1
|
Shin HD, Toporek Y, Mok JK, Maekawa R, Lee BD, Howard MH, DiChristina TJ. Iodate Reduction by Shewanella oneidensis Requires Genes Encoding an Extracellular Dimethylsulfoxide Reductase. Front Microbiol 2022; 13:852942. [PMID: 35495678 PMCID: PMC9048795 DOI: 10.3389/fmicb.2022.852942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial iodate (IO3 -) reduction is a major component of the iodine biogeochemical reaction network in anaerobic marine basins and radioactive iodine-contaminated subsurface environments. Alternative iodine remediation technologies include microbial reduction of IO3 - to iodide (I-) and microbial methylation of I- to volatile gases. The metal reduction pathway is required for anaerobic IO3 - respiration by the gammaproteobacterium Shewanella oneidensis. However, the terminal IO3 - reductase and additional enzymes involved in the S. oneidensis IO3 - electron transport chain have not yet been identified. In this study, gene deletion mutants deficient in four extracellular electron conduits (EECs; ΔmtrA, ΔmtrA-ΔmtrDEF, ΔmtrA-ΔdmsEF, ΔmtrA-ΔSO4360) and DMSO reductase (ΔdmsB) of S. oneidensis were constructed and examined for anaerobic IO3 - reduction activity with either 20 mM lactate or formate as an electron donor. IO3 - reduction rate experiments were conducted under anaerobic conditions in defined minimal medium amended with 250 μM IO3 - as anaerobic electron acceptor. Only the ΔmtrA mutant displayed a severe deficiency in IO3 - reduction activity with lactate as the electron donor, which suggested that the EEC-associated decaheme cytochrome was required for lactate-dependent IO3 - reduction. The ΔmtrA-ΔdmsEF triple mutant displayed a severe deficiency in IO3 - reduction activity with formate as the electron donor, whereas ΔmtrA-ΔmtrDEF and ΔmtrA-ΔSO4360 retained moderate IO3 - reduction activity, which suggested that the EEC-associated dimethylsulfoxide (DMSO) reductase membrane-spanning protein DmsE, but not MtrA, was required for formate-dependent IO3 - reduction. Furthermore, gene deletion mutant ΔdmsB (deficient in the extracellular terminal DMSO reductase protein DmsB) and wild-type cells grown with tungsten replacing molybdenum (a required co-factor for DmsA catalytic activity) in defined growth medium were unable to reduce IO3 - with either lactate or formate as the electron donor, which indicated that the DmsAB complex functions as an extracellular IO3 - terminal reductase for both electron donors. Results of this study provide complementary genetic and phenotypic evidence that the extracellular DMSO reductase complex DmsAB of S. oneidensis displays broad substrate specificity and reduces IO3 - as an alternate terminal electron acceptor.
Collapse
Affiliation(s)
- Hyun-Dong Shin
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, United States
| | - Yael Toporek
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, United States
| | - Jung Kee Mok
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, United States
| | - Ruri Maekawa
- School of Materials, Chemistry and Chemical Engineering, Osaka Prefecture University, Sakai, Japan
| | - Brady D. Lee
- Savannah River National Laboratory, Environmental Sciences Section, Aiken, SC, United States
| | - M. Hope Howard
- Savannah River National Laboratory, Environmental Sciences Section, Aiken, SC, United States
| | - Thomas J. DiChristina
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, United States
| |
Collapse
|
2
|
Metal Reduction and Protein Secretion Genes Required for Iodate Reduction by Shewanella oneidensis. Appl Environ Microbiol 2019; 85:AEM.02115-18. [PMID: 30446562 DOI: 10.1128/aem.02115-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/07/2018] [Indexed: 01/28/2023] Open
Abstract
The metal-reducing gammaproteobacterium Shewanella oneidensis reduces iodate (IO3 -) as an anaerobic terminal electron acceptor. Microbial IO3 - electron transport pathways are postulated to terminate with nitrate (NO3 -) reductase, which reduces IO3 - as an alternative electron acceptor. Recent studies with S. oneidensis, however, have demonstrated that NO3 - reductase is not involved in IO3 - reduction. The main objective of the present study was to determine the metal reduction and protein secretion genes required for IO3 - reduction by Shewanella oneidensis with lactate, formate, or H2 as the electron donor. With all electron donors, the type I and type V protein secretion mutants retained wild-type IO3 - reduction activity, while the type II protein secretion