1
|
Alcorlo M, Luque-Ortega JR, Gago F, Ortega A, Castellanos M, Chacón P, de Vega M, Blanco L, Hermoso J, Serrano M, Rivas G, Hermoso J. Flexible structural arrangement and DNA-binding properties of protein p6 from Bacillus subtillis phage φ29. Nucleic Acids Res 2024; 52:2045-2065. [PMID: 38281216 PMCID: PMC10899789 DOI: 10.1093/nar/gkae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/20/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024] Open
Abstract
The genome-organizing protein p6 of Bacillus subtilis bacteriophage φ29 plays an essential role in viral development by activating the initiation of DNA replication and participating in the early-to-late transcriptional switch. These activities require the formation of a nucleoprotein complex in which the DNA adopts a right-handed superhelix wrapping around a multimeric p6 scaffold, restraining positive supercoiling and compacting the viral genome. Due to the absence of homologous structures, prior attempts to unveil p6's structural architecture failed. Here, we employed AlphaFold2 to engineer rational p6 constructs yielding crystals for three-dimensional structure determination. Our findings reveal a novel fold adopted by p6 that sheds light on its self-association mechanism and its interaction with DNA. By means of protein-DNA docking and molecular dynamic simulations, we have generated a comprehensive structural model for the nucleoprotein complex that consistently aligns with its established biochemical and thermodynamic parameters. Besides, through analytical ultracentrifugation, we have confirmed the hydrodynamic properties of the nucleocomplex, further validating in solution our proposed model. Importantly, the disclosed structure not only provides a highly accurate explanation for previously experimental data accumulated over decades, but also enhances our holistic understanding of the structural and functional attributes of protein p6 during φ29 infection.
Collapse
Affiliation(s)
- Martín Alcorlo
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry “Blas Cabrera”, CSIC, 28006 Madrid, Spain
| | - Juan Román Luque-Ortega
- Molecular Interactions Facility, Centro de Investigaciones Biológicas “Margarita Salas”, CSIC, 28040Madrid, Spain
| | - Federico Gago
- Departamento de Farmacología and CSIC-IQM Associate Unit, Universidad de Alcalá, Alcalá de Henares, 28871Madrid, Spain
| | - Alvaro Ortega
- Department of Biochemistry and Molecular Biology ‘B’ and Immunology, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence ‘Campus Mare Nostrum, Murcia, Spain
| | - Milagros Castellanos
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Nanotechnology for Health-Care, 28049 Madrid, Spain
| | - Pablo Chacón
- Department of Biological Physical-Chemistry, Institute of Physical-Chemistry “Blas Cabrera”, CSIC, 28006Madrid, Spain
| | - Miguel de Vega
- Genome maintenance and instability, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049Cantoblanco, Madrid, Spain
| | - Luis Blanco
- Genome maintenance and instability, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049Cantoblanco, Madrid, Spain
| | - José M Hermoso
- Genome maintenance and instability, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049Cantoblanco, Madrid, Spain
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
- Cambridge Institute of Science, Altos Labs, Cambridge, UK
| | - Germán Rivas
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas “Margarita Salas”, CSIC, 28040Madrid, Spain
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry “Blas Cabrera”, CSIC, 28006 Madrid, Spain
| |
Collapse
|
2
|
The Landscape of Phenotypic and Transcriptional Responses to Ciprofloxacin in Acinetobacter baumannii: Acquired Resistance Alleles Modulate Drug-Induced SOS Response and Prophage Replication. mBio 2019; 10:mBio.01127-19. [PMID: 31186328 PMCID: PMC6561030 DOI: 10.1128/mbio.01127-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The emergence of fluoroquinolone resistance in nosocomial pathogens has restricted the clinical efficacy of this antibiotic class. In Acinetobacter baumannii, the majority of clinical isolates now show high-level resistance due to mutations in gyrA (DNA gyrase) and parC (topoisomerase IV [topo IV]). To investigate the molecular basis for fluoroquinolone resistance, an exhaustive mutation analysis was performed in both drug-sensitive and -resistant strains to identify loci that alter ciprofloxacin sensitivity. To this end, parallel fitness tests of over 60,000 unique insertion mutations were performed in strains with various alleles in genes encoding the drug targets. The spectra of mutations that altered drug sensitivity were found to be similar in the drug-sensitive and gyrA parC double-mutant backgrounds, having resistance alleles in both genes. In contrast, the introduction of a single gyrA resistance allele, resulting in preferential poisoning of topo IV by ciprofloxacin, led to extreme alterations in the insertion mutation fitness landscape. The distinguishing feature of preferential topo IV poisoning was enhanced induction of DNA synthesis in the region of two endogenous prophages, with DNA synthesis associated with excision and circularization of the phages. Induction of the selective DNA synthesis in the gyrA background was also linked to heightened prophage gene transcription and enhanced activation of the mutagenic SOS response relative to that observed in either the wild-type (WT) or gyrA parC double mutant. Therefore, the accumulation of mutations that result in the stepwise evolution of high ciprofloxacin resistance is tightly connected to modulation of the SOS response and endogenous prophage DNA synthesis.IMPORTANCE Fluoroquinolones have been extremely successful antibiotics due to their ability to target multiple bacterial enzymes critical to DNA replication, the topoisomerases DNA gyrase and topo IV. Unfortunately, mutations lowering drug affinity for both enzymes are now widespread, rendering these drugs ineffective for many pathogens. To undermine this form of resistance, we examined how bacteria with target alterations differentially cope with fluoroquinolone exposures. We studied this problem in the nosocomial pathogen A. baumannii, which causes drug-resistant life-threatening infections. Employing genome-wide approaches, we uncovered numerous pathways that could be exploited to raise fluoroquinolone sensitivity independently of target alteration. Remarkably, fluoroquinolone targeting of topo IV in specific mutants caused dramatic hyperinduction of prophage replication and enhanced the mutagenic DNA damage response, but these responses were muted in strains with DNA gyrase as the primary target. This work demonstrates that resistance evolution via target modification can profoundly modulate the antibiotic stress response, revealing potential resistance-associated liabilities.
