1
|
Zhang A, Zhang H, Wang R, He H, Song B, Song R. Bactericidal bissulfone B 7 targets bacterial pyruvate kinase to impair bacterial biology and pathogenicity in plants. SCIENCE CHINA. LIFE SCIENCES 2024; 67:391-402. [PMID: 37987940 DOI: 10.1007/s11427-023-2449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 11/22/2023]
Abstract
The prevention and control of rice bacterial leaf blight (BLB) disease has not yet been achieved due to the lack of effective agrochemicals and available targets. Herein, we develop a series of novel bissulfones and a novel target with a unique mechanism to address this challenge. The developed bissulfones can control Xanthomonas oryzae pv. oryzae (Xoo), and 2-(bis(methylsulfonyl)methylene)-N-(4-chlorophenyl) hydrazine-1-carboxamide (B7) is more effective than the commercial drugs thiodiazole copper (TC) and bismerthiazol (BT). Pyruvate kinase (PYK) in Xoo has been identified for the first time as the target protein of our bissulfone B7. PYK modulates bacterial virulence via a CRP-like protein (Clp)/two-component system regulatory protein (regR) axis. The elucidation of this pathway facilitates the use of B7 to reduce PYK expression at the transcriptional level, block PYK activity at the protein level, and impair the interaction within the PYK-Clp-regR complex via competitive inhibition, thereby attenuating bacterial biology and pathogenicity. This study offers insights into the molecular and mechanistic aspects underlying anti-Xoo strategies that target PYK. We believe that these valuable discoveries will be used for bacterial disease control in the future.
Collapse
Affiliation(s)
- Awei Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Haizhen Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Ronghua Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Hongfu He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Baoan Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Runjiang Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Gotsmy M, Strobl F, Weiß F, Gruber P, Kraus B, Mairhofer J, Zanghellini J. Sulfate limitation increases specific plasmid DNA yield and productivity in E. coli fed-batch processes. Microb Cell Fact 2023; 22:242. [PMID: 38017439 PMCID: PMC10685491 DOI: 10.1186/s12934-023-02248-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/11/2023] [Indexed: 11/30/2023] Open
Abstract
Plasmid DNA (pDNA) is a key biotechnological product whose importance became apparent in the last years due to its role as a raw material in the messenger ribonucleic acid (mRNA) vaccine manufacturing process. In pharmaceutical production processes, cells need to grow in the defined medium in order to guarantee the highest standards of quality and repeatability. However, often these requirements result in low product titer, productivity, and yield. In this study, we used constraint-based metabolic modeling to optimize the average volumetric productivity of pDNA production in a fed-batch process. We identified a set of 13 nutrients in the growth medium that are essential for cell growth but not for pDNA replication. When these nutrients are depleted in the medium, cell growth is stalled and pDNA production is increased, raising the specific and volumetric yield and productivity. To exploit this effect we designed a three-stage process (1. batch, 2. fed-batch with cell growth, 3. fed-batch without cell growth). The transition between stage 2 and 3 is induced by sulfate starvation. Its onset can be easily controlled via the initial concentration of sulfate in the medium. We validated the decoupling behavior of sulfate and assessed pDNA quality attributes (supercoiled pDNA content) in E. coli with lab-scale bioreactor cultivations. The results showed an increase in supercoiled pDNA to biomass yield by 33% and an increase of supercoiled pDNA volumetric productivity by 13 % upon limitation of sulfate. In conclusion, even for routinely manufactured biotechnological products such as pDNA, simple changes in the growth medium can significantly improve the yield and quality.
Collapse
Affiliation(s)
- Mathias Gotsmy
- Department of Analytical Chemistry, University of Vienna, Vienna, 1090, Austria
- Doctorate School of Chemistry, University of Vienna, Vienna, 1090, Austria
| | | | | | - Petra Gruber
- Baxalta Innovations GmbH, A Part of Takeda Companies, Orth an der Donau, 2304, Austria
| | - Barbara Kraus
- Baxalta Innovations GmbH, A Part of Takeda Companies, Orth an der Donau, 2304, Austria
| | | | - Jürgen Zanghellini
- Department of Analytical Chemistry, University of Vienna, Vienna, 1090, Austria.
| |
Collapse
|
3
|
Akunuri R, Unnissa T, Vadakattu M, Bujji S, Mahammad Ghouse S, Madhavi Yaddanapudi V, Chopra S, Nanduri S. Bacterial Pyruvate Kinase: A New Potential Target to Combat Drug‐Resistant
Staphylococcus aureus
Infections. ChemistrySelect 2022. [DOI: 10.1002/slct.202201403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ravikumar Akunuri
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Tanveer Unnissa
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Manasa Vadakattu
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Sushmitha Bujji
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Shaik Mahammad Ghouse
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Venkata Madhavi Yaddanapudi
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute (CDRI) Sitapur Road, Sector 10, Janakipuram Extension Lucknow 226 031, Uttar Pradesh India
| | - Srinivas Nanduri
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| |
Collapse
|
4
|
Mishima H, Watanabe H, Uchigasaki K, Shimoda S, Seki S, Kumagai T, Nochi T, Ando T, Yoneyama H. L-Alanine Prototrophic Suppressors Emerge from L-Alanine Auxotroph through Stress-Induced Mutagenesis in Escherichia coli. Microorganisms 2021; 9:microorganisms9030472. [PMID: 33668720 PMCID: PMC7996224 DOI: 10.3390/microorganisms9030472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 11/23/2022] Open
Abstract
In Escherichia coli, L-alanine is synthesized by three isozymes: YfbQ, YfdZ, and AvtA. When an E. coli L-alanine auxotrophic isogenic mutant lacking the three isozymes was grown on L-alanine-deficient minimal agar medium, L-alanine prototrophic mutants emerged considerably more frequently than by spontaneous mutation; the emergence frequency increased over time, and, in an L-alanine-supplemented minimal medium, correlated inversely with L-alanine concentration, indicating that the mutants were derived through stress-induced mutagenesis. Whole-genome analysis of 40 independent L-alanine prototrophic mutants identified 16 and 18 clones harboring point mutation(s) in pyruvate dehydrogenase complex and phosphotransacetylase-acetate kinase pathway, which respectively produce acetyl coenzyme A and acetate from pyruvate. When two point mutations identified in L-alanine prototrophic mutants, in pta (D656A) and aceE (G147D), were individually introduced into the original L-alanine auxotroph, the isogenic mutants exhibited almost identical growth recovery as the respective cognate mutants. Each original- and isogenic-clone pair carrying the pta or aceE mutation showed extremely low phosphotransacetylase or pyruvate dehydrogenase activity, respectively. Lastly, extracellularly-added pyruvate, which dose-dependently supported L-alanine auxotroph growth, relieved the L-alanine starvation stress, preventing the emergence of L-alanine prototrophic mutants. Thus, L-alanine starvation-provoked stress-induced mutagenesis in the L-alanine auxotroph could lead to intracellular pyruvate increase, which eventually induces L-alanine prototrophy.
Collapse
Affiliation(s)
- Harutaka Mishima
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.M.); (H.W.); (K.U.); (S.S.); (S.S.); (T.A.)
| | - Hirokazu Watanabe
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.M.); (H.W.); (K.U.); (S.S.); (S.S.); (T.A.)
| | - Kei Uchigasaki
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.M.); (H.W.); (K.U.); (S.S.); (S.S.); (T.A.)
| | - So Shimoda
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.M.); (H.W.); (K.U.); (S.S.); (S.S.); (T.A.)
| | - Shota Seki
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.M.); (H.W.); (K.U.); (S.S.); (S.S.); (T.A.)
| | | | - Tomonori Nochi
- Laboratory of Functional Morphology, Department of Animal Biology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan;
| | - Tasuke Ando
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.M.); (H.W.); (K.U.); (S.S.); (S.S.); (T.A.)
| | - Hiroshi Yoneyama
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.M.); (H.W.); (K.U.); (S.S.); (S.S.); (T.A.)