mutant lacking the outer membrane secretin GspD was impaired in IO3 - reduction. Deletion mutants lacking the cyclic AMP receptor protein (CRP), cytochrome maturation permease CcmB, and inner membrane-tethered c-type cytochrome CymA were impaired in IO3 - reduction with all electron donors, while deletion mutants lacking c-type cytochrome MtrA and outer membrane β-barrel protein MtrB of the outer membrane MtrAB module were impaired in IO3 - reduction with only lactate as an electron donor. With all electron donors, mutants lacking the c-type cytochromes OmcA and MtrC of the metal-reducing extracellular electron conduit MtrCAB retained wild-type IO3 - reduction activity. These findings indicate that IO3 - reduction by S. oneidensis involves electron donor-dependent metal reduction and protein secretion pathway components, including the outer membrane MtrAB module and type II protein secretion of an unidentified IO3 - reductase to the S. oneidensis outer membrane.IMPORTANCE Microbial iodate (IO3 -) reduction is a major component in the biogeochemical cycling of iodine and the bioremediation of iodine-contaminated environments; however, the molecular mechanism of microbial IO3 - reduction is poorly understood. Results of the present study indicate that outer membrane (type II) protein secretion and metal reduction genes encoding the outer membrane MtrAB module of the extracellular electron conduit MtrCAB are required for IO3 - reduction by S. oneidensis On the other hand, the metal-reducing c-type cytochrome MtrC of the extracellular electron conduit is not required for IO3 - reduction by S. oneidensis These findings indicate that the IO3 - electron transport pathway terminates with an as yet unidentified IO3 - reductase that associates with the outer membrane MtrAB module to deliver electrons extracellularly to IO3.
Collapse
|
3
|
Furukawa Y, Dale JR. The surface properties of Shewanella putrefaciens 200 and S. oneidensis MR-1: the effect of pH and terminal electron acceptors. GEOCHEMICAL TRANSACTIONS 2013; 14:3. [PMID: 23566080 PMCID: PMC3623883 DOI: 10.1186/1467-4866-14-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 03/26/2013] [Indexed: 05/08/2023]
Abstract
BACKGROUND We investigated the surface characteristics of two strains of Shewanella sp., S. oneidensis MR-1 and S. putrefaciens 200, that were grown under aerobic conditions as well as under anaerobic conditions with trimethylamine oxide (TMAO) as the electron acceptor. The investigation focused on the experimental determination of electrophoretic mobility (EPM) under a range of pH and ionic strength, as well as by subsequent modeling in which Shewanella cells were considered to be soft particles with water- and ion-permeable outermost layers. RESULTS The soft layer of p200 is significantly more highly charged (i.e., more negative) than that of MR-1. The effect of electron acceptor on the soft particle characteristics of Shewanella sp. is complex. The fixed charge density, which is a measure of the deionized and deprotonated functional groups in the soft layer polymers, is slightly greater (i.e., more negative) for aerobically grown p200 than for p200 grown with TMAO. On the other hand, the fixed charge density of aerobically grown MR1 is slightly less than that of p200 grown with TMAO. The effect of pH on the soft particle characteristics is also complex, and does not exhibit a clear pH-dependent trend. CONCLUSIONS The Shewanella surface characteristics were attributed to the nature of the outermost soft layer, the extracellular polymeric substances (EPS) in case of p200 and lypopolysaccharides (LPS) in case of MR1 which generally lacks EPS. The growth conditions (i.e., aerobic vs. anaerobic TMAO) have an influence on the soft layer characteristics of Shewanella sp. cells. Meanwhile, the clear pH dependency of the mechanical and morphological characteristics of EPS and LPS layers, observed in previous studies through atomic force microscopy, adhesion tests and spectroscopies, cannot be corroborated by the electrohydrodynamics-based soft particle characteristics which does not exhibited a clear pH dependency in this study. While the electrohydrodynamics-based soft-particle model is a useful tool in understanding bacteria's surface properties, it needs to be supplemented with other characterization methods and models (e.g., chemical and micromechanical) in order to comprehensively address all of the surface-related characteristics important in environmental and other aqueous processes.
