mycobacterium tuberculosis, allowing this pathogen to escape the host defense system. Here, we show that OsdR (SCO0204) of the soil bacterium Streptomyces coelicolor is a functional orthologue of DevR. OsdR, when activated by the sensory kinase OsdK (SCO0203), binds upstream of the DevR-controlled dormancy genes devR, hspX, and Rv3134c of M. tuberculosis. In silico analysis of the S. coelicolor genome combined with in vitro DNA binding studies identified many binding sites in the genomic region around osdR itself and upstream of stress-related genes. This binding correlated well with transcriptomic responses, with deregulation of developmental genes and genes related to stress and hypoxia in the osdR mutant. A peak in osdR transcription in the wild-type strain at the onset of aerial growth correlated with major changes in global gene expression. Taken together, our data reveal the existence of a dormancy-related regulon in streptomycetes which plays an important role in the transcriptional control of stress- and development-related genes. IMPORTANCE Dormancy is a state of growth cessation that allows bacteria to escape the host defense system and antibiotic challenge. Understanding the mechanisms that control dormancy is of key importance for the treatment of latent infections, such as those from Mycobacterium tuberculosis. In mycobacteria, dormancy is controlled by the response regulator DevR, which responds to conditions of hypoxia. Here, we show that OsdR of Streptomyces coelicolor recognizes the same regulatory element and controls a regulon that consists of genes involved in the control of stress and development. Only the core regulon in the direct vicinity of dosR and osdR is conserved between M. tuberculosis and S. coelicolor, respectively. Thus, we show how the system has diverged from allowing escape from the host defense system by mycobacteria to the control of sporulation by complex multicellular streptomycetes. This provides novel insights into how bacterial growth and development are coordinated with the environmental conditions.
Collapse
|
29
|
The frontline antibiotic vancomycin induces a zinc starvation response in bacteria by binding to Zn(II). Sci Rep 2016; 6:19602. [PMID: 26797186 PMCID: PMC4726154 DOI: 10.1038/srep19602] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/14/2015] [Indexed: 01/01/2023] Open
Abstract
Vancomycin is a front-line antibiotic used for the treatment of nosocomial infections, particularly those caused by methicillin-resistant Staphylococcus aureus. Despite its clinical importance the global effects of vancomycin exposure on bacterial physiology are poorly understood. In a previous transcriptomic analysis we identified a number of Zur regulon genes which were highly but transiently up-regulated by vancomycin in Streptomyces coelicolor. Here, we show that vancomycin also induces similar zinc homeostasis systems in a range of other bacteria and demonstrate that vancomycin binds to Zn(II) in vitro. This implies that vancomycin treatment sequesters zinc from bacterial cells thereby triggering a Zur-dependent zinc starvation response. The Kd value of the binding between vancomycin and Zn(II) was calculated using a novel fluorometric assay, and NMR was used to identify the binding site. These findings highlight a new biologically relevant aspect of the chemical property of vancomycin as a zinc chelator.
Collapse
|
30
|
Spohn M, Wohlleben W, Stegmann E. Elucidation of the zinc-dependent regulation inAmycolatopsis japonicumenabled the identification of the ethylenediamine-disuccinate ([S,S]-EDDS) genes. Environ Microbiol 2016; 18:1249-63. [DOI: 10.1111/1462-2920.13159] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/13/2015] [Accepted: 11/27/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Marius Spohn
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology; University of Tuebingen; 72076 Tuebingen Germany
| | - Wolfgang Wohlleben
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology; University of Tuebingen; 72076 Tuebingen Germany
- Partner Site Tuebingen; German Centre for Infection Research (DZIF); Tuebingen Germany
| | - Evi Stegmann
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology; University of Tuebingen; 72076 Tuebingen Germany
- Partner Site Tuebingen; German Centre for Infection Research (DZIF); Tuebingen Germany
| |
Collapse
|
31
|
Locatelli FM, Goo KS, Ulanova D. Effects of trace metal ions on secondary metabolism and the morphological development of streptomycetes. Metallomics 2016; 8:469-80. [DOI: 10.1039/c5mt00324e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
Abstract
Ancient bacteria originated from metal-rich environments. Billions of years of evolution directed these tiny single cell creatures to exploit the versatile properties of metals in catalyzing chemical reactions and biological responses. The result is an entire metallome of proteins that use metal co-factors to facilitate key cellular process that range from the production of energy to the replication of DNA. Two key metals in this regard are iron and zinc, both abundant on Earth but not readily accessible in a human host. Instead, pathogenic bacteria must employ clever ways to acquire these metals. In this review we describe the many elegant ways these bacteria mine, regulate, and craft the use of two key metals (iron and zinc) to build a virulence arsenal that challenges even the most sophisticated immune response.