- Correspondence:
| |
Collapse
|
5
|
Enhancing microaerobic plasmid DNA production by chromosomal expression of Vitreoscilla hemoglobin in E. coli. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Zhang W, Chen X, Sun W, Nie T, Quanquin N, Sun Y. Escherichia Coli Increases its ATP Concentration in Weakly Acidic Environments Principally through the Glycolytic Pathway. Genes (Basel) 2020; 11:genes11090991. [PMID: 32854287 PMCID: PMC7563387 DOI: 10.3390/genes11090991] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/23/2022] Open
Abstract
Acid resistance is an intrinsic characteristic of intestinal bacteria in order to survive passage through the stomach. Adenosine triphosphate (ATP), the ubiquitous chemical used to power metabolic reactions, activate signaling cascades, and form precursors of nucleic acids, was also found to be associated with the survival of Escherichia coli (E. coli) in acidic environments. The metabolic pathway responsible for elevating the level of ATP inside these bacteria during acid adaptation has been unclear. E. coli uses several mechanisms of ATP production, including oxidative phosphorylation, glycolysis and the oxidation of organic compounds. To uncover which is primarily used during adaptation to acidic conditions, we broadly analyzed the levels of gene transcription of multiple E. coli metabolic pathway components. Our findings confirmed that the primary producers of ATP in E. coli undergoing mild acidic stress are the glycolytic enzymes Glk, PykF and Pgk, which are also essential for survival under markedly acidic conditions. By contrast, the transcription of genes related to oxidative phosphorylation was downregulated, despite it being the major producer of ATP in neutral pH environments.
Collapse
Affiliation(s)
- Wenbin Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510640, China;
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (W.S.); (T.N.)
| | - Xin Chen
- Guangdong Key Laboratory of IoT Information Technology, School of Automation, Guangdong University of Technology, Guangzhou 510006, China;
| | - Wei Sun
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (W.S.); (T.N.)
| | - Tao Nie
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (W.S.); (T.N.)
| | - Natalie Quanquin
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA;
| | - Yirong Sun
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (W.S.); (T.N.)
- Correspondence:
| |
Collapse
|
7
|
Kim DG, Yoo SW, Kim M, Ko JK, Um Y, Oh MK. Improved 2,3-butanediol yield and productivity from lignocellulose biomass hydrolysate in metabolically engineered Enterobacter aerogenes. BIORESOURCE TECHNOLOGY 2020; 309:123386. [PMID: 32330805 DOI: 10.1016/j.biortech.2020.123386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
We previously engineered Enterobacter aerogenesfor glucose and xylose co-utilization and 2,3-butanediol production. Here, strain EMY-22 was further engineered to improve the 2,3-butanediol titer, productivity, and yield by reducing the production of byproducts. To reduce succinate production, the budABC operon and galP gene were overexpressed, which increased 2,3-butanediol production. For further reduction of succinate and 2-ketogluconate production, maeA was selected and overexpressed in EMY-22. The optimally engineered strain produced 2,3-butanediol for a longer time and showed reduced byproduct formation from sugarcane bagasse hydrolysate under flask cultivation conditions. The engineered strain displayed 66.6, 13.4, and 16.8% improvements in titer, yield, productivity of 2,3-butanediol, respectively, compared to its parental strain under fed-batch fermentation conditions. The data demonstrate that the metabolic engineering to reduce byproduct formation is a promising strategy to improve 2,3-butanediol production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Duck Gyun Kim
- Department of Chemical & Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seok Woo Yoo
- Department of Chemical & Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Minsun Kim
- Department of Chemical & Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea; KU-KIST GreenSchool, Graduate School of Energy and Environment, Korea University, Seoul 02841, Republic of Korea
| | - Min-Kyu Oh
- Department of Chemical & Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
8
|
Biochemical and biophysical characterization of the smallest pyruvate kinase from Entamoeba histolytica. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140296. [PMID: 31676451 DOI: 10.1016/j.bbapap.2019.140296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 01/07/2023]
Abstract
Entamoeba histolytica infection is highly prevalent in developing countries across the globe. The ATP synthesis in this pathogen is solely dependent on the glycolysis pathway where pyruvate kinase (Pyk) catalyzes the final reaction. Here, we have cloned, overexpressed and purified the pyruvate kinase (EhPyk) from E. histolytica. EhPyk is the shortest currently known Pyk till date as it contains only two of the three characterized domains when compared to the other homologues and our phylogenetic analysis places it on a distinct branch from the known type I/II Pyks. Our purification results suggested that it exists as a homodimer in solution. The kinetic characterization showed that EhPyk has maximum activity at pH 7.5 where it exhibited Michaelis-Menten's kinetics for phosphoenolpyruvate with a Km of 0.23 mM, and it lost its activity at both the acidic pH 4.0 and basic pH 10.0. We also determined the key secondary structural elements of EhPyk at different pH values. MD simulation of EhPyk structure at different pH values suggested that it is most stable at pH 7.0, while least stable at pH 10.0 followed by pH 4.0. Together, our computational simulations correlate well with the experimental studies. In summary, this study expands the current understanding of the EhPyk identified earlier in the amoebic genome and provides the first characterization of this bacterially expressed protein.
Collapse
|
9
|
Shimizu K, Matsuoka Y. Redox rebalance against genetic perturbations and modulation of central carbon metabolism by the oxidative stress regulation. Biotechnol Adv 2019; 37:107441. [PMID: 31472206 DOI: 10.1016/j.biotechadv.2019.107441] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/04/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022]
Abstract
The micro-aerophilic organisms and aerobes as well as yeast and higher organisms have evolved to gain energy through respiration (via oxidative phosphorylation), thereby enabling them to grow much faster than anaerobes. However, during respiration, reactive oxygen species (ROSs) are inherently (inevitably) generated, and threaten the cell's survival. Therefore, living organisms (or cells) must furnish the potent defense systems to keep such ROSs at harmless level, where the cofactor balance plays crucial roles. Namely, NADH is the source of energy generation (catabolism) in the respiratory chain reactions, through which ROSs are generated, while NADPH plays important roles not only for the cell synthesis (anabolism) but also for detoxifying ROSs. Therefore, the cell must rebalance the redox ratio by modulating the fluxes of the central carbon metabolism (CCM) by regulating the multi-level regulation machinery upon genetic perturbations and the change in the growth conditions. Here, we discuss about how aerobes accomplish such cofactor homeostasis against redox perturbations. In particular, we consider how single-gene mutants (including pgi, pfk, zwf, gnd and pyk mutants) modulate their metabolisms in relation to cofactor rebalance (and also by adaptive laboratory evolution). We also discuss about how the overproduction of NADPH (by the pathway gene mutation) can be utilized for the efficient production of useful value-added chemicals such as medicinal compounds, polyhydroxyalkanoates, and amino acids, all of which require NADPH in their synthetic pathways. We then discuss about the metabolic responses against oxidative stress, where αketoacids play important roles not only for the coordination between catabolism and anabolism, but also for detoxifying ROSs by non-enzymatic reactions, as well as for reducing the production of ROSs by repressing the activities of the TCA cycle and respiration (via carbon catabolite repression). Thus, we discuss about the mechanisms (basic strategies) that modulate the metabolism from respiration to respiro-fermentative metabolism causing overflow, based on the role of Pyk activity, affecting the NADPH production at the oxidative pentose phosphate (PP) pathway, and the roles of αketoacids for the change in the source of energy generation from the oxidative phosphorylation to the substrate level phosphorylation.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu institute of Technology, Iizuka, Fukuoka 820-8502, Japan; Institute of Advanced Biosciences, Keio university, Tsuruoka, Yamagata 997-0017, Japan.
