1
|
Nakatani H, Homma M. [Production and biological activity of the triazine derivatives: focusing on antibiotics produced by bacteria]. Nihon Saikingaku Zasshi 2025; 80:1-13. [PMID: 40044155 DOI: 10.3412/jsb.80.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Heterocyclic triazines and their derivatives have excellent biological activity and have been used as herbicides and anticancer drugs. A large number of derivatives were synthesized and their biological activity was investigated. Some bacteria synthesize the triazine derivatives such as Nostocine A, Toxoflavin, and Fluviol from GTP using enzymes similar to those in the synthesis pathway of Riboflavin (vitamin B2). These triazine derivatives show antibiotic activity. In particular, research on Toxoflavin has progressed as a toxin produced by bacteria that cause seedling rot and rice grain blight in rice. It has recently been revealed that Fluviol, which is produced by bacteria, acts to suppress the growth of pathogenic bacteria. This review will focus on triazine derivatives produced by bacteria.
Collapse
Affiliation(s)
- Hajime Nakatani
- Department of Biomolecular Engineering, Graduated School of Engineering, Nagoya University
| | - Michio Homma
- Department of Biomolecular Engineering, Graduated School of Engineering, Nagoya University
- Division of Physics, Graduate School of Science, Nagoya University
| |
Collapse
|
2
|
Choi O, Lee Y, Park J, Kang B, Chun HJ, Kim MC, Kim J. A novel toxoflavin-quenching regulation in bacteria and its application to resistance cultivars. Microb Biotechnol 2021; 14:1657-1670. [PMID: 34009736 PMCID: PMC8313270 DOI: 10.1111/1751-7915.13831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 11/28/2022] Open
Abstract
The toxoflavin (Txn), broad host range phytotoxin produced by a variety of bacteria, including Burkholderia glumae, is a key pathogenicity factor of B. glumae in rice and field crops. Two bacteria exhibiting Txn‐degrading activity were isolated from healthy rice seeds and identified as Sphingomonas adhaesiva and Agrobacterium sp. respectively. The genes stdR and stdA, encoding proteins responsible for Txn degradation of both bacterial isolates, were identical, indicating that horizontal gene transfer occurred between microbial communities in the same ecosystem. We identified a novel Txn‐quenching regulation of bacteria, demonstrating that the LysR‐type transcriptional regulator (LTTR) StdR induces the expression of the stdA, which encodes a Txn‐degrading enzyme, in the presence of Txn as a coinducer. Here we show that the bacterial StdRTxn‐quenching regulatory system mimics the ToxRTxn‐mediated biosynthetic regulation of B. glumae. Substrate specificity investigations revealed that Txn is the only coinducer of StdR and that StdA has a high degree of specificity for Txn. Rice plants expressing StdA showed Txn resistance. Collectively, bacteria mimic the mechanism of Txn biosynthesis regulation, employ it in the development of a Txn‐quenching regulatory system and share it with neighbouring bacteria for survival in rice environments full of Txn.