Collapse
Affiliation(s)
- Li Ma
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77459, USA.
| | | | | |
Collapse
|
33
|
Kaushik MS, Singh P, Tiwari B, Mishra AK. Ferric Uptake Regulator (FUR) protein: properties and implications in cyanobacteria. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1134-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
34
|
Johnstone TC, Nolan EM. Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Trans 2015; 44:6320-39. [PMID: 25764171 PMCID: PMC4375017 DOI: 10.1039/c4dt03559c] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacteria secrete small molecules known as siderophores to acquire iron from their surroundings. For over 60 years, investigations into the bioinorganic chemistry of these molecules, including fundamental coordination chemistry studies, have provided insight into the crucial role that siderophores play in bacterial iron homeostasis. The importance of understanding the fundamental chemistry underlying bacterial life has been highlighted evermore in recent years because of the emergence of antibiotic-resistant bacteria and the need to prevent the global rise of these superbugs. Increasing reports of siderophores functioning in capacities other than iron transport have appeared recently, but reports of "non-classical" siderophore functions have long paralleled those of iron transport. One particular non-classical function of these iron chelators, namely antibiotic activity, was documented before the role of siderophores in iron transport was established. In this Perspective, we present an exposition of past and current work into non-classical functions of siderophores and highlight the directions in which we anticipate that this research is headed. Examples include the ability of siderophores to function as zincophores, chalkophores, and metallophores for a variety of other metals, sequester heavy metal toxins, transport boron, act as signalling molecules, regulate oxidative stress, and provide antibacterial activity.
Collapse
Affiliation(s)
- Timothy C Johnstone
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
35
|
Moody SC, Loveridge EJ. CYP105-diverse structures, functions and roles in an intriguing family of enzymes in Streptomyces. J Appl Microbiol 2014; 117:1549-63. [PMID: 25294646 PMCID: PMC4265290 DOI: 10.1111/jam.12662] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/24/2014] [Accepted: 10/03/2014] [Indexed: 11/29/2022]
Abstract
The cytochromes P450 (CYP or P450) are a large superfamily of haem-containing enzymes found in all domains of life. They catalyse a variety of complex reactions, predominantly mixed-function oxidations, often displaying highly regio- and/or stereospecific chemistry. In streptomycetes, they are predominantly associated with secondary metabolite biosynthetic pathways or with xenobiotic catabolism. Homologues of one family, CYP105, have been found in all Streptomyces species thus far sequenced. This review looks at the diverse biological functions of CYP105s and the biosynthetic/catabolic pathways they are associated with. Examples are presented showing a range of biotransformative abilities and different contexts. As biocatalysts capable of some remarkable chemistry, CYP105s have great biotechnological potential and merit detailed study. Recent developments in biotechnological applications which utilize CYP105s are described, alongside a brief overview of the benefits and drawbacks of using P450s in commercial applications. The role of CYP105s in vivo is in many cases undefined and provides a rich source for further investigation into the functions these enzymes fulfil and the metabolic pathways they participate in, in the natural environment.