| | - Yu Matsuoka
- Kyushu institute of Technology, Iizuka, Fukuoka 820-8502, Japan.
| |
Collapse
|
10
|
Folarin O, Nesbeth D, Ward JM, Keshavarz-Moore E. Application of Plasmid Engineering to Enhance Yield and Quality of Plasmid for Vaccine and Gene Therapy. Bioengineering (Basel) 2019; 6:bioengineering6020054. [PMID: 31248216 PMCID: PMC6631426 DOI: 10.3390/bioengineering6020054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 11/19/2022] Open
Abstract
There is an increased interest in plasmid DNA as therapeutics. This is evident in the number of ongoing clinical trials involving the use of plasmid DNA. In order to be an effective therapeutic, high yield and high level of supercoiling are required. From the bioprocessing point of view, the supercoiling level potentially has an impact on the ease of downstream processing. We approached meeting these requirements through plasmid engineering. A 7.2 kb plasmid was developed by the insertion of a bacteriophage Mu strong gyrase-binding sequence (Mu-SGS) to a 6.8 kb pSVβ-Gal and it was used to transform four different E. coli strains, and cultured in order to investigate the Mu-SGS effect and dependence on strain. There was an increase of over 20% in the total plasmid yield with pSVβ-Gal398 in two of the strains. The supercoiled topoisomer content was increased by 5% in both strains leading to a 27% increase in the overall yield. The extent of supercoiling was examined using superhelical density (σ) quantification with pSVβ-Gal398 maintaining a superhelical density of −0.022, and pSVβ-Gal −0.019, in both strains. This study has shown that plasmid modification with the Mu-phage SGS sequence has a beneficial effect on improving not only the yield of total plasmid but also the supercoiled topoisomer content of therapeutic plasmid DNA during bioprocessing.
Collapse
Affiliation(s)
- Olusegun Folarin
- Advanced Center for Biochemical Engineering, University College London, London WC1E 6BT, UK.
| | - Darren Nesbeth
- Advanced Center for Biochemical Engineering, University College London, London WC1E 6BT, UK.
| | - John M Ward
- Advanced Center for Biochemical Engineering, University College London, London WC1E 6BT, UK.
| | - Eli Keshavarz-Moore
- Advanced Center for Biochemical Engineering, University College London, London WC1E 6BT, UK.
| |
Collapse
|
11
|
Garcia DC, Mohr BP, Dovgan JT, Hurst GB, Standaert RF, Doktycz MJ. Elucidating the potential of crude cell extracts for producing pyruvate from glucose. Synth Biol (Oxf) 2018; 3:ysy006. [PMID: 32995514 PMCID: PMC7445776 DOI: 10.1093/synbio/ysy006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/23/2018] [Accepted: 04/19/2018] [Indexed: 01/05/2023] Open
Abstract
Living systems possess a rich biochemistry that can be harnessed through metabolic engineering to produce valuable therapeutics, fuels and fine chemicals. In spite of the tools created for this purpose, many organisms tend to be recalcitrant to modification or difficult to optimize. Crude cellular extracts, made by lysis of cells, possess much of the same biochemical capability, but in an easier to manipulate context. Metabolic engineering in crude extracts, or cell-free metabolic engineering, can harness these capabilities to feed heterologous pathways for metabolite production and serve as a platform for pathway optimization. However, the inherent biochemical potential of a crude extract remains ill-defined, and consequently, the use of such extracts can result in inefficient processes and unintended side products. Herein, we show that changes in cell growth conditions lead to changes in the enzymatic activity of crude cell extracts and result in different abilities to produce the central biochemical precursor pyruvate when fed glucose. Proteomic analyses coupled with metabolite measurements uncover the diverse biochemical capabilities of these different crude extract preparations and provide a framework for how analytical measurements can be used to inform and improve crude extract performance. Such informed developments can allow enrichment of crude extracts with pathways that promote or deplete particular metabolic processes and aid in the metabolic engineering of defined products.
Collapse
Affiliation(s)
- David C Garcia
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Benjamin P Mohr
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jakob T Dovgan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Gregory B Hurst
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Mitchel J Doktycz
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
12
|
Veeravalli K, Schindler T, Dong E, Yamada M, Hamilton R, Laird MW. Strain engineering to reduce acetate accumulation during microaerobic growth conditions inEscherichia coli. Biotechnol Prog 2017; 34:303-314. [DOI: 10.1002/btpr.2592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/16/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Karthik Veeravalli
- Late Stage Cell Culture, Genentech, Inc., 1 DNA Way; South San Francisco California 94080
| | - Tony Schindler
- Late Stage Cell Culture, Genentech, Inc., 1 DNA Way; South San Francisco California 94080
| | - Emily Dong
- Early Stage Cell Culture, Genentech, Inc., 1 DNA Way; South San Francisco California 94080
| | - Masaki Yamada
- Late Stage Cell Culture, Genentech, Inc., 1 DNA Way; South San Francisco California 94080
| | - Ryan Hamilton
- Late Stage Cell Culture, Genentech, Inc., 1 DNA Way; South San Francisco California 94080
| | - Michael W. Laird
- Early Stage Cell Culture, Genentech, Inc., 1 DNA Way; South San Francisco California 94080
| |
Collapse
|
13
|
Machas MS, McKenna R, Nielsen DR. Expanding Upon Styrene Biosynthesis to Engineer a Novel Route to 2‐Phenylethanol. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700310] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/07/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Michael S. Machas
- Chemical EngineeringSchool for Engineering of Matter, Transport, and EnergyArizona State UniversityPO Box 876106TempeAZ85287‐6106USA
| | - Rebekah McKenna
- Chemical EngineeringSchool for Engineering of Matter, Transport, and EnergyArizona State UniversityPO Box 876106TempeAZ85287‐6106USA
| | - David R. Nielsen
- Chemical EngineeringSchool for Engineering of Matter, Transport, and EnergyArizona State UniversityPO Box 876106TempeAZ85287‐6106USA
| |
Collapse
|
14
|
Sieben M, Steinhorn G, Müller C, Fuchs S, Ann Chin L, Regestein L, Büchs J. Testing plasmid stability ofEscherichia coliusing the Continuously Operated Shaken BIOreactor System. Biotechnol Prog 2016; 32:1418-1425. [DOI: 10.1002/btpr.2341] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 08/11/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Michaela Sieben
- AVT-Biochemical Engineering; RWTH Aachen University; Aachen D-52074 Germany
| | - Gregor Steinhorn
- AVT-Biochemical Engineering; RWTH Aachen University; Aachen D-52074 Germany
| | - Carsten Müller
- AVT-Biochemical Engineering; RWTH Aachen University; Aachen D-52074 Germany
| | - Simone Fuchs
- AVT-Biochemical Engineering; RWTH Aachen University; Aachen D-52074 Germany
- Department of Chemical Engineering; Hochschule Ostwestfalen-Lippe; Lemgo Germany
| | - Laura Ann Chin
- AVT-Biochemical Engineering; RWTH Aachen University; Aachen D-52074 Germany
- University of Arizona; Tucson AZ USA
| | - Lars Regestein
- AVT-Biochemical Engineering; RWTH Aachen University; Aachen D-52074 Germany
| | - Jochen Büchs
- AVT-Biochemical Engineering; RWTH Aachen University; Aachen D-52074 Germany
| |
Collapse
|
15
|
Venayak N, Anesiadis N, Cluett WR, Mahadevan R. Engineering metabolism through dynamic control. Curr Opin Biotechnol 2015; 34:142-52. [DOI: 10.1016/j.copbio.2014.12.022] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/22/2014] [Accepted: 12/22/2014] [Indexed: 11/30/2022]
|
16
|
Martins L, Pedro A, Oppolzer D, Sousa F, Queiroz J, Passarinha L. Enhanced biosynthesis of plasmid DNA from Escherichia coli VH33 using Box–Behnken design associated to aromatic amino acids pathway. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Meade J, Bartlow P, Trivedi RN, Akhtar P, Ataai MM, Khan SA, Domach MM. Effect of plasmid replication deregulation via inc mutations on E. coli proteome & simple flux model analysis. Microb Cell Fact 2015; 14:31. [PMID: 25890349 PMCID: PMC4357208 DOI: 10.1186/s12934-015-0212-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/19/2015] [Indexed: 11/26/2022] Open
Abstract
When the replication of a plasmid based on sucrose selection is deregulated via the inc1 and inc2 mutations, high copy numbers (7,000 or greater) are attained while the growth rate on minimal medium is negligibly affected. Adaptions were assumed to be required in order to sustain the growth rate. Proteomics indicated that indeed a number of adaptations occurred that included increased expression of ribosomal proteins and 2-oxoglutarate dehydrogenase. The operating space prescribed by a basic flux model that maintained phenotypic traits (e.g. growth, byproducts, etc.) within typical bounds of resolution was consistent with the flux implications of the proteomic changes.
