1
|
Rivera-Velez A, Huber L, Sinha S, Cohen ND. Fitness cost conferred by the novel erm(51) and rpoB mutation on environmental multidrug resistant-Rhodococcus equi. Vet Microbiol 2022; 273:109531. [PMID: 35944389 DOI: 10.1016/j.vetmic.2022.109531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022]
Abstract
Rhodococcus equi is a common cause of severe pneumonia in foals. Emergence of macrolide-resistant R. equi isolated from foals and their environment has been reported in the United States. A novel erm(51) gene was recently identified in R. equi in soil from horse farms in Kentucky. Our objective was to determine the effect of the erm(51) gene and associated rpoB mutation on the fitness of multidrug resistant-R. equi (MDR-R. equierm(51)+, rpoB+) under different nutrient conditions. Bacterial growth curves were generated for 3 MDR-R. equierm(51)+, rpoB+ isolates and 3 wild-type (WTN) R. equi isolates recovered from environmental samples of farms in central Kentucky. Growth was measured over 30.5 h in brain-heart infusion broth (BHI), minimal medium (MM), and minimal medium without iron (MM-I). All isolates had significantly (P < 0.05) higher growth in BHI compared to either MM or MM-I. MDR-R. equierm(51)+, rpoB+ exhibited significantly lower growth compared to WTN isolates in BHI (nutrient-rich condition), but not in either MM or MM-I (nutrient-restricted conditions). This study indicates that under nutrient-rich conditions fitness of MDR-R. equierm(51)+, rpoB+ is reduced relative to susceptible isolates; however, under nutrient-restricted conditions MDR-R. equierm(51)+, rpoB+ isolates grow similarly to susceptible isolates. These findings indicate that MDR-R. equierm(51)+, rpoB+ might be outcompeted by susceptible isolates in nature when practices to reduce antimicrobial pressure, such as reducing antimicrobial use in foals, are implemented. But it also raises the concern that these resistant genotypes might persist in the environment of horse-breeding farms in the face of selective pressures such as antimicrobials or nutrient restriction.
Collapse
Affiliation(s)
- Andres Rivera-Velez
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Laura Huber
- Pathobiology Department, College of Veterinary Medicine, Auburn University, 1130 wire Rd, Auburn, AL 36832, USA.
| | - Samiran Sinha
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA.
| | - Noah D Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
2
|
Sangkanjanavanich N, Kakuda T, Suzuki Y, Sasaki Y, Takai S. Identification of genes required for the fitness of Rhodococcus equi during the infection of mice via signature-tagged transposon mutagenesis. J Vet Med Sci 2021; 83:1182-1190. [PMID: 34108307 PMCID: PMC8437726 DOI: 10.1292/jvms.21-0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rhodococcus equi is a Gram-positive facultative intracellular bacterium that causes pyogranulomatous pneumonia in foals and immunocompromised people. In the present study, signature-tagged transposon mutagenesis was applied for the negative selection of R. equi mutants that cannot survive in vivo. Twenty-five distinguishable plasmid-transposon (plasposon) vectors by polymerase chain reaction (PCR), each containing a unique oligonucleotide tag, were constructed and used to select the transposon mutants that have in vivo fitness defects using a mouse systemic infection model. Of the 4,560 transposon mutants, 102 mutants were isolated via a real-time PCR-based screening as the mutants were unable to survive in the mouse model. Finally, 50 single transposon insertion sites were determined via the self-cloning strategy. The insertion of the transposon was seen on the virulence plasmid in 15 of the 50 mutants, whereas the remaining 35 mutants had the insertion of transposon on the chromosome. The chromosomal mutants contained transposon insertions in genes involved in cellular metabolism, DNA repair and recombination, gene regulation, non-ribosomal peptide synthesis, and unknown functions. Additionally, seven of the chromosomal mutants showed a reduced ability to multiply in the macrophages in vitro. In this study, we have identified several biosynthetic pathways as fitness factors associated with the growth within macrophages and survival in mice.
