1
|
Tanneur I, Dervyn E, Guérin C, Kon Kam King G, Jules M, Nicolas P. The mutational landscape of Bacillus subtilis conditional hypermutators shows how proofreading skews DNA polymerase error rates. Nucleic Acids Res 2025; 53:gkaf147. [PMID: 40057377 PMCID: PMC11890065 DOI: 10.1093/nar/gkaf147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 02/03/2025] [Accepted: 02/20/2025] [Indexed: 05/13/2025] Open
Abstract
Polymerase errors during DNA replication are a major source of point mutations in genomes. The spontaneous mutation rate also depends on the counteracting activity of DNA repair mechanisms, with mutator phenotypes appearing constantly and allowing for periods of rapid evolution in nature and in the laboratory. Here, we use the Gram-positive model bacterium Bacillus subtilis to disentangle the contributions of DNA polymerase initial nucleotide selectivity, DNA polymerase proofreading, and mismatch repair (MMR) to the mutation rate. To achieve this, we constructed several conditional hypermutators with a proofreading-deficient allele of polC and/or a deficient allele of mutL and performed mutation accumulation experiments. These conditional hypermutators enrich the B. subtilis synthetic biology toolbox for directed evolution. Using mathematical models, we investigated how to interpret the apparent probabilities with which errors escape MMR and proofreading, highlighting the difficulties of working with counts that aggregate potentially heterogeneous mutations and with unknowns about the pathways leading to mutations in the wild-type. Aware of these difficulties, the analysis shows that proofreading prevents partial saturation of the MMR in B. subtilis and that an inherent drawback of proofreading is to skew the net polymerase error rates by amplifying intrinsic biases in nucleotide selectivity.
Collapse
Affiliation(s)
- Ira Tanneur
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, MaIAGE, 78350 Jouy-en-Josas, France
| | - Etienne Dervyn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Cyprien Guérin
- Université Paris-Saclay, INRAE, MaIAGE, 78350 Jouy-en-Josas, France
| | | | - Matthieu Jules
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Pierre Nicolas
- Université Paris-Saclay, INRAE, MaIAGE, 78350 Jouy-en-Josas, France
| |
Collapse
|
2
|
Fukui K, Fujii Y, Yano T. Identification of a Catalytic Lysine Residue Conserved Among GHKL ATPases: MutL, GyrB, and MORC. J Mol Biol 2024; 436:168575. [PMID: 38641238 DOI: 10.1016/j.jmb.2024.168575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
DNA mismatch repair endonuclease MutL is a member of GHKL ATPase superfamily. Mutations of MutL homologs are causative of a hereditary cancer, Lynch syndrome. We characterized MutL homologs from human and a hyperthermophile, Aquifex aeolicus, (aqMutL) to reveal the catalytic mechanism for the ATPase activity. Although involvement of a basic residue had not been conceived in the catalytic mechanism, analysis of the pH dependence of the aqMutL ATPase activity revealed that the reaction is catalyzed by a residue with an alkaline pKa. Analyses of mutant aqMutLs showed that Lys79 is the catalytic residue, and the corresponding residues were confirmed to be critical for activities of human MutL homologs, on the basis of which a catalytic mechanism for MutL ATPase is proposed. These and other results described here would contribute to evaluating the pathogenicity of Lynch syndrome-associated missense mutations. Furthermore, it was confirmed that the catalytic lysine residue is conserved among DNA gyrases and microrchidia ATPases, other members of GHKL ATPases, indicating that the catalytic mechanism proposed here is applicable to these members of the superfamily.