Collapse
|
3
|
Salas M, Holguera I, Redrejo-Rodríguez M, de Vega M. DNA-Binding Proteins Essential for Protein-Primed Bacteriophage Φ29 DNA Replication. Front Mol Biosci 2016; 3:37. [PMID: 27547754 PMCID: PMC4974454 DOI: 10.3389/fmolb.2016.00037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/20/2016] [Indexed: 01/25/2023] Open
Abstract
Bacillus subtilis phage Φ29 has a linear, double-stranded DNA 19 kb long with an inverted terminal repeat of 6 nucleotides and a protein covalently linked to the 5′ ends of the DNA. This protein, called terminal protein (TP), is the primer for the initiation of replication, a reaction catalyzed by the viral DNA polymerase at the two DNA ends. The DNA polymerase further elongates the nascent DNA chain in a processive manner, coupling strand displacement with elongation. The viral protein p5 is a single-stranded DNA binding protein (SSB) that binds to the single strands generated by strand displacement during the elongation process. Viral protein p6 is a double-stranded DNA binding protein (DBP) that preferentially binds to the origins of replication at the Φ29 DNA ends and is required for the initiation of replication. Both SSB and DBP are essential for Φ29 DNA amplification. This review focuses on the role of these phage DNA-binding proteins in Φ29 DNA replication both in vitro and in vivo, as well as on the implication of several B. subtilis DNA-binding proteins in different processes of the viral cycle. We will revise the enzymatic activities of the Φ29 DNA polymerase: TP-deoxynucleotidylation, processive DNA polymerization coupled to strand displacement, 3′–5′ exonucleolysis and pyrophosphorolysis. The resolution of the Φ29 DNA polymerase structure has shed light on the translocation mechanism and the determinants responsible for processivity and strand displacement. These two properties have made Φ29 DNA polymerase one of the main enzymes used in the current DNA amplification technologies. The determination of the structure of Φ29 TP revealed the existence of three domains: the priming domain, where the primer residue Ser232, as well as Phe230, involved in the determination of the initiating nucleotide, are located, the intermediate domain, involved in DNA polymerase binding, and the N-terminal domain, responsible for DNA binding and localization of the TP at the bacterial nucleoid, where viral DNA replication takes place. The biochemical properties of the Φ29 DBP and SSB and their function in the initiation and elongation of Φ29 DNA replication, respectively, will be described.
Collapse
Affiliation(s)
- Margarita Salas
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), Universidad Autónoma de Madrid Madrid, Spain
| | - Isabel Holguera
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), Universidad Autónoma de Madrid Madrid, Spain
| | - Modesto Redrejo-Rodríguez
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), Universidad Autónoma de Madrid Madrid, Spain
| | - Miguel de Vega
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|
4
|
Sala C, Grainger DC, Cole ST. Dissecting regulatory networks in host-pathogen interaction using chIP-on-chip technology. Cell Host Microbe 2009; 5:430-7. [PMID: 19454347 DOI: 10.1016/j.chom.2009.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 04/10/2009] [Indexed: 11/16/2022]
Abstract
Understanding host-microbe interactions has been greatly enhanced by our broadening knowledge of the regulatory mechanisms at the heart of pathogenesis. The "transcriptomics" approach of measuring global gene expression has identified genes involved in bacterial pathogenesis. More recently, chromatin immunoprecipitation (ChIP) and hybridization to microarrays (chIP-on-chip) has emerged as a complementary tool that permits protein-DNA interactions to be studied in vivo. Thus, chIP-on-chip can be used to map the binding sites of transcription factors, thereby teasing apart gene regulatory networks. In this Review, we discuss the ChIP-on-chip technique and focus on its application to the study of host-pathogen interactions.
Collapse
Affiliation(s)
- Claudia Sala
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
5
|
Zhang JB, Pan ZX, Lin F, Ma XS, Liu HL. [Biochemical methods for the analysis of DNA-protein interactions]. YI CHUAN = HEREDITAS 2009; 31:325-336. [PMID: 19273448 DOI: 10.3724/sp.j.1005.2009.00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Investigation of DNA-protein interactions is fundamental to understand the mechanism underlying a variety of life processes. In this article, various types of biochemical methods in DNA-protein interaction study in vivo and in vitro at the level of DNA, protein, and the complex, respectively were briefly reviewed. Traditional assays including Nitrocellulose filter-binding assay, Footprinting, EMSA, and Southwestern blotting were summarized. In addition, chromatin immunoprecipitation techniques including nChIP, xChIP, and ChIP-on-chip, which were widely used in epigenetics, were particularly introduced.
Collapse
Affiliation(s)
- Jin-Bi Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | | | | | | | | |
Collapse
|