Collapse
Affiliation(s)
- Nuttapone Sangkanjanavanich
- Laboratory of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori 034-8628, Japan
| | - Tsutomu Kakuda
- Laboratory of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori 034-8628, Japan
| | - Yasunori Suzuki
- Laboratory of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori 034-8628, Japan
| | - Yukako Sasaki
- Laboratory of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori 034-8628, Japan
| | - Shinji Takai
- Laboratory of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori 034-8628, Japan
| |
Collapse
|
3
|
Khilyas IV, Sorokina AV, Markelova MI, Belenikin M, Shafigullina L, Tukhbatova RI, Shagimardanova EI, Blom J, Sharipova MR, Cohen MF. Genomic and phenotypic analysis of siderophore-producing Rhodococcus qingshengii strain S10 isolated from an arid weathered serpentine rock environment. Arch Microbiol 2020; 203:855-860. [PMID: 33025059 DOI: 10.1007/s00203-020-02057-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/08/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022]
Abstract
The success of members of the genus Rhodococcus in colonizing arid rocky environments is owed in part to desiccation tolerance and an ability to extract iron through the secretion and uptake of siderophores. Here, we report a comprehensive genomic and taxonomic analysis of Rhodococcus qingshengii strain S10 isolated from eathered serpentine rock at the arid Khalilovsky massif, Russia. Sequence comparisons of whole genomes and of selected marker genes clearly showed strain S10 to belong to the R. qingshengii species. Four prophage sequences within the R. qingshengii S10 genome were identified, one of which encodes for a putative siderophore-interacting protein. Among the ten non-ribosomal peptides synthase (NRPS) clusters identified in the strain S10 genome, two show high homology to those responsible for siderophore synthesis. Phenotypic analyses demonstrated that R. qingshengii S10 secretes siderophores and possesses adaptive features (tolerance of up to 8% NaCl and pH 9) that should enable survival in its native habitat within dry serpentine rock.
Collapse
Affiliation(s)
- Irina V Khilyas
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region), Federal University, Kazan, Russian Federation.
| | - Alyona V Sorokina
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region), Federal University, Kazan, Russian Federation
| | - Maria I Markelova
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region), Federal University, Kazan, Russian Federation
| | - Maksim Belenikin
- Department of Molecular and Biological Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Lilia Shafigullina
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region), Federal University, Kazan, Russian Federation
| | - Rezeda I Tukhbatova
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region), Federal University, Kazan, Russian Federation
| | - Elena I Shagimardanova
- Laboratory of Extreme Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region), Federal University, Kazan, Russian Federation
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Margarita R Sharipova
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region), Federal University, Kazan, Russian Federation
| | - Michael F Cohen
- Department of Biology, Sonoma State University, Rohnert Park, CA, USA
| |
Collapse
|
4
|
GAPDH, rhbC, and vapA gene expression in Rhodococcus equi cultured under different iron concentrations. Microb Pathog 2019; 139:103885. [PMID: 31790793 DOI: 10.1016/j.micpath.2019.103885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/07/2019] [Accepted: 11/21/2019] [Indexed: 11/22/2022]
Abstract
The ability of Rhodococcus equi to survive in macrophages and cause pneumonia in foals depends on vapA and rhbC genes, which produce the virulence-associated protein A (VapA) and the rhequichelin siderophore, respectively. Virulent R. equi acquires Fe from transferrin by unknown mechanisms. Our objectives were to determine the role of GAPDH in Fe homeostasis, to further characterize GAPDH, rhbC, and vapA expression under iron homeostasis, and to document the occurrence of rhbC gene in R. equi isolates. Therefore, vapA + R. equi was cultured under excessive, physiologic, and restricted iron concentrations, and quantitative culture and gene expression were performed. The relative expression of GAPDH, rhbC, and vapA after 48 h of culture were analyzed by qPCR. To determine the rhbC occurrence, total DNA was extracted from R. equi isolated from foals with clinical rhodococcosis (n = 22), healthy horses (feces, n = 16; nasal swab, n = 9), soil (n = 6), and 2 ATCC reference strains. Conventional PCR was performed to identify genus/species, vapA, and rhbC genes. Iron restriction proportionally decreased R. equi growth rates, and induced high expression of both GAPDH and vapA. The putative role of GAPDH in R. equi iron homeostasis should be further investigated. rhbC was significantly up-regulated under both Fe excess and critical starvation. The rhbC gene was identified in all clinical isolates and soil, but it was absent in 2 isolates from healthy horses, suggesting that rhequichelin is not required for R. equi nasal and intestinal colonization.