Collapse
Affiliation(s)
- Suzy C Moody
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | | |
Collapse
|
36
|
Production of specialized metabolites by Streptomyces coelicolor A3(2). ADVANCES IN APPLIED MICROBIOLOGY 2014; 89:217-66. [PMID: 25131404 DOI: 10.1016/b978-0-12-800259-9.00006-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The actinomycetes are well-known bioactive natural product producers, comprising the Streptomycetes, the richest drug-prolific family in all kingdoms, producing therapeutic compounds for the areas of infection, cancer, circulation, and immunity. Completion and annotation of many actinomycete genomes has highlighted further how proficient these bacteria are in specialized metabolism, which have been largely underexploited in traditional screening programs. The genome sequence of the model strain Streptomyces coelicolor A3(2), and subsequent development of genomics-driven approaches to understand its large specialized metabolome, has been key in unlocking the high potential of specialized metabolites for natural product genomics-based drug discovery. This review discusses systematically the biochemistry and genetics of each of the specialized metabolites of S. coelicolor and describes metabolite transport processes for excretion and complex regulatory patterns controlling biosynthesis.
Collapse
|
37
|
Sein-Echaluce VC, González A, Napolitano M, Luque I, Barja F, Peleato ML, Fillat MF. Zur (FurB) is a key factor in the control of the oxidative stress response inAnabaenasp. PCC 7120. Environ Microbiol 2014; 17:2006-17. [DOI: 10.1111/1462-2920.12628] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/05/2014] [Accepted: 09/09/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Violeta C. Sein-Echaluce
- Departamento de Bioquímica y Biología Molecular y Celular; Instituto de Biocomputación y Física de Sistemas Complejos; Universidad de Zaragoza; Zaragoza 50009 Spain
| | - Andrés González
- Departamento de Bioquímica y Biología Molecular y Celular; Instituto de Biocomputación y Física de Sistemas Complejos; Universidad de Zaragoza; Zaragoza 50009 Spain
| | - Mauro Napolitano
- Instituto de Bioquímica Vegetal y Fotosíntesis; CSIC-Universidad de Sevilla; Sevilla E-41092 Spain
| | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis; CSIC-Universidad de Sevilla; Sevilla E-41092 Spain
| | - Francisco Barja
- Microbiology Unit; Botany and Plant Biology Department; University of Geneva; Ch. Des Embrouchis 10 Jussy-Geneva CH-1254 Switzerland
| | - M. Luisa Peleato
- Departamento de Bioquímica y Biología Molecular y Celular; Instituto de Biocomputación y Física de Sistemas Complejos; Universidad de Zaragoza; Zaragoza 50009 Spain
| | - María F. Fillat
- Departamento de Bioquímica y Biología Molecular y Celular; Instituto de Biocomputación y Física de Sistemas Complejos; Universidad de Zaragoza; Zaragoza 50009 Spain
| |
Collapse
|
38
|
Yu Z, Zhu H, Zheng G, Jiang W, Lu Y. A genome-wide transcriptomic analysis reveals diverse roles of the two-component system DraR-K in the physiological and morphological differentiation of Streptomyces coelicolor. Appl Microbiol Biotechnol 2014; 98:9351-63. [PMID: 25316091 DOI: 10.1007/s00253-014-6102-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/13/2014] [Accepted: 09/16/2014] [Indexed: 01/06/2023]
Abstract
A novel two-component system (TCS) of DraR-K was previously identified as playing differential roles in the biosynthesis of antibiotics (blue-pigmented type II polyketide actinorhodin (ACT), red-pigmented tripyrrole undecylprodigiosin (RED), and yellow-pigmented type I polyketide (yCPK)) in Streptomyces coelicolor M145 under the conditions of minimal medium (MM) supplemented with a high concentration of different nitrogen sources (e.g., 75 mM glutamine). To assess whether DraR-K has more globalized roles, a genome-wide transcriptomic analysis of the parental strain M145 and a ΔdraR-K mutant under the condition of MM supplemented with 75 mM glutamine was performed using DNA microarray analysis combined with real-time reverse transcriptase PCR (RT-qPCR). The analyses showed that deletion of the draR-K genes led to the differential expression not only of the biosynthetic gene clusters of ACT, RED, and yCPK but also of other five secondary metabolite biosynthetic clusters. In addition, a number of primary metabolism-related genes in the ΔdraR-K mutant, such as ureA/B/C/D/G/F, the pstSCAB operon, and the chb gene, exhibited altered expression, which might enable the organism to balance the C/N/P ratio under the condition of a high concentration of glutamine. We also found that the expression of many developmental genes, including ramR, chpA/D/E, and the whiE gene cluster, was affected by the draR-K deletion. Furthermore, the direct role of DraR-K on the transcription of several genes, including chb and pepA/pepA2, was validated using electrophoretic mobility shift assays (EMSAs). In summary, our transcriptomic analyses revealed that DraR-K plays global regulatory roles in the physiological and morphological differentiation of S. coelicolor.