Collapse
Affiliation(s)
- Okhee Choi
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Yeyeong Lee
- Department of Plant Medicine, Gyeongsang National University, Jinju, South Korea
| | - Jiyeong Park
- Department of Plant Medicine, Gyeongsang National University, Jinju, South Korea
| | - Byeongsam Kang
- Division of Applied Life Science, Gyeongsang National University, Jinju, South Korea
| | - Hyun Jin Chun
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Min Chul Kim
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, South Korea.,Division of Applied Life Science, Gyeongsang National University, Jinju, South Korea
| | - Jinwoo Kim
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, South Korea.,Department of Plant Medicine, Gyeongsang National University, Jinju, South Korea.,Division of Applied Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
3
|
Peng J, Lelis T, Chen R, Barphagha I, Osti S, Ham JH. tepR encoding a bacterial enhancer-binding protein orchestrates the virulence and interspecies competition of Burkholderia glumae through qsmR and a type VI secretion system. MOLECULAR PLANT PATHOLOGY 2020; 21:1042-1054. [PMID: 32608174 PMCID: PMC7368122 DOI: 10.1111/mpp.12947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/23/2020] [Accepted: 05/04/2020] [Indexed: 05/05/2023]
Abstract
The pathogenesis of the rice pathogenic bacterium Burkholderia glumae is under the tight regulation of the tofI/tofR quorum-sensing (QS) system. tepR, encoding a group I bacterial enhancer-binding protein, negatively regulates the production of toxoflavin, the phytotoxin acting as a major virulence factor in B. glumae. In this study, through a transcriptomic analysis, we identified the genes that were modulated by tepR and/or the tofI/tofR QS system. More than half of the differentially expressed genes, including the genes for the biosynthesis and transport of toxoflavin, were significantly more highly expressed in the ΔtepR mutant but less expressed in the ΔtofI-tofR (tofI/tofR QS-defective) mutant. In consonance with the transcriptome data, other virulence-related functions of B. glumae, extracellular protease activity and flagellum-dependent motility, were also negatively regulated by tepR, and this negative regulatory function of tepR was dependent on the IclR-type transcriptional regulator gene qsmR. Likewise, the ΔtepR mutant exhibited a higher level of heat tolerance in congruence with the higher transcription levels of heat shock protein genes in the mutant. Interestingly, tepR also exhibited its positive regulatory function on a previously uncharacterized type VI secretion system (denoted as BgT6SS-1). The survival of the both ΔtepR and ΔtssD (BgT6SS-1-defective) mutants was significantly compromised compared to the wild-type parent strain 336gr-1 in the presence of the natural rice-inhabiting bacterium, Pantoea sp. RSPAM1. Taken together, this study revealed pivotal regulatory roles of tepR in orchestrating multiple biological functions of B. glumae, including pathogenesis, heat tolerance, and bacterial interspecies competition.
Collapse
Affiliation(s)
- Jingyu Peng
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLAUSA
- Present address:
Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMI48824USA
| | - Tiago Lelis
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLAUSA
- Tropical Research and Education CenterInstitute of Food and Agriculture SciencesUniversity of FloridaHomesteadFLUSA
| | - Ruoxi Chen
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLAUSA
- Present address:
1501 Capitol AvenueSacramentoCA95814USA
| | - Inderjit Barphagha
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLAUSA
| | - Surendra Osti
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLAUSA
- Present address:
Department of Agricultural Economics and AgribusinessLouisiana State UniversityBaton RougeLA70803USA
| | - Jong Hyun Ham
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLAUSA
| |
Collapse
|
4
|
Genetic dissection of independent and cooperative transcriptional activation by the LysR-type activator ThnR at close divergent promoters. Sci Rep 2016; 6:24538. [PMID: 27087658 PMCID: PMC4834489 DOI: 10.1038/srep24538] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/31/2016] [Indexed: 12/21/2022] Open
Abstract
Regulation of tetralin biodegradation operons is one of the examples of unconventional LysR-type mediated transcriptional regulation. ThnR activates transcription from two divergent and closely located promoters PB and PC. Although ThnR activates each promoter independently, transcription from each one increases when both promoters are together. Mutational analysis of the intergenic region shows that cooperative transcription is achieved through formation of a ThnR complex when bound to its respective sites at each promoter, via formation of a DNA loop. Mutations also defined ThnR contact sites that are important for independent transcriptional activation at each promoter. A mutation at the PB promoter region, which abolishes its independent transcription, does not affect at all PB transcription in the presence of the divergent promoter PC, thus indicating that the complex formed via DNA loop can compensate for the deficiencies in the correct protein-DNA interaction at one of the promoters. Combination of mutations in both promoters identifies a region at PC that is not important for its independent transcription but it is essential for cooperative transcription from both promoters. This work provides new insights into the diversity and complexity of activation mechanisms used by the most abundant type of bacterial transcriptional regulators.