Collapse
|
5
|
Effect of Macrolide and Rifampin Resistance on Fitness of Rhodococcus equi during Intramacrophage Replication and In Vivo. Infect Immun 2019; 87:IAI.00281-19. [PMID: 31331959 DOI: 10.1128/iai.00281-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/17/2019] [Indexed: 01/20/2023] Open
Abstract
The soil-dwelling, saprophytic actinomycete Rhodococcus equi is a facultative intracellular pathogen of macrophages and causes severe bronchopneumonia when inhaled by susceptible foals. Standard treatment for R. equi disease is dual-antimicrobial therapy with a macrolide and rifampin. Thoracic ultrasonography and early treatment with antimicrobials prior to the development of clinical signs are used as means of controlling endemic R. equi infection on many farms. Concurrently with the increased use of macrolides and rifampin for chemoprophylaxis and the treatment of subclinically affected foals, a significant increase in the incidence of macrolide- and rifampin-resistant R. equi isolates has been documented. Previously, our laboratory demonstrated decreased fitness of R. equi strains that were resistant to macrolides, rifampin, or both, resulting in impaired in vitro growth in iron-restricted media and in soil. The objective of this study was to examine the effect of macrolide and/or rifampin resistance on intracellular replication of R. equi in equine pulmonary macrophages and in an in vivo mouse infection model in the presence and absence of antibiotics. In equine macrophages, the macrolide-resistant strain did not increase in bacterial numbers over time and the dual macrolide- and rifampin-resistant strain exhibited decreased proliferation compared to the susceptible isolate. In the mouse model, in the absence of antibiotics, the susceptible R. equi isolate outcompeted the macrolide- or rifampin-resistant strains.
Collapse
|
6
|
Effect of Macrolide and Rifampin Resistance on the Fitness of Rhodococcus equi. Appl Environ Microbiol 2019; 85:AEM.02665-18. [PMID: 30683740 DOI: 10.1128/aem.02665-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 01/16/2019] [Indexed: 12/18/2022] Open
Abstract
Rhodococcus equi is a leading cause of severe pneumonia in foals. Standard treatment is dual antimicrobial therapy with a macrolide and rifampin, but the emergence of macrolide- and rifampin-resistant R. equi isolates is an increasing problem. The objective of this study was to determine the effect of macrolide and/or rifampin resistance on fitness of R. equi Three unique isogenic sets were created, each consisting of four R. equi strains, as follows: a susceptible parent isolate, strains resistant to macrolides or rifampin, and a dual macrolide- and rifampin-resistant strain. Each isogenic set's bacterial growth curve was generated in enriched medium, minimal medium (MM), and minimal medium without iron (MM-I). Bacterial survival in soil was analyzed over 12 months at -20°C, 4°C, 25°C, and 37°C, and the ability of these strains to retain antimicrobial resistance during sequential subculturing was determined. Insertion of the mobile element conferring macrolide resistance had minimal effect on in vitro growth. However, two of three rpoB mutations conferring rifampin resistance resulted in a decreased growth rate in MM. In soil, macrolide- or rifampin-resistant R. equi strains exhibited limited growth compared to that of the susceptible R. equi isolate at all temperatures except -20°C. During subculturing, macrolide resistance was lost over time, and two of three rpoB mutations reverted to the wild-type form. The growth of rifampin-resistant R. equi colonies is delayed under nutrient restriction. In soil, possession of rifampin or macrolide resistance results in decreased fitness. Both macrolide and rifampin resistance can be lost after repeated subculturing.IMPORTANCE This work advances our understanding of the opportunistic environmental pathogen Rhodococcus equi, a disease agent affecting horses and immunocompromised people. R. equi is one of the most common causes of severe pneumonia in young horses. For decades, the standard treatment for R. equi pneumonia in horses has been dual antimicrobial therapy with a macrolide and rifampin; effective alternatives to this combination are lacking. The World Health Organization classifies these antimicrobial agents as critically important for human medicine. Widespread macrolide and rifampin resistance in R. equi isolates is a major emerging problem for the horse-breeding industry and might also adversely impact human health if resistant strains infect people or transfer resistance mechanisms to other pathogens. This study details the impact of antimicrobial resistance on R. equi fitness, a vital step for understanding the ecology and epidemiology of resistant R. equi isolates, and will support development of novel strategies to combat antimicrobial resistance.