Collapse
Affiliation(s)
- Zhenyu Yu
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, People's Republic of China
| | | | | | | | | |
Collapse
|
39
|
Ellison ML, Farrow JM, Farrow JM, Parrish W, Danell AS, Pesci EC. The transcriptional regulator Np20 is the zinc uptake regulator in Pseudomonas aeruginosa. PLoS One 2013; 8:e75389. [PMID: 24086521 PMCID: PMC3781045 DOI: 10.1371/journal.pone.0075389] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 08/15/2013] [Indexed: 11/18/2022] Open
Abstract
Zinc is essential for all bacteria, but excess amounts of the metal can have toxic effects. To address this, bacteria have developed tightly regulated zinc uptake systems, such as the ZnuABC zinc transporter which is regulated by the Fur-like zinc uptake regulator (Zur). In Pseudomonas aeruginosa, a Zur protein has yet to be identified experimentally, however, sequence alignment revealed that the zinc-responsive transcriptional regulator Np20, encoded by np20 (PA5499), shares high sequence identity with Zur found in other bacteria. In this study, we set out to determine whether Np20 was functioning as Zur in P. aeruginosa. Using RT-PCR, we determined that np20 (hereafter known as zur) formed a polycistronic operon with znuC and znuB. Mutant strains, lacking the putative znuA, znuB, or znuC genes were found to grow poorly in zinc deplete conditions as compared to wild-type strain PAO1. Intracellular zinc concentrations in strain PAO-Zur (Δzur) were found to be higher than those for strain PAO1, further implicating the zur as the zinc uptake regulator. Reporter gene fusions and real time RT-PCR revealed that transcription of znuA was repressed in a zinc-dependent manner in strain PAO1, however zinc-dependent transcriptional repression was alleviated in strain PAO-Zur, suggesting that the P. aeruginosa Zur homolog (ZurPA) directly regulates expression of znuA. Electrophoretic mobility shift assays also revealed that recombinant ZurPA specifically binds to the promoter region of znuA and does not bind in the presence of the zinc chelator N,N',N-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN). Taken together, these data support the notion that Np20 is the P. aeruginosa Zur, which regulates the transcription of the genes encoding the high affinity ZnuABC zinc transport system.
Collapse
Affiliation(s)
- Matthew L Ellison
- Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United State of America ; Department of Biology and Chemistry, Morehead State University, Morehead, Kentucky, United State of America
| | | | | | | | | | | |
Collapse
|
40
|
Tetroazolemycins A and B, Two New Oxazole-Thiazole Siderophores from Deep-Sea Streptomyces olivaceus FXJ8.012. Mar Drugs 2013. [DOI: 10.3390/md11051524 pmid: 236659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
Tetroazolemycins A and B, two new oxazole-thiazole siderophores from deep-sea Streptomyces olivaceus FXJ8.012. Mar Drugs 2013; 11:1524-33. [PMID: 23665958 PMCID: PMC3707159 DOI: 10.3390/md11051524] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 04/18/2013] [Accepted: 04/24/2013] [Indexed: 11/26/2022] Open
Abstract
Two new oxazole/thiazole derivatives, named tetroazolemycins A (1) and B (2), have been isolated from the acetone extract of the mycelium of Streptomyces olivaceus FXJ8.012 derived from deep-sea water, together with three known compounds, spoxazomicins A–C (3–5), isolated from the fermentation supernatant. The planar structure and relative configuration of tetroazolemycins were elucidated by a combination of spectroscopic analyses, including 1D- and 2D-NMR techniques, and showed to be new pyochelin-type antibiotics. Both compounds showed metal ion-binding activity and their Zn2+ complexes exhibited weak activity against pathogenic bacteria Klebsiella pneumoniae.