Collapse
|
5
|
Naughton LM, An SQ, Hwang I, Chou SH, He YQ, Tang JL, Ryan RP, Dow JM. Functional and genomic insights into the pathogenesis of B
urkholderia
species to rice. Environ Microbiol 2016; 18:780-90. [DOI: 10.1111/1462-2920.13189] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/10/2015] [Accepted: 12/13/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Lynn M. Naughton
- School of Microbiology; Biosciences Institute; University College Cork; Cork Ireland
| | - Shi-qi An
- Division of Molecular Microbiology; College of Life Sciences; University of Dundee; Dundee UK
| | - Ingyu Hwang
- Institute of Biochemistry and Department of Agricultural Biotechnology; Seoul National University; Seoul 151-921 South Korea
| | - Shan-Ho Chou
- National Chung Hsing University Biotechnology Center; National Chung Hsing University; Taichung 40227 Taiwan
| | - Yong-Qiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering; College of Life Science and Technology; Guangxi University; 100 Daxue Road Nanning Guangxi 530004 China
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering; College of Life Science and Technology; Guangxi University; 100 Daxue Road Nanning Guangxi 530004 China
| | - Robert P. Ryan
- Division of Molecular Microbiology; College of Life Sciences; University of Dundee; Dundee UK
| | - J. Maxwell Dow
- School of Microbiology; Biosciences Institute; University College Cork; Cork Ireland
| |
Collapse
|
6
|
Lee J, Park J, Kim S, Park I, Seo YS. Differential regulation of toxoflavin production and its role in the enhanced virulence of Burkholderia gladioli. MOLECULAR PLANT PATHOLOGY 2016; 17:65-76. [PMID: 25845410 PMCID: PMC6638467 DOI: 10.1111/mpp.12262] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Burkholderia gladioli is a causal agent of bacterial panicle blight and sheath/grain browning in rice in many countries. Many strains produce the yellow pigment toxoflavin, which is highly toxic to plants, fungi, animals and microorganisms. Although there have been several studies on the toxoflavin biosynthesis system of B. glumae, it is still unclear how B. gladioli activates toxoflavin biosynthesis. In this study, we explored the genomic organization of the toxoflavin system of B. gladioli and its biological functions using comparative genomic analysis between toxoflavin-producing strains (B. glumae BGR1 and B. gladioli BSR3) and a strain not producing toxoflavin (B. gladioli KACC11889). The latter exhibits normal physiological characteristics similar to other B. gladioli strains. Burkholderia gladioli KACC11889 possesses all the genes involved in toxoflavin biosynthesis, but lacks the quorum-sensing (QS) system that functions as an on/off switch for toxoflavin biosynthesis. These data suggest that B. gladioli has evolved to use the QS signalling cascade of toxoflavin production (TofI/TofR of QS → ToxJ or ToxR → tox operons) similar to that in B. glumae. However, some strains may have evolved to eliminate toxoflavin production through deletion of the QS genes. In addition, we demonstrate that the toxoflavin biosynthetic system enhances the virulence of B. gladioli. These findings provide another line of evidence supporting the differential regulation of the toxoflavin system in Burkholderia strains.