Collapse
|
7
|
Conjugational delivery of chromosomal integrative constructs for gene expression in the carbendazim-degrading Rhodococcus erythropolis D-1. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1382-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
8
|
Gressler LT, Machado G, da Silveira BP, Cohen ND, Corbellini LG, Leotti VB, Diehl GN, Dos Santos LC, de Vargas AC. Prevalence of Rhodococcus equi from the nasal cavity of 1010 apparently healthy horses. Equine Vet J 2018; 50:667-671. [PMID: 29341220 DOI: 10.1111/evj.12804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 01/09/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Rhodococcus equi is an important cause of foal pneumonia. While its isolation from different sources has been widely evaluated, there is a need to better understand the R. equi epidemiology from samples of the nasal cavity of healthy horses. OBJECTIVES To determine the prevalence of R. equi from the nasal cavity of healthy horses, along with its virulence profile, antimicrobial susceptibility and environmental variables associated. STUDY DESIGN Cross-sectional study. METHODS Swabs from the nasal cavity of 1010 apparently healthy horses from 341 farms were submitted for bacteriological analyses. The identity and virulence profile of the R. equi isolates were assessed by multiplex PCR; antimicrobial susceptibility was determined by the disk-diffusion method. The occurrence of R. equi was calculated at the level of both animal and farm. The association of seven specific environmental factors with R. equi isolation was assessed using logistic regression and by a spatial scan statistical method to determine the presence of local clusters. RESULTS Antimicrobial-sensitive R. equi was isolated from 10 (1%) of 1010 horses ranging between 3 and 29 years old. Ten farms (3%) had at least one positive horse. Only one R. equi isolate (10%) was classified as virulent. Red-Yellow Argisol (PVA/PV) soils were significantly associated with R. equi isolation (odds ratio (OR) 8.02; CI95% , 1.98-32.50, P = 0.01), and areas with well-drained soil were less likely to be test positive (OR 0.85; CI95% , 0.76-0.96, P = 0.03). MAIN LIMITATIONS The use of culture-based method instead of PCR-based assay and the lack of soil sampling. CONCLUSIONS Antimicrobial-sensitive R. equi may be considered a minor part of the normal bacterial flora in the nasal cavity of healthy and immunologically functional horses breeding on pasture. Further studies are warranted to determine if soils rich in iron and well-drained are, in fact, associated with the occurrence of R. equi.
Collapse
Affiliation(s)
- L T Gressler
- Laboratory of Bacteriology, Federal University of Santa Maria (UFSM), Cidade Universitária, Bairro Camobi, Santa Maria - Rio Grande do Sul, Brazil
| | - G Machado
- Department of Population Health and Pathobiology, College of Veterinary Medicine North, Carolina State University, Raleigh, North Carolina, USA
| | - B P da Silveira
- Laboratory of Bacteriology, Federal University of Santa Maria (UFSM), Cidade Universitária, Bairro Camobi, Santa Maria - Rio Grande do Sul, Brazil
| | - N D Cohen
- College of Veterinary Medicine, Veterinary Large Animal Clinical Sciences, Texas A&M, College Station, Texas, USA
| | - L G Corbellini
- Department of Statistics, Institute of Mathematics and Statistics and Post-Graduate Program of Epidemiology, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - V B Leotti
- Department of Statistics, Institute of Mathematics and Statistics and Post-Graduate Program of Epidemiology, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - G N Diehl
- Department of Agriculture, Livestock and Agribusiness of the State of Rio Grande do Sul (SEAPA-RS), Brazil, Porto Alegre, Rio Grande do Sul, Brazil
| | - L C Dos Santos
- Department of Agriculture, Livestock and Agribusiness of the State of Rio Grande do Sul (SEAPA-RS), Brazil, Porto Alegre, Rio Grande do Sul, Brazil