Collapse
|
42
|
Liu G, Chater KF, Chandra G, Niu G, Tan H. Molecular regulation of antibiotic biosynthesis in streptomyces. Microbiol Mol Biol Rev 2013; 77:112-43. [PMID: 23471619 PMCID: PMC3591988 DOI: 10.1128/mmbr.00054-12] [Citation(s) in RCA: 531] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Streptomycetes are the most abundant source of antibiotics. Typically, each species produces several antibiotics, with the profile being species specific. Streptomyces coelicolor, the model species, produces at least five different antibiotics. We review the regulation of antibiotic biosynthesis in S. coelicolor and other, nonmodel streptomycetes in the light of recent studies. The biosynthesis of each antibiotic is specified by a large gene cluster, usually including regulatory genes (cluster-situated regulators [CSRs]). These are the main point of connection with a plethora of generally conserved regulatory systems that monitor the organism's physiology, developmental state, population density, and environment to determine the onset and level of production of each antibiotic. Some CSRs may also be sensitive to the levels of different kinds of ligands, including products of the pathway itself, products of other antibiotic pathways in the same organism, and specialized regulatory small molecules such as gamma-butyrolactones. These interactions can result in self-reinforcing feed-forward circuitry and complex cross talk between pathways. The physiological signals and regulatory mechanisms may be of practical importance for the activation of the many cryptic secondary metabolic gene cluster pathways revealed by recent sequencing of numerous Streptomyces genomes.
Collapse
Affiliation(s)
- Gang Liu
- State Key Laboratory of Microbial Resources
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Keith F. Chater
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | | |
Collapse
|
43
|
Hood MI, Mortensen BL, Moore JL, Zhang Y, Kehl-Fie TE, Sugitani N, Chazin WJ, Caprioli RM, Skaar EP. Identification of an Acinetobacter baumannii zinc acquisition system that facilitates resistance to calprotectin-mediated zinc sequestration. PLoS Pathog 2012; 8:e1003068. [PMID: 23236280 PMCID: PMC3516566 DOI: 10.1371/journal.ppat.1003068] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 10/18/2012] [Indexed: 02/06/2023] Open
Abstract
Acinetobacter baumannii is an important nosocomial pathogen that accounts for up to 20 percent of infections in intensive care units worldwide. Furthermore, A. baumannii strains have emerged that are resistant to all available antimicrobials. These facts highlight the dire need for new therapeutic strategies to combat this growing public health threat. Given the critical role for transition metals at the pathogen-host interface, interrogating the role for these metals in A. baumannii physiology and pathogenesis could elucidate novel therapeutic strategies. Toward this end, the role for calprotectin- (CP)-mediated chelation of manganese (Mn) and zinc (Zn) in defense against A. baumannii was investigated. These experiments revealed that CP inhibits A. baumannii growth in vitro through chelation of Mn and Zn. Consistent with these in vitro data, Imaging Mass Spectrometry revealed that CP accompanies neutrophil recruitment to the lung and accumulates at foci of infection in a murine model of A. baumannii pneumonia. CP contributes to host survival and control of bacterial replication in the lung and limits dissemination to secondary sites. Using CP as a probe identified an A. baumannii Zn acquisition system that contributes to Zn uptake, enabling this organism to resist CP-mediated metal chelation, which enhances pathogenesis. Moreover, evidence is provided that Zn uptake across the outer membrane is an energy-dependent process in A. baumannii. Finally, it is shown that Zn limitation reverses carbapenem resistance in multidrug resistant A. baumannii underscoring the clinical relevance of these findings. Taken together, these data establish Zn acquisition systems as viable therapeutic targets to combat multidrug resistant A. baumannii infections. Acinetobacter baumannii is a bacterium responsible for an increasing number of infections in the hospital setting. These infections are particularly challenging because most strains of A. baumannii are resistant to commonly used antibiotics. Unfortunately, there is relatively little known about this organism and how it causes disease, making it difficult to identify new drug targets. In order to address this problem we examined the role for nutrient manganese (Mn) and zinc (Zn) in A. baumannii infections. We have determined that the host protein, calprotectin (CP), contributes to defense against A. baumannii pneumonia through chelation of nutrient Mn and Zn. Moreover, employing purified calprotectin as a probe allowed us to identify a Zn acquisition system in A. baumannii that is required for efficient Zn uptake in vitro and full pathogenesis in vivo. Finally, we demonstrate that inhibiting Zn acquisition can reverse antibiotic resistance mechanisms that rely on Zn-dependent enzymes. Taken together, these results demonstrate the importance of Zn acquisition to A. baumannii pathogenesis and antibiotic resistance, establishing Zn acquisition as a potential target for therapeutic development.