Collapse
Affiliation(s)
- Jonathan Meade
- Department Chemical Engineering, Carnegie Mellon University, 15213, Pittsburgh, PA, USA.
| | - Patrick Bartlow
- Department Chemical Engineering, University of Pittsburgh, 15219, Pittsburgh, PA, USA.
| | - Ram Narayan Trivedi
- Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, 15219, Pittsburgh, PA, USA.
| | - Parvez Akhtar
- Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, 15219, Pittsburgh, PA, USA.
| | - Mohammad M Ataai
- Department Chemical Engineering, University of Pittsburgh, 15219, Pittsburgh, PA, USA.
| | - Saleem A Khan
- Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, 15219, Pittsburgh, PA, USA.
| | - Michael M Domach
- Department Chemical Engineering, Carnegie Mellon University, 15213, Pittsburgh, PA, USA.
| |
Collapse
|
18
|
|
19
|
High-Level Production of Plasmid DNA by Escherichia coli DH5α ΩsacB by Introducing inc Mutations. Appl Environ Microbiol 2014; 80:7154-60. [PMID: 25217014 DOI: 10.1128/aem.02445-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/05/2014] [Indexed: 11/20/2022] Open
Abstract
For small-copy-number pUC-type plasmids, the inc1 and inc2 mutations, which deregulate replication, were previously found to increase the plasmid copy number 6- to 7-fold. Because plasmids can exert a growth burden, it was not clear if further amplification of copy number would occur due to inc mutations when the starting point for plasmid copy number was orders of magnitude higher. To investigate further the effects of the inc mutations and the possible limits of plasmid synthesis, the parent plasmid pNTC8485 was used as a starting point. It lacks an antibiotic resistance gene and has a copy number of ~1,200 per chromosome. During early stationary-phase growth in LB broth at 37°C, inc2 mutants of pNTC8485 exhibited a copy number of ~7,000 per chromosome. In minimal medium at late log growth, the copy number was found to be significantly increased, to approximately 15,000. In an attempt to further increase the plasmid titer (plasmid mass/culture volume), enzymatic hydrolysis of the selection agent, sucrose, at late log growth extended growth and tripled the total plasmid amount such that an approximately 80-fold gain in total plasmid was obtained compared to the value for typical pUC-type vectors. Finally, when grown in minimal medium, no detectable impact on the exponential growth rate or the fidelity of genomic or plasmid DNA replication was found in cells with deregulated plasmid replication. The use of inc mutations and the sucrose degradation method presents a simplified way for attaining high titers of plasmid DNA for various applications.
Collapse
|
20
|
Gonçalves GAL, Prather KLJ, Monteiro GA, Carnes AE, Prazeres DMF. Plasmid DNA production with Escherichia coli GALG20, a pgi-gene knockout strain: fermentation strategies and impact on downstream processing. J Biotechnol 2014; 186:119-27. [PMID: 24995846 DOI: 10.1016/j.jbiotec.2014.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/04/2014] [Accepted: 06/04/2014] [Indexed: 10/25/2022]
Abstract
The market development of plasmid biopharmaceuticals for gene therapy and DNA vaccination applications is critically dependent on the availability of cost-effective manufacturing processes capable of delivering large amounts of high-quality plasmid DNA (pDNA) for clinical trials and commercialization. The producer host strain used in these processes must be designed to meet the upstream and downstream processing challenges characteristic of large scale pDNA production. The goal of the present study was to investigate the effect of different glucose feeding strategies (batch and fed-batch) on the pDNA productivity of GALG20, a pgi Escherichia coli strain potentially useful in industrial fermentations, which uses the pentose phosphate pathway (PPP) as the main route for glucose metabolism. The parental strain, MG1655ΔendAΔrecA, and the common laboratory strain, DH5α, were used for comparison purposes and pVAX1GFP, a ColE1-type plasmid, was tested as a model. GALG20 produced 3-fold more pDNA (∼141 mg/L) than MG1655ΔendAΔrecA (∼48 mg/L) and DH5α (∼40 mg/L) in glucose-based fed-batch fermentations. The amount of pDNA in lysates obtained from these cells was also larger for GALG20 (41%) when compared with MG1655ΔendAΔrecA (31%) and DH5α (26%). However, the final quality of pDNA preparations obtained with a process that explores precipitation, hydrophobic interaction chromatography and size exclusion was not significantly affected by strain genotype. Finally, high cell density fed-batch cultures were performed with GALG20, this time using another ColE1-type plasmid, NTC7482-41H-HA, in pre-industrial facilities using glucose and glycerol. These experiments demonstrated the ability of GALG20 to produce high pDNA yields of the order of 2100-2200 mg/L.
Collapse
Affiliation(s)
- Geisa A L Gonçalves
- MIT-Portugal Program, Portugal; IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Kristala L J Prather
- MIT-Portugal Program, Portugal; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Gabriel A Monteiro
- MIT-Portugal Program, Portugal; IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Aaron E Carnes
- Nature Technology Corporation, Lincoln, NE, United States
| | - Duarte M F Prazeres
- MIT-Portugal Program, Portugal; IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
21
|
Engineering of Escherichia coli strains for plasmid biopharmaceutical production: scale-up challenges. Vaccine 2014; 32:2847-50. [PMID: 24598722 DOI: 10.1016/j.vaccine.2014.02.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plasmid-based vaccines and therapeutics have been making their way into the clinic in the last years. The existence of cost-effective manufacturing processes capable of delivering high amounts of high-quality plasmid DNA (pDNA) is essential to generate enough material for trials and support future commercialization. However, the development of pDNA manufacturing processes is often hampered by difficulties in predicting process scale performance of Escherichia coli cultivation on the basis of results obtained at lab scale. This paper reports on the differences observed in pDNA production when using shake flask and bench-scale bioreactor cultivation of E. coli strains MG1655ΔendAΔrecA and DH5α in complex media with 20 g/L of glucose. MG1655ΔendAΔrecA produced 5-fold more pDNA (9.8 mg/g DCW) in bioreactor than in shake flask (1.9 mg/g DCW) and DH5α produced 4-fold more pDNA (8 mg/g DCW) in bioreactor than in shake flask (2 mg/g DCW). Accumulation of acetate was also significant in shake flasks but not in bioreactors, a fact that was attributed to a lack of control of pH.