| | - A C de Vargas
- Laboratory of Bacteriology, Federal University of Santa Maria (UFSM), Cidade Universitária, Bairro Camobi, Santa Maria - Rio Grande do Sul, Brazil
| |
Collapse
|
9
|
Ceniceros A, Dijkhuizen L, Petrusma M, Medema MH. Genome-based exploration of the specialized metabolic capacities of the genus Rhodococcus. BMC Genomics 2017; 18:593. [PMID: 28793878 PMCID: PMC5550956 DOI: 10.1186/s12864-017-3966-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/27/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Bacteria of the genus Rhodococcus are well known for their ability to degrade a large range of organic compounds. Some rhodococci are free-living, saprophytic bacteria; others are animal and plant pathogens. Recently, several studies have shown that their genomes encode putative pathways for the synthesis of a large number of specialized metabolites that are likely to be involved in microbe-microbe and host-microbe interactions. To systematically explore the specialized metabolic potential of this genus, we here performed a comprehensive analysis of the biosynthetic coding capacity across publicly available rhododoccal genomes, and compared these with those of several Mycobacterium strains as well as that of their mutual close relative Amycolicicoccus subflavus. RESULTS Comparative genomic analysis shows that most predicted biosynthetic gene cluster families in these strains are clade-specific and lack any homology with gene clusters encoding the production of known natural products. Interestingly, many of these clusters appear to encode the biosynthesis of lipopeptides, which may play key roles in the diverse environments were rhodococci thrive, by acting as biosurfactants, pathogenicity factors or antimicrobials. We also identified several gene cluster families that are universally shared among all three genera, which therefore may have a more 'primary' role in their physiology. Inactivation of these clusters by mutagenesis might help to generate weaker strains that can be used as live vaccines. CONCLUSIONS The genus Rhodococcus thus provides an interesting target for natural product discovery, in view of its large and mostly uncharacterized biosynthetic repertoire, its relatively fast growth and the availability of effective genetic tools for its genomic modification.
Collapse
Affiliation(s)
- Ana Ceniceros
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands.
| | - Mirjan Petrusma
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands.
| |
Collapse
|
10
|
Dashti Y, Grkovic T, Abdelmohsen UR, Hentschel U, Quinn RJ. Actinomycete Metabolome Induction/Suppression with N-Acetylglucosamine. JOURNAL OF NATURAL PRODUCTS 2017; 80:828-836. [PMID: 28355070 DOI: 10.1021/acs.jnatprod.6b00673] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The metabolite profiles of three sponge-derived actinomycetes, namely, Micromonospora sp. RV43, Rhodococcus sp. RV157, and Actinokineospora sp. EG49 were investigated after elicitation with N-acetyl-d-glucosamine. 1H NMR fingerprint methodology was utilized to study the differences in the metabolic profiles of the bacterial extracts before and after elicitation. Our study found that the addition of N-acetyl-d-glucosamine modified the secondary metabolite profiles of the three investigated actinomycete isolates. N-Acetyl-d-glucosamine induced the production of 3-formylindole (11) and guaymasol (12) in Micromonospora sp. RV43, the siderophore bacillibactin 16, and surfactin antibiotic 17 in Rhodococcus sp. RV157 and increased the production of minor metabolites actinosporins E-H (21-24) in Actinokineospora sp. EG49. These results highlight the use of NMR fingerprinting to detect changes in metabolism following addition of N-acetyl-d-glucosamine. N-Acetyl-d-glucosamine was shown to have multiple effects including suppression of metabolites, induction of new metabolites, and increased production of minor compounds.