Collapse
MESH Headings
- Acinetobacter Infections/drug therapy
- Acinetobacter Infections/genetics
- Acinetobacter Infections/immunology
- Acinetobacter baumannii/genetics
- Acinetobacter baumannii/immunology
- Acinetobacter baumannii/pathogenicity
- Animals
- Biological Transport, Active
- Carbapenems/pharmacology
- Disease Models, Animal
- Drug Resistance, Multiple, Bacterial/drug effects
- Drug Resistance, Multiple, Bacterial/genetics
- Drug Resistance, Multiple, Bacterial/immunology
- Humans
- Leukocyte L1 Antigen Complex/immunology
- Lung/immunology
- Lung/pathology
- Manganese/immunology
- Mice
- Mice, Knockout
- Neutrophil Infiltration/genetics
- Neutrophil Infiltration/immunology
- Neutrophils/immunology
- Neutrophils/pathology
- Pneumonia, Bacterial/genetics
- Pneumonia, Bacterial/immunology
- Pneumonia, Bacterial/pathology
- Zinc/immunology
Collapse
Affiliation(s)
- M. Indriati Hood
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Brittany L. Mortensen
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jessica L. Moore
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Yaofang Zhang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Thomas E. Kehl-Fie
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Norie Sugitani
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Walter J. Chazin
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Richard M. Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Eric P. Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
44
|
Crystal structure of cytochrome P450 CYP105N1 from Streptomyces coelicolor, an oxidase in the coelibactin siderophore biosynthetic pathway. Arch Biochem Biophys 2012; 528:111-7. [DOI: 10.1016/j.abb.2012.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/30/2012] [Accepted: 09/03/2012] [Indexed: 11/21/2022]
|
45
|
Traxler MF, Seyedsayamdost MR, Clardy J, Kolter R. Interspecies modulation of bacterial development through iron competition and siderophore piracy. Mol Microbiol 2012; 86:628-44. [PMID: 22931126 PMCID: PMC3481010 DOI: 10.1111/mmi.12008] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2012] [Indexed: 12/31/2022]
Abstract
While soil-dwelling actinomycetes are renowned for secreting natural products, little is known about the roles of these molecules in mediating actinomycete interactions. In a previous co-culture screen, we found that one actinomycete, Amycolatopsis sp. AA4, inhibited aerial hyphae formation in adjacent colonies of Streptomyces coelicolor. A siderophore, amychelin, mediated this developmental arrest. Here we present genetic evidence that confirms the role of the amc locus in the production of amychelin and in the inhibition of S. coelicolor development. We further characterize the Amycolatopsis sp. AA4 - S. coelicolor interaction by examining expression of developmental and iron acquisition genes over time in co-culture. Manipulation of iron availability and/or growth near Amycolatopsis sp. AA4 led to alterations in expression of the critical developmental gene bldN, and other key downstream genes in the S. coelicolor transcriptional cascade. In Amycolatopsis sp. AA4, siderophore genes were downregulated when grown near S. coelicolor, leading us to find that deferrioxamine E, produced by S. coelicolor, could be readily utilized by Amycolatopsis sp. AA4. Collectively these results suggest that competition for iron via siderophore piracy and species-specific siderophores can alter patterns of gene expression and morphological differentiation during actinomycete interactions.