Collapse
Affiliation(s)
- Yoko Furukawa
- Naval Research Laboratory, Seafloor Sciences Branch, Stennis Space Center, MS,
39529, USA
| | - Jason R Dale
- Naval Research Laboratory, Seafloor Sciences Branch, Stennis Space Center, MS,
39529, USA
| |
Collapse
|
4
|
Yip ES, Burnside DM, Cianciotto NP. Cytochrome c4 is required for siderophore expression by Legionella pneumophila, whereas cytochromes c1 and c5 promote intracellular infection. MICROBIOLOGY-SGM 2010; 157:868-878. [PMID: 21178169 PMCID: PMC3081086 DOI: 10.1099/mic.0.046490-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A panel of cytochrome c maturation (ccm) mutants of Legionella pneumophila displayed a loss of siderophore (legiobactin) expression, as measured by both the chrome azurol S assay and a Legionella-specific bioassay. These data, coupled with the finding that ccm transcripts are expressed by wild-type bacteria grown in deferrated medium, indicate that the Ccm system promotes siderophore expression by L. pneumophila. To determine the basis of this newfound role for Ccm, we constructed and tested a set of mutants specifically lacking individual c-type cytochromes. Whereas ubiquinol-cytochrome c reductase (petC) mutants specifically lacking cytochrome c1 and cycB mutants lacking cytochrome c5 had normal siderophore expression, cyc4 mutants defective for cytochrome c4 completely lacked legiobactin. These data, along with the expression pattern of cyc4 mRNA, indicate that cytochrome c4 in particular promotes siderophore expression. In intracellular infection assays, petC mutants and cycB mutants, but not cyc4 mutants, had a reduced ability to infect both amoebae and macrophage hosts. Like ccm mutants, the cycB mutants were completely unable to grow in amoebae, highlighting a major role for cytochrome c5 in intracellular infection. To our knowledge, these data represent both the first direct documentation of the importance of a c-type cytochrome in expression of a biologically active siderophore and the first insight into the relative importance of c-type cytochromes in intracellular infection events.
Collapse
Affiliation(s)
- Emily S Yip
- Department of Microbiology and Immunology, Northwestern University Medical School, 320 East Superior St, Chicago, IL 60611, USA
| | - Denise M Burnside
- Department of Microbiology and Immunology, Northwestern University Medical School, 320 East Superior St, Chicago, IL 60611, USA
| | - Nicholas P Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, 320 East Superior St, Chicago, IL 60611, USA
| |
Collapse
|
5
|
Marshall MJ, Beliaev AS, Fredrickson JK. Microbial Transformations of Radionuclides in the Subsurface. Environ Microbiol 2010. [DOI: 10.1002/9780470495117.ch4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Siderophores are not involved in Fe(III) solubilization during anaerobic Fe(III) respiration by Shewanella oneidensis MR-1. Appl Environ Microbiol 2010; 76:2425-32. [PMID: 20190086 DOI: 10.1128/aem.03066-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Shewanella oneidensis MR-1 respires a wide range of anaerobic electron acceptors, including sparingly soluble Fe(III) oxides. In the present study, S. oneidensis was found to produce Fe(III)-solubilizing organic ligands during anaerobic Fe(III) oxide respiration, a respiratory strategy postulated to destabilize Fe(III) and produce more readily reducible soluble organic Fe(III). In-frame gene deletion mutagenesis, siderophore detection assays, and voltammetric techniques were combined to determine (i) if the Fe(III)-solubilizing organic ligands produced by S. oneidensis during anaerobic Fe(III) oxide respiration were synthesized via siderophore biosynthesis systems and (ii) if the Fe(III)-siderophore reductase was required for respiration of soluble organic Fe(III) as an anaerobic electron acceptor. Genes predicted to encode the siderophore (hydroxamate) biosynthesis system (SO3030 to SO3032), the Fe(III)-hydroxamate receptor (SO3033), and the Fe(III)-hydroxamate reductase (SO3034) were identified in the S. oneidensis genome, and corresponding in-frame gene deletion mutants were constructed. DeltaSO3031 was unable to synthesize siderophores or produce soluble organic Fe(III) during aerobic respiration yet retained the ability to solubilize and respire Fe(III) at wild-type rates during anaerobic Fe(III) oxide respiration. DeltaSO3034 retained the ability to synthesize siderophores during aerobic respiration and to solubilize and respire Fe(III) at wild-type rates during anaerobic Fe(III) oxide respiration. These findings indicate that the Fe(III)-solubilizing organic ligands produced by S. oneidensis during anaerobic Fe(III) oxide respiration are not synthesized via the hydroxamate biosynthesis system and that the Fe(III)-hydroxamate reductase is not essential for respiration of Fe(III)-citrate or Fe(III)-nitrilotriacetic acid (NTA) as an anaerobic electron acceptor.