Collapse
Affiliation(s)
- Yousef Dashti
- Eskitis Institute for Drug Discovery, Griffith University , Brisbane, QLD 4111 Australia
| | - Tanja Grkovic
- Eskitis Institute for Drug Discovery, Griffith University , Brisbane, QLD 4111 Australia
| | - Usama Ramadan Abdelmohsen
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg , Julius-von-Sachs-Platz 3, D-97082 Würzburg, Germany
| | - Ute Hentschel
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg , Julius-von-Sachs-Platz 3, D-97082 Würzburg, Germany
| | - Ronald J Quinn
- Eskitis Institute for Drug Discovery, Griffith University , Brisbane, QLD 4111 Australia
| |
Collapse
|
11
|
Bosello M, Zeyadi M, Kraas FI, Linne U, Xie X, Marahiel MA. Structural characterization of the heterobactin siderophores from Rhodococcus erythropolis PR4 and elucidation of their biosynthetic machinery. JOURNAL OF NATURAL PRODUCTS 2013; 76:2282-2290. [PMID: 24274668 DOI: 10.1021/np4006579] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this study, the isolation, the structural characterization, and the elucidation of the biosynthetic origin of heterobactins, catecholate-hydroxamate mixed-type siderophores from Rhodococcus erythropolis PR4, are reported. The structure elucidation of heterobactin A was accomplished via MS(n) analysis and NMR spectroscopy and revealed the noteworthy presence of a peptide bond between the guanidine group of an arginine residue and a 2,3-dihydroxybenzoate moiety. The two heterobactin S1 and S2 variants are derivatives of heterobactin A that have sulfonation modifications on the aromatic rings. The bioinformatic analysis of the R. erythropolis PR4 genome and the subsequent genetic and biochemical characterization of the putative biosynthetic machinery identified the gene cluster responsible for the biosynthesis of the heterobactins. Interestingly, the HtbG NRPS presents an unprecedented C-PCP-A domain organization within the second module of the synthetase that may help the correct elongation of the peptide intermediate. Finally, the present work revises the structure of heterobactin A that was described by Carrano et al. in 2001.
Collapse
Affiliation(s)
- Mattia Bosello
- Biochemistry, Department of Chemistry, Philipps-University Marburg , Hans-Meerwein-Strasse D-35043 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Vázquez-Boland JA, Giguère S, Hapeshi A, MacArthur I, Anastasi E, Valero-Rello A. Rhodococcus equi: the many facets of a pathogenic actinomycete. Vet Microbiol 2013; 167:9-33. [PMID: 23993705 DOI: 10.1016/j.vetmic.2013.06.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 12/20/2022]
Abstract
Rhodococcus equi is a soil-dwelling pathogenic actinomycete that causes pulmonary and extrapulmonary pyogranulomatous infections in a variety of animal species and people. Young foals are particularly susceptible and develop a life-threatening pneumonic disease that is endemic at many horse-breeding farms worldwide. R. equi is a facultative intracellular parasite of macrophages that replicates within a modified phagocytic vacuole. Its pathogenicity depends on a virulence plasmid that promotes intracellular survival by preventing phagosome-lysosome fusion. Species-specific tropism of R. equi for horses, pigs and cattle appears to be determined by host-adapted virulence plasmid types. Molecular epidemiological studies of these plasmids suggest that human R. equi infection is zoonotic. Analysis of the recently determined R. equi genome sequence has identified additional virulence determinants on the bacterial chromosome. This review summarizes our current understanding of the clinical aspects, biology, pathogenesis and immunity of this fascinating microbe with plasmid-governed infectivity.
Collapse
Affiliation(s)
- José A Vázquez-Boland
- Microbial Pathogenesis Unit, School of Biomedical Sciences and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH9 3JT, UK; Grupo de Patogenómica Bacteriana, Facultad de Veterinaria, Universidad de León, 24071 León, Spain.
| | | | | | | | | | | |
Collapse
|
13
|
The hydroxamate siderophore rhequichelin is required for virulence of the pathogenic actinomycete Rhodococcus equi. Infect Immun 2012; 80:4106-14. [PMID: 22966042 DOI: 10.1128/iai.00678-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We previously showed that the facultative intracellular pathogen Rhodococcus equi produces a nondiffusible and catecholate-containing siderophore (rhequibactin) involved in iron acquisition during saprophytic growth. Here, we provide evidence that the rhbABCDE cluster directs the biosynthesis of a hydroxamate siderophore, rhequichelin, that plays a key role in virulence. The rhbC gene encodes a nonribosomal peptide synthetase that is predicted to produce a tetrapeptide consisting of N(5)-formyl-N(5)-hydroxyornithine, serine, N(5)-hydroxyornithine, and N(5)-acyl-N(5)-hydroxyornithine. The other rhb genes encode putative tailoring enzymes mediating modification of ornithine residues incorporated into the hydroxamate product of RhbC. Transcription of rhbC was upregulated during growth in iron-depleted medium, suggesting that it plays a role in iron acquisition. This was confirmed by deletion of rhbCD, rendering the resulting strain R. equi SID2 unable to grow in the presence of the iron chelator 2,2-dipyridyl. Supernatant of the wild-type strain rescued the phenotype of R. equi SID2. The importance of rhequichelin in virulence was highlighted by the rapid increase in transcription levels of rhbC following infection and the inability of R. equi SID2 to grow within macrophages. Unlike the wild-type strain, R. equi SID2 was unable to replicate in vivo and was rapidly cleared from the lungs of infected mice. Rhequichelin is thus a key virulence-associated factor, although nonpathogenic Rhodococcus species also appear to produce rhequichelin or a structurally closely related compound. Rhequichelin biosynthesis may therefore be considered an example of cooption of a core actinobacterial trait in the evolution of R. equi virulence.