Collapse
Affiliation(s)
- Jongyun Lee
- Department of Microbiology, Pusan National University, Busan, 609-735, South Korea
| | - Jungwook Park
- Department of Microbiology, Pusan National University, Busan, 609-735, South Korea
| | - Sunyoung Kim
- Department of Microbiology, Pusan National University, Busan, 609-735, South Korea
| | - Inmyoung Park
- Department of Microbiology, Pusan National University, Busan, 609-735, South Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan, 609-735, South Korea
| |
Collapse
|
7
|
Gao R, Krysciak D, Petersen K, Utpatel C, Knapp A, Schmeisser C, Daniel R, Voget S, Jaeger KE, Streit WR. Genome-wide RNA sequencing analysis of quorum sensing-controlled regulons in the plant-associated Burkholderia glumae PG1 strain. Appl Environ Microbiol 2015; 81:7993-8007. [PMID: 26362987 PMCID: PMC4651095 DOI: 10.1128/aem.01043-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/01/2015] [Indexed: 01/16/2023] Open
Abstract
Burkholderia glumae PG1 is a soil-associated motile plant-pathogenic bacterium possessing a cell density-dependent regulation system called quorum sensing (QS). Its genome contains three genes, here designated bgaI1 to bgaI3, encoding distinct autoinducer-1 (AI-1) synthases, which are capable of synthesizing QS signaling molecules. Here, we report on the construction of B. glumae PG1 ΔbgaI1, ΔbgaI2, and ΔbgaI3 mutants, their phenotypic characterization, and genome-wide transcriptome analysis using RNA sequencing (RNA-seq) technology. Knockout of each of these bgaI genes resulted in strongly decreased motility, reduced extracellular lipase activity, a reduced ability to cause plant tissue maceration, and decreased pathogenicity. RNA-seq analysis of all three B. glumae PG1 AI-1 synthase mutants performed in the transition from exponential to stationary growth phase revealed differential expression of a significant number of predicted genes. In comparison with the levels of gene expression by wild-type strain B. glumae PG1, 481 genes were differentially expressed in the ΔbgaI1 mutant, 213 were differentially expressed in the ΔbgaI2 mutant, and 367 were differentially expressed in the ΔbgaI3 mutant. Interestingly, only a minor set of 78 genes was coregulated in all three mutants. The majority of the QS-regulated genes were linked to metabolic activities, and the most pronounced regulation was observed for genes involved in rhamnolipid and Flp pilus biosynthesis and the type VI secretion system and genes linked to a clustered regularly interspaced short palindromic repeat (CRISPR)-cas gene cluster.
Collapse
Affiliation(s)
- Rong Gao
- Biocenter Klein Flottbek, Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Dagmar Krysciak
- Biocenter Klein Flottbek, Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Katrin Petersen
- Biocenter Klein Flottbek, Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Christian Utpatel
- Biocenter Klein Flottbek, Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Andreas Knapp
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Christel Schmeisser
- Biocenter Klein Flottbek, Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg August University Göttingen, Göttingen, Germany
| | - Sonja Voget
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg August University Göttingen, Göttingen, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Wolfgang R Streit
- Biocenter Klein Flottbek, Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
8
|
Joo M, Yoo HG, Kim HJ, Kwon HJ. ToxB encodes a canonical GTP cyclohydrolase II in toxoflavin biosynthesis and ribA expression restored toxoflavin production in a ΔtoxB mutant. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13765-015-0116-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Zhu DW, Wu ZY, Luo AM, Gao H. Characterization and detection of toxoflavin-producingBurkholderiain rice straws andDaqufor Chinese Maotai-flavour liquor brewing. JOURNAL OF THE INSTITUTE OF BREWING 2015. [DOI: 10.1002/jib.210] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- De-wen Zhu
- Department of Food Engineering, College of Light Industry, Textile and Food Engineering; Sichuan University; Chengdu 610065 China
| | - Zheng-yun Wu
- Department of Food Engineering, College of Light Industry, Textile and Food Engineering; Sichuan University; Chengdu 610065 China
| | - Ai-min Luo
- Department of Food Engineering, College of Light Industry, Textile and Food Engineering; Sichuan University; Chengdu 610065 China
| | - Hong Gao
- Department of Food Engineering, College of Light Industry, Textile and Food Engineering; Sichuan University; Chengdu 610065 China
| |
Collapse
|
10
|
Kim S, Park J, Lee J, Shin D, Park DS, Lim JS, Choi IY, Seo YS. Understanding pathogenic Burkholderia glumae metabolic and signaling pathways within rice tissues through in vivo transcriptome analyses. Gene 2014; 547:77-85. [PMID: 24949534 DOI: 10.1016/j.gene.2014.06.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/10/2014] [Accepted: 06/16/2014] [Indexed: 11/15/2022]
Abstract
Burkholderia glumae is a causal agent of rice grain and sheath rot. Similar to other phytopathogens, B. glumae adapts well to the host environment and controls its biology to induce diseases in the host plant; however, its molecular mechanisms are not yet fully understood. To gain a better understating of the actual physiological changes that occur in B. glumae during infection, we analyzed B. glumae transcriptome from infected rice tissues using an RNA-seq technique. To accomplish this, we analyzed differentially expressed genes (DEGs) and identified 2653 transcripts that were significantly altered. We then performed KEGG pathway and module enrichment of the DEGs. Interestingly, most genes involved bacterial chemotaxis-mediated motility, ascorbate and trehalose metabolisms, and sugar transporters including l-arabinose and d-xylose were found to be highly enriched. The in vivo transcriptional profiling of pathogenic B. glumae will facilitate elucidation of unknown plant-pathogenic bacteria interactions, as well as the overall infection processes.