Collapse
|
22
|
Cheng KK, Lee BS, Masuda T, Ito T, Ikeda K, Hirayama A, Deng L, Dong J, Shimizu K, Soga T, Tomita M, Palsson BO, Robert M. Global metabolic network reorganization by adaptive mutations allows fast growth of Escherichia coli on glycerol. Nat Commun 2014; 5:3233. [DOI: 10.1038/ncomms4233] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/10/2014] [Indexed: 01/21/2023] Open
|
23
|
Abstract
Recent developments in DNA vaccine research provide a new momentum for this rather young and potentially disruptive technology. Gene-based vaccines are capable of eliciting protective immunity in humans to persistent intracellular pathogens, such as HIV, malaria, and tuberculosis, for which the conventional vaccine technologies have failed so far. The recent identification and characterization of genes coding for tumor antigens has stimulated the development of DNA-based antigen-specific cancer vaccines. Although most academic researchers consider the production of reasonable amounts of plasmid DNA (pDNA) for immunological studies relatively easy to solve, problems often arise during this first phase of production. In this chapter we review the current state of the art of pDNA production at small (shake flasks) and mid-scales (lab-scale bioreactor fermentations) and address new trends in vector design and strain engineering. We will guide the reader through the different stages of process design starting from choosing the most appropriate plasmid backbone, choosing the right Escherichia coli (E. coli) strain for production, and cultivation media and scale-up issues. In addition, we will address some points concerning the safety and potency of the produced plasmids, with special focus on producing antibiotic resistance-free plasmids. The main goal of this chapter is to make immunologists aware of the fact that production of the pDNA vaccine has to be performed with as much as attention and care as the rest of their research.
Collapse
|
24
|
Rodriguez A, Martínez JA, Báez-Viveros JL, Flores N, Hernández-Chávez G, Ramírez OT, Gosset G, Bolivar F. Constitutive expression of selected genes from the pentose phosphate and aromatic pathways increases the shikimic acid yield in high-glucose batch cultures of an Escherichia coli strain lacking PTS and pykF. Microb Cell Fact 2013; 12:86. [PMID: 24079972 PMCID: PMC3852013 DOI: 10.1186/1475-2859-12-86] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/28/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During the last two decades many efforts have been directed towards obtaining efficient microbial processes for the production of shikimic acid (SA); however, feeding high amounts of substrate to increase the titer of this compound has invariably rendered low conversion yields, leaving room for improvement of the producing strains. In this work we report an alternative platform to overproduce SA in a laboratory-evolved Escherichia coli strain, based on plasmid-driven constitutive expression of six genes selected from the pentose phosphate and aromatic amino acid pathways, artificially arranged as an operon. Production strains also carried inactivated genes coding for phosphotransferase system components (ptsHIcrr), shikimate kinases I and II (aroK and aroL), pyruvate kinase I (pykF) and the lactose operon repressor (lacI). RESULTS The strong and constitutive expression of the constructed operon permitted SA production from the beginning of the cultures, as evidenced in 1 L batch-mode fermentors starting with high concentrations of glucose and yeast extract. Inactivation of the pykF gene improved SA production under the evaluated conditions by increasing the titer, yield and productivity of this metabolite compared to the isogenic pykF+ strain. The best producing strain accumulated up to 43 g/L of SA in 30 h and relatively low concentrations of acetate and aromatic byproducts were detected, with SA accounting for 80% of the produced aromatic compounds. These results were consistent with high expression levels of the glycolytic pathway and synthetic operon genes from the beginning of fermentations, as revealed by transcriptomic analysis. Despite the consumption of 100 g/L of glucose, the yields on glucose of SA and of total aromatic compounds were about 50% and 60% of the theoretical maximum, respectively. The obtained yields and specific production and consumption rates proved to be constant with three different substrate concentrations. CONCLUSIONS The developed production system allowed continuous SA accumulation until glucose exhaustion and eliminated the requirement for culture inducers. The obtained SA titers and yields represent the highest reported values for a high-substrate batch process, postulating the strategy described in this report as an interesting alternative to the traditionally employed fed-batch processes for SA production.
Collapse
Affiliation(s)
- Alberto Rodriguez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apdo, Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Soellner S, Rahnert M, Siemann-Herzberg M, Takors R, Altenbuchner J. Evolution of pyruvate kinase-deficient Escherichia coli mutants enables glycerol-based cell growth and succinate production. J Appl Microbiol 2013; 115:1368-78. [PMID: 23957584 DOI: 10.1111/jam.12333] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/09/2013] [Accepted: 08/13/2013] [Indexed: 11/28/2022]
Abstract
AIMS The aim of this study was to engineer Escherichia coli strains that efficiently produce succinate from glycerol under anaerobic conditions after an aerobic growth phase. METHODS AND RESULTS We constructed E. coli strain ss195 with deletions of pykA and pykF, which resulted in slow growth on glycerol as sole carbon source. This growth defect was overcome by the selection of fast-growing mutants. Whole-genome resequencing of the evolved mutant ss251 identified the mutation A595S in PEP carboxylase (Ppc). Reverse metabolic engineering by introducing the wild-type allele revealed that this mutation is crucial for the described phenotype. Strain ss251 and derivatives thereof produced succinate with high yields above 80% mol mol(-1) from glycerol under nongrowth conditions. CONCLUSIONS The results show that during the aerobic growth of ss251, the formation of pyruvate proceeds via the proposed POMP pathway, starting with the carboxylation of PEP by Ppc. The resulting oxaloacetate is reduced by malate dehydrogenase (Mdh) to malate, which is then decarboxylated back to pyruvate by a malic enzyme (MaeA or MaeB). Mutation of ppc is crucial for fast growth of pykAF mutants on glycerol. SIGNIFICANCE AND IMPACT OF STUDY An E. coli mutant that is capable of achieving high yields of succinate (a top valued-added chemical) from glycerol (an abundant carbon source) was constructed. The identified ppc mutation could be applied to other production strains that require strong PEP carboxylation fluxes.
Collapse
Affiliation(s)
- S Soellner
- Institut für Industrielle Genetik, Universität Stuttgart, Stuttgart, Germany
| | | | | | | | | |
Collapse
|
26
|
Matsuoka Y, Shimizu K. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation. J Biotechnol 2013; 168:155-73. [PMID: 23850830 DOI: 10.1016/j.jbiotec.2013.06.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 06/21/2013] [Accepted: 06/28/2013] [Indexed: 11/16/2022]
Abstract
It is quite important to understand the basic principle embedded in the main metabolism for the interpretation of the fermentation data. For this, it may be useful to understand the regulation mechanism based on systems biology approach. In the present study, we considered the perturbation analysis together with computer simulation based on the models which include the effects of global regulators on the pathway activation for the main metabolism of Escherichia coli. Main focus is the acetate overflow metabolism and the co-fermentation of multiple carbon sources. The perturbation analysis was first made to understand the nature of the feed-forward loop formed by the activation of Pyk by FDP (F1,6BP), and the feed-back loop formed by the inhibition of Pfk by PEP in the glycolysis. Those together with the effect of transcription factor Cra caused by FDP level affected the glycolysis activity. The PTS (phosphotransferase system) acts as the feed-back system by repressing the glucose uptake rate for the increase in the glucose uptake rate. It was also shown that the increased PTS flux (or glucose consumption rate) causes PEP/PYR ratio to be decreased, and EIIA-P, Cya, cAMP-Crp decreased, where cAMP-Crp in turn repressed TCA cycle and more acetate is formed. This was further verified by the detailed computer simulation. In the case of multiple carbon sources such as glucose and xylose, it was shown that the sequential utilization of carbon sources was observed for wild type, while the co-consumption of multiple carbon sources with slow consumption rates were observed for the ptsG mutant by computer simulation, and this was verified by experiments. Moreover, the effect of a specific gene knockout such as Δpyk on the metabolic characteristics was also investigated based on the computer simulation.