Collapse
|
14
|
Bosello M, Robbel L, Linne U, Xie X, Marahiel MA. Biosynthesis of the siderophore rhodochelin requires the coordinated expression of three independent gene clusters in Rhodococcus jostii RHA1. J Am Chem Soc 2011; 133:4587-95. [PMID: 21381663 DOI: 10.1021/ja1109453] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work we report the isolation, structural characterization, and the genetic analysis of the biosynthetic origin of rhodochelin, a unique mixed-type catecholate-hydroxamate siderophore isolated from Rhodococcus jostii RHA1. Rhodochelin structural elucidation was accomplished via MS(n)- and NMR-analysis and revealed the tetrapeptide to contain an unusual ester bond between an L-δ-N-formyl-δ-N-hydroxyornithine moiety and the side chain of a threonine residue. Gene deletions within three putative biosynthetic gene clusters abolish rhodochelin production, proving that the ORFs responsible for rhodochelin biosynthesis are located in different chromosomal loci. These results demonstrate the efficient cross-talk between distantly located secondary metabolite gene clusters and outline new insights into the comprehension of natural product biosynthesis.
Collapse
Affiliation(s)
- Mattia Bosello
- Biochemistry, Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse D-35043 Marburg, Germany
| | | | | | | | | |
Collapse
|
15
|
Nitric oxide-mediated intracellular growth restriction of pathogenic Rhodococcus equi can be prevented by iron. Infect Immun 2011; 79:2098-111. [PMID: 21383050 DOI: 10.1128/iai.00983-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Rhodococcus equi is an intracellular pathogen which causes pneumonia in young horses and in immunocompromised humans. R. equi arrests phagosome maturation in macrophages at a prephagolysosome stage and grows inside a privileged compartment. Here, we show that, in murine macrophages activated with gamma interferon and lipopolysaccharide, R. equi does not multiply but stays viable for at least 24 h. Whereas infection control of other intracellular pathogens by activated macrophages is executed by enhanced phagosome acidification or phagolysosome formation, by autophagy or by the interferon-inducible GTPase Irgm1, none of these mechanisms seems to control R. equi infection. Growth control by macrophage activation is fully mimicked by treatment of resting macrophages with nitric oxide donors, and inhibition of bacterial multiplication by either activation or nitric oxide donors is annihilated by cotreatment of infected macrophages with ferrous sulfate. Transcriptional analysis of the R. equi iron-regulated gene iupT demonstrates that intracellular R. equi encounters iron stress in activated, but not in resting, macrophages and that this stress is relieved by extracellular addition of ferrous sulfate. Our results suggest that nitric oxide is central to the restriction of bacterial access to iron in activated macrophages.