Collapse
|
7
|
Jones ME, Fennessey CM, DiChristina TJ, Taillefert M. Shewanella oneidensis MR-1 mutants selected for their inability to produce soluble organic-Fe(III) complexes are unable to respire Fe(III) as anaerobic electron acceptor. Environ Microbiol 2010; 12:938-50. [DOI: 10.1111/j.1462-2920.2009.02137.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Anaerobic respiration of elemental sulfur and thiosulfate by Shewanella oneidensis MR-1 requires psrA, a homolog of the phsA gene of Salmonella enterica serovar typhimurium LT2. Appl Environ Microbiol 2009; 75:5209-17. [PMID: 19542325 DOI: 10.1128/aem.00888-09] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shewanella oneidensis MR-1, a facultatively anaerobic gammaproteobacterium, respires a variety of anaerobic terminal electron acceptors, including the inorganic sulfur compounds sulfite (SO3(2-)), thiosulfate (S2O3(2-)), tetrathionate (S4O6(2-)), and elemental sulfur (S(0)). The molecular mechanism of anaerobic respiration of inorganic sulfur compounds by S. oneidensis, however, is poorly understood. In the present study, we identified a three-gene cluster in the S. oneidensis genome whose translated products displayed 59 to 73% amino acid similarity to the products of phsABC, a gene cluster required for S(0) and S2O3(2-) respiration by Salmonella enterica serovar Typhimurium LT2. Homologs of phsA (annotated as psrA) were identified in the genomes of Shewanella strains that reduce S(0) and S2O3(2-) yet were missing from the genomes of Shewanella strains unable to reduce these electron acceptors. A new suicide vector was constructed and used to generate a markerless, in-frame deletion of psrA, the gene encoding the putative thiosulfate reductase. The psrA deletion mutant (PSRA1) retained expression of downstream genes psrB and psrC but was unable to respire S(0) or S2O3(2-) as the terminal electron acceptor. Based on these results, we postulate that PsrA functions as the main subunit of the S. oneidensis S2O3(2-) terminal reductase whose end products (sulfide [HS-] or SO3(2-)) participate in an intraspecies sulfur cycle that drives S(0) respiration.
Collapse
|
9
|
Fredrickson JK, Romine MF, Beliaev AS, Auchtung JM, Driscoll ME, Gardner TS, Nealson KH, Osterman AL, Pinchuk G, Reed JL, Rodionov DA, Rodrigues JLM, Saffarini DA, Serres MH, Spormann AM, Zhulin IB, Tiedje JM. Towards environmental systems biology of Shewanella. Nat Rev Microbiol 2008; 6:592-603. [PMID: 18604222 DOI: 10.1038/nrmicro1947] [Citation(s) in RCA: 662] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bacteria of the genus Shewanella are known for their versatile electron-accepting capacities, which allow them to couple the decomposition of organic matter to the reduction of the various terminal electron acceptors that they encounter in their stratified environments. Owing to their diverse metabolic capabilities, shewanellae are important for carbon cycling and have considerable potential for the remediation of contaminated environments and use in microbial fuel cells. Systems-level analysis of the model species Shewanella oneidensis MR-1 and other members of this genus has provided new insights into the signal-transduction proteins, regulators, and metabolic and respiratory subsystems that govern the remarkable versatility of the shewanellae.
Collapse
Affiliation(s)
- James K Fredrickson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA. ;
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Taillefert M, Beckler JS, Carey E, Burns JL, Fennessey CM, DiChristina TJ. Shewanella putrefaciens produces an Fe(III)-solubilizing organic ligand during anaerobic respiration on insoluble Fe(III) oxides. J Inorg Biochem 2007; 101:1760-7. [PMID: 17765315 DOI: 10.1016/j.jinorgbio.2007.07.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 06/29/2007] [Accepted: 07/13/2007] [Indexed: 11/16/2022]
Abstract
The mechanism of Fe(III) reduction was investigated using voltammetric techniques in anaerobic incubations of Shewanella putrefaciens strain 200 supplemented with Fe(III) citrate or a suite of Fe(III) oxides as terminal electron acceptor. Results indicate that organic complexes of Fe(III) are produced during the reduction of Fe(III) at rates that correlate with the reactivity of the Fe(III) phase and bacterial cell density. Anaerobic Fe(III) solubilization activity is detected with either Fe(III) oxides or Fe(III) citrate, suggesting that the organic ligand produced is strong enough to destabilize Fe(III) from soluble or solid Fe(III) substrates. Results also demonstrate that Fe(III) oxide dissolution is not controlled by the intrinsic chemical reactivity of the Fe(III) oxides. Instead, the chemical reaction between the endogenous organic ligand is only affected by the number of reactive surface sites available to S. putrefaciens. This report describes the first application of voltammetric techniques to demonstrate production of soluble organic-Fe(III) complexes by any Fe(III)-reducing microorganism and is the first report of a Fe(III)-solubilizing ligand generated by a metal-reducing member of the genus Shewanella.
Collapse
Affiliation(s)
- Martial Taillefert
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0340, USA.
| | | | | | | | | | | |
Collapse
|