Collapse
Affiliation(s)
- Kenji Fukui
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan.
| | - Yuki Fujii
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan
| | - Takato Yano
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan.
| |
Collapse
|
3
|
Castellanos M, Verhey TB, Goldstein M, Chaconas G. The Putative Endonuclease Activity of MutL Is Required for the Segmental Gene Conversion Events That Drive Antigenic Variation of the Lyme Disease Spirochete. Front Microbiol 2022; 13:888494. [PMID: 35663861 PMCID: PMC9159922 DOI: 10.3389/fmicb.2022.888494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022] Open
Abstract
The Lyme disease spirochete Borrelia burgdorferi, encodes an elaborate antigenic variation system that promotes the ongoing variation of a major surface lipoprotein, VlsE. Changes in VlsE are continual and always one step ahead of the host acquired immune system, which requires 1–2 weeks to generate specific antibodies. By the time this happens, new VlsE variants have arisen that escape immunosurveillance, providing an avenue for persistent infection. This antigenic variation system is driven by segmental gene conversion events that transfer information from a series of silent cassettes (vls2-16) to the expression locus, vlsE. The molecular details of this process remain elusive. Recombinational switching at vlsE is RecA-independent and the only required factor identified to date is the RuvAB branch migrase. In this work we have used next generation long-read sequencing to analyze the effect of several DNA replication/recombination/repair gene disruptions on the frequency of gene conversions at vlsE and report a requirement for the mismatch repair protein MutL. Site directed mutagenesis of mutL suggests that the putative MutL endonuclease activity is required for recombinational switching at vlsE. This is the first report of an unexpected essential role for MutL in a bacterial recombination system and expands the known function of this protein as well as our knowledge of the details of the novel recombinational switching mechanism for vlsE variation.
Collapse
Affiliation(s)
- Mildred Castellanos
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Theodore B. Verhey
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Madeleine Goldstein
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - George Chaconas
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- *Correspondence: George Chaconas,
| |
Collapse
|
4
|
Almawi AW, Scotland MK, Randall JR, Liu L, Martin HK, Sacre L, Shen Y, Pillon MC, Simmons LA, Sutton MD, Guarné A. Binding of the regulatory domain of MutL to the sliding β-clamp is species specific. Nucleic Acids Res 2019; 47:4831-4842. [PMID: 30916336 PMCID: PMC6511837 DOI: 10.1093/nar/gkz115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/21/2019] [Accepted: 02/18/2019] [Indexed: 11/15/2022] Open
Abstract
The β-clamp is a protein hub central to DNA replication and fork management. Proteins interacting with the β-clamp harbor a conserved clamp-binding motif that is often found in extended regions. Therefore, clamp interactions have -almost exclusively- been studied using short peptides recapitulating the binding motif. This approach has revealed the molecular determinants that mediate the binding but cannot describe how proteins with clamp-binding motifs embedded in structured domains are recognized. The mismatch repair protein MutL has an internal clamp-binding motif, but its interaction with the β-clamp has different roles depending on the organism. In Bacillus subtilis, the interaction stimulates the endonuclease activity of MutL and it is critical for DNA mismatch repair. Conversely, disrupting the interaction between Escherichia coli MutL and the β-clamp only causes a mild mutator phenotype. Here, we determined the structures of the regulatory domains of E. coli and B. subtilis MutL bound to their respective β-clamps. The structures reveal different binding modes consistent with the binding to the β-clamp being a two-step process. Functional characterization indicates that, within the regulatory domain, only the clamp binding motif is required for the interaction between the two proteins. However, additional motifs beyond the regulatory domain may stabilize the interaction. We propose a model for the activation of the endonuclease activity of MutL in organisms lacking methyl-directed mismatch repair.