Collapse
Affiliation(s)
- Yu Matsuoka
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | | |
Collapse
|
27
|
Matsuoka Y, Shimizu K. Importance of understanding the main metabolic regulation in response to the specific pathway mutation for metabolic engineering of Escherichia coli. Comput Struct Biotechnol J 2013; 3:e201210018. [PMID: 24688678 PMCID: PMC3962149 DOI: 10.5936/csbj.201210018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 12/27/2012] [Accepted: 01/02/2013] [Indexed: 01/05/2023] Open
Abstract
Recent metabolic engineering practice was briefly reviewed in particular for the useful metabolite production such as natural products and biofuel productions. With the emphasis on systems biology approach, the metabolic regulation of the main metabolic pathways in E. coli was discussed from the points of view of enzyme level (allosteric and phosphorylation/ dephosphorylation) regulation, and gene level (transcriptional) regulation. Then the effects of the specific pathway gene knockout such as pts, pgi, zwf, gnd, pyk, ppc, pckA, lpdA, pfl gene knockout on the metabolism in E. coli were overviewed from the systems biology point of view with possible application for strain improvement point.
Collapse
Affiliation(s)
- Yu Matsuoka
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Kazuyuki Shimizu
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan ; Institute of Advanced Bioscience, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| |
Collapse
|
28
|
De novo creation of MG1655-derived E. coli strains specifically designed for plasmid DNA production. Appl Microbiol Biotechnol 2012; 97:611-20. [PMID: 22885693 DOI: 10.1007/s00253-012-4308-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 07/13/2012] [Accepted: 07/13/2012] [Indexed: 12/20/2022]
Abstract
The interest in plasmid DNA (pDNA) as a biopharmaceutical has been increasing over the last several years, especially after the approval of the first DNA vaccines. New pDNA production strains have been created by rationally mutating genes selected on the basis of Escherichia coli central metabolism and plasmid properties. Nevertheless, the highly mutagenized genetic background of the strains used makes it difficult to ascertain the exact impact of those mutations. To explore the effect of strain genetic background, we investigated single and double knockouts of two genes, pykF and pykA, which were known to enhance pDNA synthesis in two different E. coli strains: MG1655 (wild-type genetic background) and DH5α (highly mutagenized genetic background). The knockouts were only effective in the wild-type strain MG1655, demonstrating the relevance of strain genetic background and the importance of designing new strains specifically for pDNA production. Based on the obtained results, we created a new pDNA production strain starting from MG1655 by knocking out the pgi gene in order to redirect carbon flux to the pentose phosphate pathway, enhance nucleotide synthesis, and, consequently, increase pDNA production. GALG20 (MG1655ΔendAΔrecAΔpgi) produced 25-fold more pDNA (19.1 mg/g dry cell weight, DCW) than its parental strain, MG1655ΔendAΔrecA (0.8 mg/g DCW), in glucose. For the first time, pgi was identified as an important target for constructing a high-yielding pDNA production strain.
Collapse
|
29
|
Silva F, Queiroz JA, Domingues FC. Evaluating metabolic stress and plasmid stability in plasmid DNA production by Escherichia coli. Biotechnol Adv 2012; 30:691-708. [DOI: 10.1016/j.biotechadv.2011.12.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/01/2011] [Accepted: 12/29/2011] [Indexed: 01/26/2023]
|
30
|
Pablos TE, Soto R, Mora EM, Le Borgne S, Ramírez OT, Gosset G, Lara AR. Enhanced production of plasmid DNA by engineered Escherichia coli strains. J Biotechnol 2012; 158:211-4. [DOI: 10.1016/j.jbiotec.2011.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 04/20/2011] [Accepted: 04/29/2011] [Indexed: 11/25/2022]
|
31
|
Meade J, Khan S, Ataai M, Domach M. Use of flux pre-analysis to enable 13C tracer studies in pyruvate kinase-deficient Escherichia coli. Biotechnol J 2012; 7:449-60. [DOI: 10.1002/biot.201100338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Abstract
Plasmid DNA (pDNA) is the base for promising DNA vaccines and gene therapies against many infectious, acquired, and genetic diseases, including HIV-AIDS, Ebola, Malaria, and different types of cancer, enteric pathogens, and influenza. Compared to conventional vaccines, DNA vaccines have many advantages such as high stability, not being infectious, focusing the immune response to only those antigens desired for immunization and long-term persistence of the vaccine protection. Especially in developing countries, where conventional effective vaccines are often unavailable or too expensive, there is a need for both new and improved vaccines. Therefore the demand of pDNA is expected to rise significantly in the near future. Since the injection of pDNA usually only leads to a weak immune response, several milligrams of DNA vaccine are necessary for immunization protection. Hence, there is a special interest to raise the product yield in order to reduce manufacturing costs. In this chapter, the different stages of plasmid DNA production are reviewed, from the vector design to downstream operation options. In particular, recent advances on cell engineering for improving plasmid DNA production are discussed.
Collapse
Affiliation(s)
- Alvaro R Lara
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Mexico City, Mexico.
| | | | | |
Collapse
|
33
|
Soto R, Caspeta L, Barrón B, Gosset G, Ramírez OT, Lara AR. High cell-density cultivation in batch mode for plasmid DNA production by a metabolically engineered E. coli strain with minimized overflow metabolism. Biochem Eng J 2011. [DOI: 10.1016/j.bej.2011.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Gonçalves GAL, Bower DM, Prazeres DMF, Monteiro GA, Prather KLJ. Rational engineering of Escherichia coli strains for plasmid biopharmaceutical manufacturing. Biotechnol J 2011; 7:251-61. [PMID: 21913330 DOI: 10.1002/biot.201100062] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 06/10/2011] [Accepted: 07/08/2011] [Indexed: 01/08/2023]
Abstract
Plasmid DNA (pDNA) has become very attractive as a biopharmaceutical, especially for gene therapy and DNA vaccination. Currently, there are a few products licensed for veterinary applications and numerous plasmids in clinical trials for use in humans. Recent work in both academia and industry demonstrates a need for technological and economical improvement in pDNA manufacturing. Significant progress has been achieved in plasmid design and downstream processing, but there is still a demand for improved production strains. This review focuses on engineering of Escherichia coli strains for plasmid DNA production, understanding the differences between the traditional use of pDNA for recombinant protein production and its role as a biopharmaceutical. We will present recent developments in engineering of E. coli strains, highlight essential genes for improvement of pDNA yield and quality, and analyze the impact of various process strategies on gene expression in pDNA production strains.