Collapse
Affiliation(s)
- Sunyoung Kim
- Department of Microbiology, Pusan National University, Busan 609-735, Republic of Korea
| | - Jungwook Park
- Department of Microbiology, Pusan National University, Busan 609-735, Republic of Korea
| | - Jongyun Lee
- Department of Microbiology, Pusan National University, Busan 609-735, Republic of Korea
| | - Dongjin Shin
- Department of Functional Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Gyeongnam, 627-803, Republic of Korea
| | - Dong-Soo Park
- Department of Functional Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Gyeongnam, 627-803, Republic of Korea
| | - Jong-Sung Lim
- NICEM, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Ik-Young Choi
- NICEM, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan 609-735, Republic of Korea.
| |
Collapse
|
11
|
Kim S, Park J, Kim JH, Lee J, Bang B, Hwang I, Seo YS. RNAseq-based Transcriptome Analysis of Burkholderia glumae Quorum Sensing. THE PLANT PATHOLOGY JOURNAL 2013; 29:249-59. [PMID: 25288952 PMCID: PMC4174805 DOI: 10.5423/ppj.oa.04.2013.0044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 05/16/2013] [Accepted: 05/16/2013] [Indexed: 05/31/2023]
Abstract
Burkholderia glumae causes rice grain rot and sheath rot by producing toxoflavin, the expression of which is regulated by quorum sensing (QS). The QS systems of B. glumae rely on N-octanoyl homoserine lactone, synthesized by TofI and its cognate receptor TofR, to activate the genes for toxoflavin biosynthesis and an IclR-type transcriptional regulator gene, qsmR. To understand genome-wide transcriptional profiling of QS signaling, we employed RNAseq of the wild-type B. glumae BGR1 with QS-defective mutant, BGS2 (BGR1 tofI::Ω) and QS-dependent transcriptional regulator mutant, BGS9 (BGR1 qsmR::Ω). A comparison of gene expression profiling among the wild-type BGR1 and the two mutants before and after QS onset as well as gene ontology (GO) enrichment analysis from differential expressed genes (DEGs) revealed that genes involved in motility were highly enriched in TofI-dependent DEGs, whereas genes for transport and DNA polymerase were highly enriched in QsmR-dependent DEGs. Further, a combination of pathways with these DEGs and phenotype analysis of mutants pointed to a couple of metabolic processes, which are dependent on QS in B. glumae, that were directly or indirectly related with bacterial motility. The consistency of observed bacterial phenotypes with GOs or metabolic pathways in QS-regulated genes implied that integration RNAseq with GO enrichment or pathways would be useful to study bacterial physiology and phenotypes.