Collapse
Affiliation(s)
- Ahmad W Almawi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Michelle K Scotland
- Department of Biochemistry, The Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.,Witebsky Center for Microbial Pathogenesis and Immunology, The Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Justin R Randall
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Linda Liu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Heather K Martin
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Lauralicia Sacre
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Yao Shen
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Monica C Pillon
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Lyle A Simmons
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Mark D Sutton
- Department of Biochemistry, The Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.,Witebsky Center for Microbial Pathogenesis and Immunology, The Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.,Genetics, Genomics and Bioinformatics Program, The Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Alba Guarné
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
5
|
Sharma A, Sharma D, Verma SK. Zinc binding proteome of a phytopathogen Xanthomonas translucens pv. undulosa. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190369. [PMID: 31598288 PMCID: PMC6774946 DOI: 10.1098/rsos.190369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/21/2019] [Indexed: 05/15/2023]
Abstract
Xanthomonas translucens pv. undulosa (Xtu) is a proteobacteria which causes bacterial leaf streak (BLS) or bacterial chaff disease in wheat and barley. The constant competition for zinc (Zn) metal nutrients contributes significantly in plant-pathogen interactions. In this study, we have employed a systematic in silico approach to study the Zn-binding proteins of Xtu. From the whole proteome of Xtu, we have identified approximately 7.9% of proteins having Zn-binding sequence and structural motifs. Further, 115 proteins were found homologous to plant-pathogen interaction database. Among these 115 proteins, 11 were predicted as putative secretory proteins. The functional diversity in Zn-binding proteins was revealed by functional domain, gene ontology and subcellular localization analysis. The roles of Zn-binding proteins were found to be varied in the range from metabolism, proteolysis, protein biosynthesis, transport, cell signalling, protein folding, transcription regulation, DNA repair, response to oxidative stress, RNA processing, antimicrobial resistance, DNA replication and DNA integration. This study provides preliminary information on putative Zn-binding proteins of Xtu which may further help in designing new metal-based antimicrobial agents for controlling BLS and bacterial chaff infections on staple crops.
Collapse
|
6
|
Shen M, Zhang H, Shen W, Zou Z, Lu S, Li G, He X, Agnello M, Shi W, Hu F, Le S. Pseudomonas aeruginosa MutL promotes large chromosomal deletions through non-homologous end joining to prevent bacteriophage predation. Nucleic Acids Res 2019. [PMID: 29514250 PMCID: PMC5961081 DOI: 10.1093/nar/gky160] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen with a relatively large genome, and has been shown to routinely lose genomic fragments during environmental selection. However, the underlying molecular mechanisms that promote chromosomal deletion are still poorly understood. In a recent study, we showed that by deleting a large chromosomal fragment containing two closely situated genes, hmgA and galU, P. aeruginosa was able to form ‘brown mutants’, bacteriophage (phage) resistant mutants with a brown color phenotype. In this study, we show that the brown mutants occur at a frequency of 227 ± 87 × 10−8 and contain a deletion ranging from ∼200 to ∼620 kb. By screening P. aeruginosa transposon mutants, we identified mutL gene whose mutation constrained the emergence of phage-resistant brown mutants. Moreover, the P. aeruginosa MutL (PaMutL) nicking activity can result in DNA double strand break (DSB), which is then repaired by non-homologous end joining (NHEJ), leading to chromosomal deletions. Thus, we reported a noncanonical function of PaMutL that promotes chromosomal deletions through NHEJ to prevent phage predation.
Collapse
Affiliation(s)
- Mengyu Shen
- Department of Microbiology, Third Military Medical University, Chongqing 400038, China
| | - Huidong Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Wei Shen
- Department of Medical Laboratory, Chengdu Military General Hospital, Chengdu 610083, China
| | - Zhenyu Zou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Shuguang Lu
- Department of Microbiology, Third Military Medical University, Chongqing 400038, China
| | - Gang Li
- Department of Microbiology, Third Military Medical University, Chongqing 400038, China
| | - Xuesong He
- The Forsyth Institute, 245 First St, Cambridge, MA 02142, USA
| | - Melissa Agnello
- School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Wenyuan Shi
- The Forsyth Institute, 245 First St, Cambridge, MA 02142, USA
| | - Fuquan Hu
- Department of Microbiology, Third Military Medical University, Chongqing 400038, China
| | - Shuai Le
- Department of Microbiology, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
7
|
Jia P, Chai W. The MLH1 ATPase domain is needed for suppressing aberrant formation of interstitial telomeric sequences. DNA Repair (Amst) 2018; 65:20-25. [PMID: 29544212 DOI: 10.1016/j.dnarep.2018.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 02/05/2023]
Abstract
Genome instability gives rise to cancer. MLH1, commonly known for its important role in mismatch repair (MMR), DNA damage signaling and double-strand break (DSB) repair, safeguards genome stability. Recently we have reported a novel role of MLH1 in preventing aberrant formation of interstitial telomeric sequences (ITSs) at intra-chromosomal regions. Deficiency in MLH1, in particular its N-terminus, leads to an increase of ITSs. Here, we identify that the ATPase activity in the MLH1 N-terminal domain is important for suppressing the formation of ITSs. The ATPase activity is also needed for recruiting MLH1 to DSBs. Moreover, defective ATPase activity of MLH1 causes an increase in micronuclei formation. Our results highlight the crucial role of MLH1's ATPase domain in preventing the aberrant formation of telomeric sequences at the intra-chromosomal regions and preserving genome stability.