Collapse
Affiliation(s)
- Matthew F. Traxler
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston Massachusetts 02115
| | - Mohammad R. Seyedsayamdost
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Roberto Kolter
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston Massachusetts 02115
| |
Collapse
|
46
|
Roberts AA, Schultz AW, Kersten RD, Dorrestein PC, Moore BS. Iron acquisition in the marine actinomycete genus Salinispora is controlled by the desferrioxamine family of siderophores. FEMS Microbiol Lett 2012; 335:95-103. [PMID: 22812504 DOI: 10.1111/j.1574-6968.2012.02641.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/04/2012] [Accepted: 07/16/2012] [Indexed: 11/28/2022] Open
Abstract
Many bacteria produce siderophores for sequestration of growth-essential iron. Analysis of the Salinispora genomes suggests that these marine actinomycetes support multiple hydroxamate- and phenolate-type siderophore pathways. We isolated and characterized desferrioxamines (DFOs) B and E from all three recognized Salinispora species and linked their biosyntheses in S. tropica CNB-440 and S. arenicola CNS-205 to the des locus through PCR-directed mutagenesis. Gene inactivation of the predicted iron-chelator biosynthetic loci sid2-4 did not abolish siderophore chemistry. Additionally, these pathways could not restore the native growth characteristics of the des mutants in iron-limited media, although differential iron-dependent regulation was observed for the yersiniabactin-like sid2 pathway. Consequently, this study indicates that DFOs are the primary siderophores in laboratory cultures of Salinispora.
Collapse
Affiliation(s)
- Alexandra A Roberts
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
47
|
Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 2012; 10:525-37. [PMID: 22796883 DOI: 10.1038/nrmicro2836] [Citation(s) in RCA: 1120] [Impact Index Per Article: 86.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transition metals occupy an essential niche in biological systems. Their electrostatic properties stabilize substrates or reaction intermediates in the active sites of enzymes, and their heightened reactivity is harnessed for catalysis. However, this heightened activity also renders transition metals toxic at high concentrations. Bacteria, like all living organisms, must regulate their intracellular levels of these elements to satisfy their physiological needs while avoiding harm. It is therefore not surprising that the host capitalizes on both the essentiality and toxicity of transition metals to defend against bacterial invaders. This Review discusses established and emerging paradigms in nutrient metal homeostasis at the pathogen-host interface.
Collapse
|
48
|
Zhao B, Moody SC, Hider RC, Lei L, Kelly SL, Waterman MR, Lamb DC. Structural analysis of cytochrome P450 105N1 involved in the biosynthesis of the zincophore, coelibactin. Int J Mol Sci 2012; 13:8500-8513. [PMID: 22942716 PMCID: PMC3430247 DOI: 10.3390/ijms13078500] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 06/22/2012] [Accepted: 06/28/2012] [Indexed: 11/16/2022] Open
Abstract
Coelibactin is a putative non-ribosomally synthesized peptide with predicted zincophore activity and which has been implicated in antibiotic regulation in Streptomyces coelicolor A3(2). The coelibactin biosynthetic pathway contains a stereo- and regio-specific monooxygenation step catalyzed by a cytochrome P450 enzyme (CYP105N1). We have determined the X-ray crystal structure of CYP105N1 at 2.9 Å and analyzed it in the context of the bacterial CYP105 family as a whole. The crystal structure reveals a channel between the α-helical domain and the β-sheet domain exposing the heme pocket and the long helix I to the solvent. This wide-open conformation of CYP105N1 may be related to the bulky substrate coelibactin. The ligand-free CYP105N1 structure has enough room in the substrate access channel to allow the coelibactin to enter into the active site. Analysis of typical siderophore ligands suggests that CYP105N1 may produce derivatives of coelibactin, which would then be able to chelate the zinc divalent cation.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA; E-Mails: (L.L.); (M.R.W.)