Collapse
Affiliation(s)
- Sunyoung Kim
- Department of Microbiology, Pusan National University, Busan 609-735, Korea
| | - Jungwook Park
- Department of Microbiology, Pusan National University, Busan 609-735, Korea
| | - Ji Hyeon Kim
- Department of Microbiology, Pusan National University, Busan 609-735, Korea
| | - Jongyun Lee
- Department of Microbiology, Pusan National University, Busan 609-735, Korea
| | - Bongjun Bang
- Department of Microbiology, Pusan National University, Busan 609-735, Korea
| | - Ingyu Hwang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
12
|
Choi O, Lee Y, Han I, Kim H, Goo E, Kim J, Hwang I. A simple and sensitive biosensor strain for detecting toxoflavin using β-galactosidase activity. Biosens Bioelectron 2013; 50:256-61. [PMID: 23871874 DOI: 10.1016/j.bios.2013.06.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/27/2013] [Accepted: 06/27/2013] [Indexed: 11/17/2022]
Abstract
In this study, we developed a simple and sensitive biosensor for the determination of toxoflavin (which is toxic to various plants, fungi, animals, and bacteria) in natural samples based on β-galactosidase activity. The proposed toxoflavin detection method for toxin-producing bacteria or toxin-contaminated foods is simple and cost effective. Burkholderia glumae, a species known to cause rice grain rot and wilt in various field crops, produces toxoflavin under the control of a LysR-type transcriptional regulator ToxR and its ligand toxoflavin. As the expression of toxoflavin biosynthetic genes requires toxoflavin as a co-activator of ToxR, a novel biosensor stain was constructed based on lacZ reporter gene integration into the first gene of the toxoflavin biosynthesis operon, toxABCDE of B. glumae. The biosensor was composed of a sensor strain (COK71), substrates (X-gal or ONPG), and culture medium, without any complex preparation process. We demonstrated that the biosensor strain is highly specific to toxoflavin, and can quantify relative amounts of toxoflavin compared with known concentrations of toxoflavin. The proposed method was reliable and simple; samples containing 50-500 nM of toxoflavin could be analyzed. More importantly, the proposed biosensor strain could identify toxoflavin-producing bacteria in real samples. The excellent performance of this biosensor is useful for diagnostic purposes, such as detecting toxoflavin-contaminated foods and environmental samples.
Collapse
Affiliation(s)
- Okhee Choi
- Division of Applied Life Science and Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
13
|
Ham JH. Intercellular and intracellular signalling systems that globally control the expression of virulence genes in plant pathogenic bacteria. MOLECULAR PLANT PATHOLOGY 2013; 14. [PMID: 23186372 PMCID: PMC6638695 DOI: 10.1111/mpp.12005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant pathogenic bacteria utilize complex signalling systems to control the expression of virulence genes at the cellular level and within populations. Quorum sensing (QS), an important intercellular communication mechanism, is mediated by different types of small molecules, including N-acyl homoserine lactones (AHLs), fatty acids and small proteins. AHL-mediated signalling systems dependent on the LuxI and LuxR family proteins play critical roles in the virulence of a wide range of Gram-negative plant pathogenic bacteria belonging to the Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria. Xanthomonas spp. and Xylella fastidiosa, members of the Gammaproteobacteria, however, possess QS systems that are mediated by fatty acid-type diffusible signal factors (DSFs). Recent studies have demonstrated that Ax21, a 194-amino-acid protein in Xanthomonas oryzae pv. oryzae, plays dual functions in activating a rice innate immune pathway through binding to the rice XA21 pattern recognition receptor and in regulating bacterial virulence and biofilm formation as a QS signal molecule. In xanthomonads, DSF-mediated QS systems are connected with the signalling pathways mediated by cyclic diguanosine monophosphate (c-di-GMP), which functions as a second messenger for the control of virulence gene expression in these bacterial pathogens.
Collapse
Affiliation(s)
- Jong Hyun Ham
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA.
| |
Collapse
|
14
|
Karki HS, Barphagha IK, Ham JH. A conserved two-component regulatory system, PidS/PidR, globally regulates pigmentation and virulence-related phenotypes of Burkholderia glumae. MOLECULAR PLANT PATHOLOGY 2012; 13:785-94. [PMID: 22364153 PMCID: PMC6638751 DOI: 10.1111/j.1364-3703.2012.00787.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Burkholderia glumae is a rice pathogenic bacterium that causes bacterial panicle blight. Some strains of this pathogen produce dark brown pigments when grown on casamino-acid peptone glucose (CPG) agar medium. A pigment-positive and highly virulent strain of B. glumae, 411gr-6, was randomly mutagenized with mini-Tn5gus, and the resulting mini-Tn5gus derivatives showing altered pigmentation phenotypes were screened on CPG agar plates to identify the genetic elements governing the pigmentation of B. glumae. In this study, a novel two-component regulatory system (TCRS) composed of the PidS sensor histidine kinase and the PidR response regulator was identified as an essential regulatory factor for pigmentation. Notably, the PidS/PidR TCRS was also required for the elicitation of the hypersensitive response on tobacco leaves, indicating the dependence of the hypersensitive response and pathogenicity (Hrp) type III secretion system of B. glumae on this regulatory factor. In addition, B. glumae mutants defective in the PidS/PidR TCRS showed less production of the phytotoxin, toxoflavin, and less virulence on rice panicles and onion bulbs relative to the parental strain, 411gr-6. The presence of highly homologous PidS and PidR orthologues in other Burkholderia species suggests that PidS/PidR-family TCRSs may exert the same or similar functions in different Burkholderia species, including both plant and animal pathogens.