Collapse
Affiliation(s)
- Pingping Jia
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, United States
| | - Weihang Chai
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, United States.
| |
Collapse
|
8
|
Burby PE, Simmons LA. MutS2 Promotes Homologous Recombination in Bacillus subtilis. J Bacteriol 2017; 199:e00682-16. [PMID: 27799325 PMCID: PMC5198493 DOI: 10.1128/jb.00682-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/21/2016] [Indexed: 02/07/2023] Open
Abstract
Bacterial MutS proteins are subdivided into two families, MutS1 and MutS2. MutS1 family members recognize DNA replication errors during their participation in the well-characterized mismatch repair (MMR) pathway. In contrast to the well-described function of MutS1, the function of MutS2 in bacteria has remained less clear. In Helicobacter pylori and Thermus thermophilus, MutS2 has been shown to suppress homologous recombination. The role of MutS2 is unknown in the Gram-positive bacterium Bacillus subtilis In this work, we investigated the contribution of MutS2 to maintaining genome integrity in B. subtilis We found that deletion of mutS2 renders B. subtilis sensitive to the natural antibiotic mitomycin C (MMC), which requires homologous recombination for repair. We demonstrate that the C-terminal small MutS-related (Smr) domain is necessary but not sufficient for tolerance to MMC. Further, we developed a CRISPR/Cas9 genome editing system to test if the inducible prophage PBSX was the underlying cause of the observed MMC sensitivity. Genetic analysis revealed that MMC sensitivity was dependent on recombination and not on nucleotide excision repair or a symptom of prophage PBSX replication and cell lysis. We found that deletion of mutS2 resulted in decreased transformation efficiency using both plasmid and chromosomal DNA. Further, deletion of mutS2 in a strain lacking the Holliday junction endonuclease gene recU resulted in increased MMC sensitivity and decreased transformation efficiency, suggesting that MutS2 could function redundantly with RecU. Together, our results support a model where B. subtilis MutS2 helps to promote homologous recombination, demonstrating a new function for bacterial MutS2. IMPORTANCE Cells contain pathways that promote or inhibit recombination. MutS2 homologs are Smr-endonuclease domain-containing proteins that have been shown to function in antirecombination in some bacteria. We present evidence that B. subtilis MutS2 promotes recombination, providing a new function for MutS2. We found that cells lacking mutS2 are sensitive to DNA damage that requires homologous recombination for repair and have reduced transformation efficiency. Further analysis indicates that the C-terminal Smr domain requires the N-terminal portion of MutS2 for function in vivo Moreover, we show that a mutS2 deletion is additive with a recU deletion, suggesting that these proteins have a redundant function in homologous recombination. Together, our study shows that MutS2 proteins have adapted different functions that impact recombination.