Collapse
Affiliation(s)
- Geisa A L Gonçalves
- Department of Bioengineering, Instituto Superior Técnico (IST), Lisbon, Portugal
| | | | | | | | | |
Collapse
|
35
|
Yao R, Hirose Y, Sarkar D, Nakahigashi K, Ye Q, Shimizu K. Catabolic regulation analysis of Escherichia coli and its crp, mlc, mgsA, pgi and ptsG mutants. Microb Cell Fact 2011; 10:67. [PMID: 21831320 PMCID: PMC3169459 DOI: 10.1186/1475-2859-10-67] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 08/11/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Most bacteria can use various compounds as carbon sources. These carbon sources can be either co-metabolized or sequentially metabolized, where the latter phenomenon typically occurs as catabolite repression. From the practical application point of view of utilizing lignocellulose for the production of biofuels etc., it is strongly desirable to ferment all sugars obtained by hydrolysis from lignocellulosic materials, where simultaneous consumption of sugars would benefit the formation of bioproducts. However, most organisms consume glucose prior to consumption of other carbon sources, and exhibit diauxic growth. It has been shown by fermentation experiments that simultaneous consumption of sugars can be attained by ptsG, mgsA mutants etc., but its mechanism has not been well understood. It is strongly desirable to understand the mechanism of metabolic regulation for catabolite regulation to improve the performance of fermentation. RESULTS In order to make clear the catabolic regulation mechanism, several continuous cultures were conducted at different dilution rates of 0.2, 0.4, 0.6 and 0.7 h⁻¹ using wild type Escherichia coli. The result indicates that the transcript levels of global regulators such as crp, cra, mlc and rpoS decreased, while those of fadR, iclR, soxR/S increased as the dilution rate increased. These affected the metabolic pathway genes, which in turn affected fermentation result where the specific glucose uptake rate, the specific acetate formation rate, and the specific CO₂ evolution rate (CER) were increased as the dilution rate was increased. This was confirmed by the ¹³C-flux analysis. In order to make clear the catabolite regulation, the effect of crp gene knockout (Δcrp) and crp enhancement (crp⁺) as well as mlc, mgsA, pgi and ptsG gene knockout on the metabolism was then investigated by the continuous culture at the dilution rate of 0.2 h⁻¹ and by some batch cultures. In the case of Δcrp (and also Δmlc) mutant, TCA cycle and glyoxylate were repressed, which caused acetate accumulation. In the case of crp⁺ mutant, glycolysis, TCA cycle, and gluconeogenesis were activated, and simultaneous consumption of multiple carbon sources can be attained, but the glucose consumption rate became less due to repression of ptsG and ptsH by the activation of Mlc. Simultaneous consumption of multiple carbon sources could be attained by mgsA, pgi, and ptsG mutants due to increase in crp as well as cyaA, while glucose consumption rate became lower. CONCLUSIONS The transcriptional catabolite regulation mechanism was made clear for the wild type E. coli, and its crp, mlc, ptsG, pgi, and mgsA gene knockout mutants. The results indicate that catabolite repression can be relaxed and crp as well as cyaA can be increased by crp⁺, mgsA, pgi, and ptsG mutants, and thus simultaneous consumption of multiple carbon sources including glucose can be made, whereas the glucose uptake rate became lower as compared to wild type due to inactivation of ptsG in all the mutants considered.
Collapse
Affiliation(s)
- Ruilian Yao
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Identification of pyruvate kinase in methicillin-resistant Staphylococcus aureus as a novel antimicrobial drug target. Antimicrob Agents Chemother 2011; 55:2042-53. [PMID: 21357306 DOI: 10.1128/aac.01250-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Novel classes of antimicrobials are needed to address the challenge of multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). Using the architecture of the MRSA interactome, we identified pyruvate kinase (PK) as a potential novel drug target based upon it being a highly connected, essential hub in the MRSA interactome. Structural modeling, including X-ray crystallography, revealed discrete features of PK in MRSA, which appeared suitable for the selective targeting of the bacterial enzyme. In silico library screening combined with functional enzymatic assays identified an acyl hydrazone-based compound (IS-130) as a potent MRSA PK inhibitor (50% inhibitory concentration [IC50] of 0.1 μM) with >1,000-fold selectivity over human PK isoforms. Medicinal chemistry around the IS-130 scaffold identified analogs that more potently and selectively inhibited MRSA PK enzymatic activity and S. aureus growth in vitro (MIC of 1 to 5 μg/ml). These novel anti-PK compounds were found to possess antistaphylococcal activity, including both MRSA and multidrug-resistant S. aureus (MDRSA) strains. These compounds also exhibited exceptional antibacterial activities against other Gram-positive genera, including enterococci and streptococci. PK lead compounds were found to be noncompetitive inhibitors and were bactericidal. In addition, mutants with significant increases in MICs were not isolated after 25 bacterial passages in culture, indicating that resistance may be slow to emerge. These findings validate the principles of network science as a powerful approach to identify novel antibacterial drug targets. They also provide a proof of principle, based upon PK in MRSA, for a research platform aimed at discovering and optimizing selective inhibitors of novel bacterial targets where human orthologs exist, as leads for anti-infective drug development.
Collapse
|
37
|
Zoraghi R, See RH, Gong H, Lian T, Swayze R, Finlay BB, Brunham RC, McMaster WR, Reiner NE. Functional analysis, overexpression, and kinetic characterization of pyruvate kinase from methicillin-resistant Staphylococcus aureus. Biochemistry 2010; 49:7733-47. [PMID: 20707314 DOI: 10.1021/bi100780t] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Novel antimicrobial targets are urgently needed to overcome rising antibiotic resistance of important human pathogens including methicillin-resistant Staphylococcus aureus (MRSA). Here we report the essentiality and kinetic properties of MRSA pyruvate kinase (PK). Targetron-mediated gene disruption demonstrated PK is essential for S. aureus growth and survival, suggesting that this protein may be a potential drug target. The presence of the pfk (6-phosphofructokinase)-pyk operon in MRSA252, and the nonessential nature of PFK shown by targetron, further emphasized the essential role of PK in cell viability. The importance of PK in bacterial growth was confirmed by showing that its enzymatic activity peaked during the logarithmic phase of S. aureus growth. PK from Staphylococcus and several other species of bacteria have an extra C-terminal domain (CT) containing a phosphoenolpyruvate (PEP) binding motif. To elucidate the possible structure and function of this sequence, the quaternary structures and kinetic properties of the full-length MRSA PK and truncated MRSA PK lacking the CT domain were characterized. Our results showed that (1) MRSA PK is an allosteric enzyme with homotetramer architecture activated by AMP or ribose 5-phosphate (R5P), but not by fructose 1,6-bisphosphate (FBP), which suggests a different mode of allosteric regulation when compared with human isozymes, (2) the CT domain is not required for the tetramerization of the enzyme; homotetramerization occurred in a truncated PK lacking the domain, (3) truncated enzyme exhibited high affinity toward both PEP and ADP and exhibited hyperbolic kinetics toward PEP in the presence of activators (AMP and R5P) consistent with kinetic properties of full-length enzyme, indicating that the CT domain is not required for substrate binding or allosteric regulation observed in the holoenzyme, (4) the kinetic efficiency (k(cat)/S(0.5)) of truncated enzyme was decreased by 24- and 16-fold, in ligand-free state, toward PEP and ADP, respectively, but was restored by 3-fold in AMP-bound state, suggesting that the sequence containing the CT domain (Gly(473)-Leu(585)) plays a substantial role in enzyme activity and comformational stability, and (5) full-length MRSA PK activity was stimulated at low concentrations of ATP (e.g., 1 mM) and inhibited by inorganic phosphate and high concentrations of FBP (10 mM) and ATP (e.g., >2.5 mM), whereas for truncated enzyme, stimulation at low concentrations of ATP was lost. These findings suggest that the CT domain is involved in maintaining the specificity of allosteric regulation of MRSA PK by AMP, R5P, and ATP. The CT extension also encodes a protein domain with homology to enzyme I of the Escherichia coli sugar-PTS system, suggesting that MRSA PK may also exert an important regulatory role in sugar transport metabolism. These findings yield new insights into MRSA PK function and mode of allosteric regulation which may aid in the development of clinically important drugs targeting this enzyme and further define the role of the extra C-terminal domain in modulating the enzyme's activity.