- Authors to whom correspondence should be addressed; E-Mails: (B.Z.); (D.C.L.); Tel.: +1-615-322-2414 (B.Z.); +44-1792-602178 (D.C.L.); Fax: +1-615-343-0704 (B.Z.); +44-1792-602280 (D.C.L.)
| | - Suzy C. Moody
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK; E-Mails: (S.C.M.); (S.L.K.)
| | - Robert C. Hider
- Institute of Pharmaceutical Science, King’s College London, 5th Floor, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK; E-Mail:
| | - Li Lei
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA; E-Mails: (L.L.); (M.R.W.)
| | - Steven L. Kelly
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK; E-Mails: (S.C.M.); (S.L.K.)
| | - Michael R. Waterman
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA; E-Mails: (L.L.); (M.R.W.)
| | - David C. Lamb
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK; E-Mails: (S.C.M.); (S.L.K.)
- Authors to whom correspondence should be addressed; E-Mails: (B.Z.); (D.C.L.); Tel.: +1-615-322-2414 (B.Z.); +44-1792-602178 (D.C.L.); Fax: +1-615-343-0704 (B.Z.); +44-1792-602280 (D.C.L.)
| |
Collapse
|
49
|
Barnett JP, Millard A, Ksibe AZ, Scanlan DJ, Schmid R, Blindauer CA. Mining genomes of marine cyanobacteria for elements of zinc homeostasis. Front Microbiol 2012; 3:142. [PMID: 22514551 PMCID: PMC3323870 DOI: 10.3389/fmicb.2012.00142] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/25/2012] [Indexed: 12/13/2022] Open
Abstract
Zinc is a recognized essential element for the majority of organisms, and is indispensable for the correct function of hundreds of enzymes and thousands of regulatory proteins. In aquatic photoautotrophs including cyanobacteria, zinc is thought to be required for carbonic anhydrase and alkaline phosphatase, although there is evidence that at least some carbonic anhydrases can be cambialistic, i.e., are able to acquire in vivo and function with different metal cofactors such as Co2+ and Cd2+. Given the global importance of marine phytoplankton, zinc availability in the oceans is likely to have an impact on both carbon and phosphorus cycles. Zinc concentrations in seawater vary over several orders of magnitude, and in the open oceans adopt a nutrient-like profile. Most studies on zinc handling by cyanobacteria have focused on freshwater strains and zinc toxicity; much less information is available on marine strains and zinc limitation. Several systems for zinc homeostasis have been characterized in the freshwater species Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803, but little is known about zinc requirements or zinc handling by marine species. Comparative metallo-genomics has begun to explore not only the putative zinc proteome, but also specific protein families predicted to have an involvement in zinc homeostasis, including sensors for excess and limitation (SmtB and its homologs as well as Zur), uptake systems (ZnuABC), putative intracellular zinc chaperones (COG0523) and metallothioneins (BmtA), and efflux pumps (ZiaA and its homologs).
Collapse
|
50
|
van Wezel GP, McDowall KJ. The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 2011; 28:1311-33. [PMID: 21611665 DOI: 10.1039/c1np00003a] [Citation(s) in RCA: 323] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Streptomycetes and other actinobacteria are renowned as a rich source of natural products of clinical, agricultural and biotechnological value. They are being mined with renewed vigour, supported by genome sequencing efforts, which have revealed a coding capacity for secondary metabolites in vast excess of expectations that were based on the detection of antibiotic activities under standard laboratory conditions. Here we review what is known about the control of production of so-called secondary metabolites in streptomycetes, with an emphasis on examples where details of the underlying regulatory mechanisms are known. Intriguing links between nutritional regulators, primary and secondary metabolism and morphological development are discussed, and new data are included on the carbon control of development and antibiotic production, and on aspects of the regulation of the biosynthesis of microbial hormones. Given the tide of antibiotic resistance emerging in pathogens, this review is peppered with approaches that may expand the screening of streptomycetes for new antibiotics by awakening expression of cryptic antibiotic biosynthetic genes. New technologies are also described that have potential to greatly further our understanding of gene regulation in what is an area fertile for discovery and exploitation
Collapse
|