Collapse
Affiliation(s)
- Peter E Burby
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Comparing mutation rates under the Luria–Delbrück protocol. Genetica 2016; 144:351-9. [DOI: 10.1007/s10709-016-9904-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/04/2016] [Indexed: 12/11/2022]
|
10
|
Pillon MC, Babu VMP, Randall JR, Cai J, Simmons LA, Sutton MD, Guarné A. The sliding clamp tethers the endonuclease domain of MutL to DNA. Nucleic Acids Res 2015; 43:10746-59. [PMID: 26384423 PMCID: PMC4678855 DOI: 10.1093/nar/gkv918] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/04/2015] [Accepted: 09/06/2015] [Indexed: 01/05/2023] Open
Abstract
The sliding clamp enhances polymerase processivity and coordinates DNA replication with other critical DNA processing events including translesion synthesis, Okazaki fragment maturation and DNA repair. The relative binding affinity of the sliding clamp for its partners determines how these processes are orchestrated and is essential to ensure the correct processing of newly replicated DNA. However, while stable clamp interactions have been extensively studied; dynamic interactions mediated by the sliding clamp remain poorly understood. Here, we characterize the interaction between the bacterial sliding clamp (β-clamp) and one of its weak-binding partners, the DNA mismatch repair protein MutL. Disruption of this interaction causes a mild mutator phenotype in Escherichia coli, but completely abrogates mismatch repair activity in Bacillus subtilis. We stabilize the MutL-β interaction by engineering two cysteine residues at variable positions of the interface. Using disulfide bridge crosslinking, we have stabilized the E. coli and B. subtilis MutL-β complexes and have characterized their structures using small angle X-ray scattering. We find that the MutL-β interaction greatly stimulates the endonuclease activity of B. subtilis MutL and supports this activity even in the absence of the N-terminal region of the protein.
Collapse
Affiliation(s)
- Monica C Pillon
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Vignesh M P Babu
- Department of Biochemistry, The School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, 14214, USA Witebsky Center for Microbial Pathogenesis and Immunology, The School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, 14214, USA
| | - Justin R Randall
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor MI 48109, USA
| | - Jiudou Cai
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Lyle A Simmons
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor MI 48109, USA
| | - Mark D Sutton
- Department of Biochemistry, The School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, 14214, USA Witebsky Center for Microbial Pathogenesis and Immunology, The School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, 14214, USA Genetics, Genomics and Bioinformatics Program, The School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, 14214, USA
| | - Alba Guarné
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
11
|
Georgescu R, Langston L, O'Donnell M. A proposal: Evolution of PCNA's role as a marker of newly replicated DNA. DNA Repair (Amst) 2015; 29:4-15. [PMID: 25704660 DOI: 10.1016/j.dnarep.2015.01.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 11/26/2022]
Abstract
Processivity clamps that hold DNA polymerases to DNA for processivity were the first proteins known to encircle the DNA duplex. At the time, polymerase processivity was thought to be the only function of ring shaped processivity clamps. But studies from many laboratories have identified numerous proteins that bind and function with sliding clamps. Among these processes are mismatch repair and nucleosome assembly. Interestingly, there exist polymerases that are highly processive and do not require clamps. Hence, DNA polymerase processivity does not intrinsically require that sliding clamps evolved for this purpose. We propose that polymerases evolved to require clamps as a way of ensuring that clamps are deposited on newly replicated DNA. These clamps are then used on the newly replicated daughter strands, for processes important to genomic integrity, such as mismatch repair and the assembly of nucleosomes to maintain epigenetic states of replicating cells during development.
Collapse
Affiliation(s)
- Roxana Georgescu
- Rockefeller University and HHMI, 1230 York Avenue, Box 228, New York, NY 10065, United States
| | - Lance Langston
- Rockefeller University and HHMI, 1230 York Avenue, Box 228, New York, NY 10065, United States
| | - Mike O'Donnell
- Rockefeller University and HHMI, 1230 York Avenue, Box 228, New York, NY 10065, United States.