Collapse
Affiliation(s)
- Hari Sharan Karki
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | | | | |
Collapse
|
15
|
Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. Antimicrob Agents Chemother 2010; 54:4389-93. [PMID: 20696879 DOI: 10.1128/aac.00155-10] [Citation(s) in RCA: 260] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acinetobacter baumannii is a major nosocomial pathogen which frequently develops multidrug resistance by acquisition of antibiotic resistance genes and overexpression of intrinsic efflux systems, such as the RND efflux pumps AdeABC and AdeIJK. A third RND system was characterized by studying spontaneous mutants BM4663 and BM4664, which were selected in the presence of chloramphenicol and norfloxacin, respectively, from the AdeABC- and AdeIJK-defective derivative A. baumannii BM4652. They exhibited enhanced resistance to fluoroquinolones, tetracycline-tigecycline, chloramphenicol, clindamycin, trimethoprim, sulfamethoxazole, sodium dodecyl sulfate, and dyes such as ethidium bromide, safranin O, and acridine orange. Comparison of transcriptomes of mutants with that of their parental strain, using a microarray technology, demonstrated the overexpression of three genes that encoded an RND efflux system, named AdeFGH. Inactivation of AdeFGH in BM4664 restored an antibiotic susceptibility profile identical to that of BM4652, indicating that AdeFGH was cryptic in BM4652 and responsible for multidrug resistance in its mutants. RNA analysis demonstrated that the three genes were cotranscribed. The adeFGH operon was found in 36 out of 40 A. baumannii clinical isolates, but none of the 22 isolates tested overexpressed the pump genes. Spontaneous MDR mutant BM4684, overexpressing adeFGH, was obtained from clinical isolate BM4587, indicating that adeFGH can be overexpressed in a strain harboring adeABC-adeIJK. An open reading frame, coding a LysR-type transcriptional regulator, named adeL, was located upstream from the adeFGH operon and transcribed in the opposite direction. Mutations in adeL were found in the three adeFGH-overexpressing mutants, suggesting that they were responsible for overexpression of AdeFGH.
Collapse
|
16
|
Novel antibacterial compounds specifically targeting the essential WalR response regulator. J Antibiot (Tokyo) 2010; 63:127-34. [PMID: 20111065 DOI: 10.1038/ja.2010.4] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The WalK/WalR (YycG/YycF) two-component system, which is essential for cell viability, is highly conserved and specific to low-GC percentage of Gram-positive bacteria, making it an attractive target for novel antimicrobial compounds. Recent work has shown that WalK/WalR exerts an effect as a master regulatory system in controlling and coordinating cell wall metabolism with cell division in Bacillus subtilis and Staphylococcus aureus. In this paper, we develop a high-throughput screening system for WalR inhibitors and identify two novel inhibitors targeting the WalR response regulator (RR): walrycin A (4-methoxy-1-naphthol) and walrycin B (1,6-dimethyl-3-[4-(trifluoromethyl)phenyl]pyrimido[5,4-e][1,2,4]triazine-5,7-dione). Addition of these compounds simultaneously affects the expression of WalR regulon genes, leading to phenotypes consistent with those of cells starved for the WalK/WalR system and having a bactericidal effect. B. subtilis cells form extremely long aseptate filaments and S. aureus cells form large aggregates under these conditions. These results show that walrycins A and B are the first antibacterial agents targeting WalR in B. subtilis and S. aureus.
Collapse
|