Collapse
|
16
|
Letek M, González P, MacArthur I, Rodríguez H, Freeman TC, Valero-Rello A, Blanco M, Buckley T, Cherevach I, Fahey R, Hapeshi A, Holdstock J, Leadon D, Navas J, Ocampo A, Quail MA, Sanders M, Scortti MM, Prescott JF, Fogarty U, Meijer WG, Parkhill J, Bentley SD, Vázquez-Boland JA. The genome of a pathogenic rhodococcus: cooptive virulence underpinned by key gene acquisitions. PLoS Genet 2010; 6:e1001145. [PMID: 20941392 PMCID: PMC2947987 DOI: 10.1371/journal.pgen.1001145] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 08/31/2010] [Indexed: 11/29/2022] Open
Abstract
We report the genome of the facultative intracellular parasite Rhodococcus equi, the only animal pathogen within the biotechnologically important actinobacterial genus Rhodococcus. The 5.0-Mb R. equi 103S genome is significantly smaller than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of paralogous genes and an accelerated genetic flux, rather than reductive evolution in R. equi. The 103S genome lacks the extensive catabolic and secondary metabolic complement of environmental rhodococci, and it displays unique adaptations for host colonization and competition in the short-chain fatty acid–rich intestine and manure of herbivores—two main R. equi reservoirs. Except for a few horizontally acquired (HGT) pathogenicity loci, including a cytoadhesive pilus determinant (rpl) and the virulence plasmid vap pathogenicity island (PAI) required for intramacrophage survival, most of the potential virulence-associated genes identified in R. equi are conserved in environmental rhodococci or have homologs in nonpathogenic Actinobacteria. This suggests a mechanism of virulence evolution based on the cooption of existing core actinobacterial traits, triggered by key host niche–adaptive HGT events. We tested this hypothesis by investigating R. equi virulence plasmid-chromosome crosstalk, by global transcription profiling and expression network analysis. Two chromosomal genes conserved in environmental rhodococci, encoding putative chorismate mutase and anthranilate synthase enzymes involved in aromatic amino acid biosynthesis, were strongly coregulated with vap PAI virulence genes and required for optimal proliferation in macrophages. The regulatory integration of chromosomal metabolic genes under the control of the HGT–acquired plasmid PAI is thus an important element in the cooptive virulence of R. equi. Rhodococcus is a prototypic genus within the Actinobacteria, one of the largest microbial groups on Earth. Many of the ubiquitous rhodococcal species are biotechnologically useful due to their metabolic versatility and biodegradative properties. We have deciphered the genome of a facultatively parasitic Rhodococcus, the animal and human pathogen R. equi. Comparative genomic analyses of related species provide a unique opportunity to increase our understanding of niche-adaptive genome evolution and specialization. The environmental rhodococci have much larger genomes, richer in metabolic and degradative pathways, due to gene duplication and acquisition, not genome contraction in R. equi. This probably reflects that the host-associated R. equi habitat is more stable and favorable than the chemically diverse but nutrient-poor environmental niches of nonpathogenic rhodococci, necessitating metabolically more complex, expanded genomes. Our work also highlights that the recruitment or cooption of core microbial traits, following the horizontal acquistion of a few critical genes that provide access to the host niche, is an important mechanism in actinobacterial virulence evolution. Gene cooption is a key evolutionary mechanism allowing rapid adaptive change and novel trait acquisition. Recognizing the contribution of cooption to virulence provides a rational framework for understanding and interpreting the emergence and evolution of microbial pathogenicity.
Collapse
Affiliation(s)
- Michal Letek
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Patricia González
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Irish Equine Centre, Johnstown, Naas, Ireland
| | - Iain MacArthur
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Irish Equine Centre, Johnstown, Naas, Ireland
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Héctor Rodríguez
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Irish Equine Centre, Johnstown, Naas, Ireland
| | - Tom C. Freeman
- Division of Genetics and Genomics, Roslin BioCentre, University of Edinburgh, Edinburgh, United Kingdom
| | - Ana Valero-Rello
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Irish Equine Centre, Johnstown, Naas, Ireland
| | - Mónica Blanco
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Irish Equine Centre, Johnstown, Naas, Ireland
| | - Tom Buckley
- Irish Equine Centre, Johnstown, Naas, Ireland
| | - Inna Cherevach
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Ruth Fahey
- School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Alexia Hapeshi
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Jolyon Holdstock
- Oxford Gene Technology, Begbroke Science Park, Oxford, United Kingdom
| | | | - Jesús Navas
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | | | - Michael A. Quail
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Mandy Sanders
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Mariela M. Scortti
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Departamento de Bioquímica y Biología Molecular IV, Universidad Complutense, Madrid, Spain
| | - John F. Prescott
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | | | - Wim G. Meijer
- School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Julian Parkhill
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Stephen D. Bentley
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - José A. Vázquez-Boland
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Grupo de Patogenómica Bacteriana, Universidad de León, León, Spain
- * E-mail:
| |
Collapse
|
17
|
|
18
|
|