| |
Collapse
|
12
|
Pineda M, González-Acosta M, Thompson BA, Sánchez R, Gómez C, Martínez-López J, Perea J, Caldés T, Rodríguez Y, Landolfi S, Balmaña J, Lázaro C, Robles L, Capellá G, Rueda D. Detailed characterization of MLH1 p.D41H and p.N710D variants coexisting in a Lynch syndrome family with conserved MLH1 expression tumors. Clin Genet 2014; 87:543-8. [PMID: 25060679 DOI: 10.1111/cge.12467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 12/26/2022]
Abstract
Lynch syndrome (LS) is an autosomal dominant cancer-susceptibility disease caused by inactivating germline mutations in mismatch repair (MMR) genes. Variants of unknown significance (VUS) are often detected in mutational analysis of MMR genes. Here we describe a large family fulfilling Amsterdam I criteria carrying two rare VUS in the MLH1 gene: c.121G > C (p.D41H) and c.2128A > G (p.N710D). Collection of clinico-pathological data, multifactorial analysis, in silico predictions, and functional analyses were used to elucidate the clinical significance of the identified MLH1 VUS. Only the c.121G > C variant cosegregated with LS-associated tumors in the family. Diagnosed colorectal tumors were microsatellite unstable although immunohistochemical staining revealed no loss of MMR proteins expression. Multifactorial likelihood analysis classified c.2128A > G as a non-pathogenic variant and c.121G > C as pathogenic. In vitro functional tests revealed impaired MMR activity and diminished expression of c.121G > C. Accordingly, the N710 residue is located in the unconserved MLH1 C-terminal domain, whereas D41 is highly conserved and located in the ATPase domain. The obtained results will enable adequate genetic counseling of c.121G > C and c.2128A > G variant carriers and their families. Furthermore, they exemplify how cumulative data and comprehensive analyses are mandatory to refine the classification of MMR variants.
Collapse
Affiliation(s)
- M Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology, ICO-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
DNA helicases have important roles in genome maintenance. The RecD helicase has been well studied as a component of the heterotrimeric RecBCD helicase-nuclease enzyme important for double-strand break repair in Escherichia coli. Interestingly, many bacteria lack RecBC and instead contain a RecD2 helicase, which is not known to function as part of a larger complex. Depending on the organism studied, RecD2 has been shown to provide resistance to a broad range of DNA-damaging agents while also contributing to mismatch repair (MMR). Here we investigated the importance of Bacillus subtilis RecD2 helicase to genome integrity. We show that deletion of recD2 confers a modest increase in the spontaneous mutation rate and that the mutational signature in ΔrecD2 cells is not consistent with an MMR defect, indicating a new function for RecD2 in B. subtilis. To further characterize the role of RecD2, we tested the deletion strain for sensitivity to DNA-damaging agents. We found that loss of RecD2 in B. subtilis sensitized cells to several DNA-damaging agents that can block or impair replication fork movement. Measurement of replication fork progression in vivo showed that forks collapse more frequently in ΔrecD2 cells, supporting the hypothesis that RecD2 is important for normal replication fork progression. Biochemical characterization of B. subtilis RecD2 showed that it is a 5'-3' helicase and that it directly binds single-stranded DNA binding protein. Together, our results highlight novel roles for RecD2 in DNA replication which help to maintain replication fork integrity during normal growth and when forks encounter DNA damage.
Collapse
|
14
|
Resistance of Bacillus subtilis spore DNA to lethal ionizing radiation damage relies primarily on spore core components and DNA repair, with minor effects of oxygen radical detoxification. Appl Environ Microbiol 2013; 80:104-9. [PMID: 24123749 DOI: 10.1128/aem.03136-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The roles of various core components, including α/β/γ-type small acid-soluble spore proteins (SASP), dipicolinic acid (DPA), core water content, and DNA repair by apurinic/apyrimidinic (AP) endonucleases or nonhomologous end joining (NHEJ), in Bacillus subtilis spore resistance to different types of ionizing radiation including X rays, protons, and high-energy charged iron ions have been studied. Spores deficient in DNA repair by NHEJ or AP endonucleases, the oxidative stress response, or protection by major α/β-type SASP, DPA, and decreased core water content were significantly more sensitive to ionizing radiation than wild-type spores, with highest sensitivity to high-energy-charged iron ions. DNA repair via NHEJ and AP endonucleases appears to be the most important mechanism for spore resistance to ionizing radiation, whereas oxygen radical detoxification via the MrgA-mediated oxidative stress response or KatX catalase activity plays only a very minor role. Synergistic radioprotective effects of α/β-type but not γ-type SASP were also identified, indicating that α/β-type SASP's binding to spore DNA is important in preventing DNA damage due to reactive oxygen species generated by ionizing radiation.