Collapse
Affiliation(s)
- Roya Zoraghi
- Division of Infectious Diseases, Department of Medicine, University of BritishColumbia, Vancouver,Britsih Columbia,CanadaV5Z3J5
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Broad-host-range plasmid-mediated metabolic perturbations in Pseudomonas fluorescens 13525. Appl Microbiol Biotechnol 2010; 88:209-18. [DOI: 10.1007/s00253-010-2717-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 06/08/2010] [Accepted: 06/08/2010] [Indexed: 11/25/2022]
|
39
|
Escalante A, Calderón R, Valdivia A, de Anda R, Hernández G, Ramírez OT, Gosset G, Bolívar F. Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system. Microb Cell Fact 2010; 9:21. [PMID: 20385022 PMCID: PMC2873404 DOI: 10.1186/1475-2859-9-21] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 04/12/2010] [Indexed: 11/24/2022] Open
Abstract
Background Shikimic acid (SA) is utilized in the synthesis of oseltamivir-phosphate, an anti-influenza drug. In this work, metabolic engineering approaches were employed to produce SA in Escherichia coli strains derived from an evolved strain (PB12) lacking the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS-) but with capacity to grow on glucose. Derivatives of PB12 strain were constructed to determine the effects of inactivating aroK, aroL, pykF or pykA and the expression of plasmid-coded genes aroGfbr, tktA, aroB and aroE, on SA synthesis. Results Batch cultures were performed to evaluate the effects of genetic modifications on growth, glucose consumption, and aromatic intermediate production. All derivatives showed a two-phase growth behavior with initial high specific growth rate (μ) and specific glucose consumption rate (qs), but low level production of aromatic intermediates. During the second growth phase the μ decreased, whereas aromatic intermediate production reached its maximum. The double aroK- aroL- mutant expressing plasmid-coded genes (strain PB12.SA22) accumulated SA up to 7 g/L with a yield of SA on glucose of 0.29 mol/mol and a total aromatic compound yield (TACY) of 0.38 mol/mol. Single inactivation of pykF or pykA was performed in PB12.SA22 strain. Inactivation of pykF caused a decrease in μ, qs, SA production, and yield; whereas TACY increased by 33% (0.5 mol/mol). Conclusions The effect of increased availability of carbon metabolites, their channeling into the synthesis of aromatic intermediates, and disruption of the SA pathway on SA production was studied. Inactivation of both aroK and aroL, and transformation with plasmid-coded genes resulted in the accumulation of SA up to 7 g/L with a yield on glucose of 0.29 mol/mol PB12.SA22, which represents the highest reported yield. The pykF and pykA genes were inactivated in strain PB12.SA22 to increase the production of aromatic compounds in the PTS- background. Results indicate differential roles of Pyk isoenzymes on growth and aromatic compound production. This study demonstrated for the first time the simultaneous inactivation of PTS and pykF as part of a strategy to improve SA production and its aromatic precursors in E. coli, with a resulting high yield of aromatic compounds on glucose of 0.5 mol/mol.
Collapse
Affiliation(s)
- Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av, Universidad 2001, Col, Chamilpa, Cuernavaca, Morelos, 62210, México.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Grüning NM, Lehrach H, Ralser M. Regulatory crosstalk of the metabolic network. Trends Biochem Sci 2010; 35:220-7. [PMID: 20060301 DOI: 10.1016/j.tibs.2009.12.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 11/23/2009] [Accepted: 12/03/2009] [Indexed: 02/04/2023]
Abstract
The metabolic network has a modular architecture, is robust to perturbations, and responds to biological stimuli and environmental conditions. Through monitoring by metabolite responsive macromolecules, metabolic pathways interact with the transcriptome and proteome. Whereas pathway interconnecting cofactors and substrates report on the overall state of the network, specialised intermediates measure the activity of individual functional units. Transitions in the network affect many of these regulatory metabolites, facilitating the parallel regulation of the timing and control of diverse biological processes. The metabolic network controls its own balance, chromatin structure and the biosynthesis of molecular cofactors; moreover, metabolic shifts are crucial in the response to oxidative stress and play a regulatory role in cancer.
Collapse
Affiliation(s)
- Nana-Maria Grüning
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | | | | |
Collapse
|
41
|
Pan Z, Cunningham DS, Zhu T, Ye K, Koepsel RR, Domach MM, Ataai MM. Enhanced recombinant protein production in pyruvate kinase mutant of Bacillus subtilis. Appl Microbiol Biotechnol 2009; 85:1769-78. [PMID: 19787348 DOI: 10.1007/s00253-009-2244-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 09/01/2009] [Accepted: 09/03/2009] [Indexed: 10/20/2022]
Abstract
Previous work demonstrated that acetate production was substantially lower in pyruvate kinase (pyk) mutant of Bacillus subtilis. The significantly lower acetate production in the pyk mutant is hypothesized to have positive effect on recombinant protein production either by lifting the inhibitory effect of acetate accumulation in the medium or redirecting the metabolic fluxes beneficial to biomass/protein synthesis. In this study, the impact of the pyk mutation on recombinant protein production was investigated. Green fluorescent protein (GFP+) was selected as a model protein and constitutively expressed in both the wild-type strain and a pyk mutant. In batch cultures, the pyk mutant produced 3-fold higher levels of recombinant protein when grown on glucose as carbon source. Experimental measurements and theoretical analysis show that the higher protein yield of the mutant is not due to removal of an acetate-associated inhibition of expression or gene dosage or protein stability but a much lower acetate production in the mutant allows for a greater fraction of carbon intake to be directed to protein synthesis.
Collapse
Affiliation(s)
- Zhiwei Pan
- Department of Chemical Engineering, University of Pittsburgh, 1249 Benedum Hall, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Cunningham DS, Koepsel RR, Ataai MM, Domach MM. Factors affecting plasmid production in Escherichia coli from a resource allocation standpoint. Microb Cell Fact 2009; 8:27. [PMID: 19463175 PMCID: PMC2702362 DOI: 10.1186/1475-2859-8-27] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 05/22/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmids are being reconsidered as viable vector alternatives to viruses for gene therapies and vaccines because they are safer, non-toxic, and simpler to produce. Accordingly, there has been renewed interest in the production of plasmid DNA itself as the therapeutic end-product of a bioprocess. Improvement to the best current yields and productivities of such emerging processes would help ensure economic feasibility on the industrial scale. Our goal, therefore, was to develop a stoichiometric model of Escherichia coli metabolism in order to (1) determine its maximum theoretical plasmid-producing capacity, and to (2) identify factors that significantly impact plasmid production. RESULTS Such a model was developed for the production of a high copy plasmid under conditions of batch aerobic growth on glucose minimal medium. The objective of the model was to maximize plasmid production. By employing certain constraints and examining the resulting flux distributions, several factors were determined that significantly impact plasmid yield. Acetate production and constitutive expression of the plasmid's antibiotic resistance marker exert negative effects, while low pyruvate kinase (Pyk) flux and the generation of NADPH by transhydrogenase activity offer positive effects. The highest theoretical yield (592 mg/g) resulted under conditions of no marker or acetate production, nil Pyk flux, and the maximum allowable transhydrogenase activity. For comparison, when these four fluxes were constrained to wild-type values, yields on the order of tens of mg/g resulted, which are on par with the best experimental yields reported to date. CONCLUSION These results suggest that specific plasmid yields can theoretically reach 12 times their current experimental maximum (51 mg/g). Moreover, they imply that abolishing Pyk activity and/or transhydrogenase up-regulation would be useful strategies to implement when designing host strains for plasmid production; mutations that reduce acetate production would also be advantageous. The results further suggest that using some other means for plasmid selection than antibiotic resistance, or at least weakening the marker's expression, would be beneficial because it would allow more precursor metabolites, energy, and reducing power to be put toward plasmid production. Thus far, the impact of eliminating Pyk activity has been explored experimentally, with significantly higher plasmid yields resulting.
Collapse
Affiliation(s)
- Drew S Cunningham
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Richard R Koepsel
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mohammad M Ataai
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael M Domach
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|