Collapse
|
15
|
Lenhart JS, Pillon MC, Guarné A, Simmons LA. Trapping and visualizing intermediate steps in the mismatch repair pathwayin vivo. Mol Microbiol 2013; 90:680-98. [DOI: 10.1111/mmi.12389] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Justin S. Lenhart
- Department of Molecular, Cellular, and Developmental Biology; University of Michigan; 830 North University Ave Ann Arbor MI 48109-1048 USA
| | - Monica C. Pillon
- Department of Biochemistry and Biomedical Sciences; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4K1 Canada
| | - Alba Guarné
- Department of Biochemistry and Biomedical Sciences; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4K1 Canada
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology; University of Michigan; 830 North University Ave Ann Arbor MI 48109-1048 USA
| |
Collapse
|
16
|
Abstract
The concentration of ribonucleoside triphosphates (rNTPs) in cells is far greater than the concentration of deoxyribonucleoside triphosphates (dNTPs), and this pool imbalance presents a challenge for DNA polymerases (Pols) to select their proper substrate. This report examines the effect of nucleotide pool imbalance on the rate and fidelity of the Escherichia coli replisome. We find that rNTPs decrease replication fork rate by competing with dNTPs at the active site of the C-family Pol III replicase at a step that does not require correct base-pairing. The effect of rNTPs on Pol rate generalizes to B-family eukaryotic replicases, Pols δ and ε. Imbalance of the dNTP pool also slows the replisome and thus is not specific to rNTPs. We observe a measurable frequency of rNMP incorporation that predicts one rNTP incorporated every 2.3 kb during chromosome replication. Given the frequency of rNMP incorporation, the repair of rNMPs is likely rapid. RNase HII nicks DNA at single rNMP residues to initiate replacement with dNMP. Considering that rNMPs will mark the new strand, RNase HII may direct strand-specificity for mismatch repair (MMR). How the newly synthesized strand is recognized for MMR is uncertain in eukaryotes and most bacteria, which lack a methyl-directed nicking system. Here we demonstrate that Bacillus subtilis incorporates rNMPs in vivo, that RNase HII plays a role in their removal, and the RNase HII gene deletion enhances mutagenesis, suggesting a possible role of incorporated rNMPs in MMR.
Collapse
|
17
|
Lenhart JS, Sharma A, Hingorani MM, Simmons LA. DnaN clamp zones provide a platform for spatiotemporal coupling of mismatch detection to DNA replication. Mol Microbiol 2012; 87:553-68. [PMID: 23228104 DOI: 10.1111/mmi.12115] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2012] [Indexed: 11/30/2022]
Abstract
Mismatch repair (MMR) increases the fidelity of DNA replication by identifying and correcting replication errors. Processivity clamps are vital components of DNA replication and MMR, yet the mechanism and extent to which they participate in MMR remains unclear. We investigated the role of the Bacillus subtilis processivity clamp DnaN, and found that it serves as a platform for mismatch detection and coupling of repair to DNA replication. By visualizing functional MutS fluorescent fusions in vivo, we find that MutS forms foci independent of mismatch detection at sites of replication (i.e. the replisome). These MutS foci are directed to the replisome by DnaN clamp zones that aid mismatch detection by targeting the search to nascent DNA. Following mismatch detection, MutS disengages from the replisome, facilitating repair. We tested the functional importance of DnaN-mediated mismatch detection for MMR, and found that it accounts for 90% of repair. This high dependence on DnaN can be bypassed by increasing MutS concentration within the cell, indicating a secondary mode of detection in vivo whereby MutS directly finds mismatches without associating with the replisome. Overall, our results provide new insight into the mechanism by which DnaN couples mismatch recognition to DNA replication in living cells.
Collapse
Affiliation(s)
- Justin S Lenhart
- Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|