1
|
Sudhakar MP, Maurya R, Mehariya S, Karthikeyan OP, Dharani G, Arunkumar K, Pereda SV, Hernández-González MC, Buschmann AH, Pugazhendhi A. Feasibility of bioplastic production using micro- and macroalgae- A review. ENVIRONMENTAL RESEARCH 2024; 240:117465. [PMID: 37879387 DOI: 10.1016/j.envres.2023.117465] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/03/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Plastic disposal and their degraded products in the environment are global concern due to its adverse effects and persistence in nature. To overcome plastic pollution and its impacts on environment, a sustainable bioplastic production using renewable feedstock's, such as algae, are envisioned. In this review, the production of polymer precursors such as polylactic acid, polyhydroxybutyrates, polyhydroxyalkanoates, agar, carrageenan and alginate from microalgae and macroalgae through direct conversion and fermentation routes are summarized and discussed. The direct conversion of algal biopolymers without any bioprocess (whole algal biomass used emphasizing zero waste discharge concept) favours economic feasibility. Whereas indirect method uses conversion of algal polymers to monomers after pretreatment followed by bioplastic precursor production by fermentation are emphasized. This review paper also outlines the current state of technological developments in the field of algae-based bioplastic, both in industry and in research, and highlights the creation of novel solutions for green bioplastic production employing algal polymers. Finally, the cost economics of the bioplastic production using algal biopolymers are clearly mentioned with future directions of next level bioplastic production. In this review study, the cost estimation was given at laboratory level bioplastic production using casting methods. Further development of bioplastics at pilot scale level may give clear economic feasibility of production at industry. Here, in this review, we emphasized the overview of algal biopolymers for different bioplastic product development and its economic value and also current industries involved in bioplastic production.
Collapse
Affiliation(s)
- Muthiyal Prabakaran Sudhakar
- Marine Biopolymers & Advanced Bioactive Materials Research Lab, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, Tamil Nadu, India; Marine Biotechnology Division, Ocean Science and Technology for Islands, National Institute of Ocean Technology, Ministry of Earth Sciences, Govt. of India, Pallikaranai, Chennai, 600100, Tamil Nadu, India.
| | - Rahulkumar Maurya
- Coastal Algae Cultivation, Microbial Biofuels & Biochemicals, Advanced Biofuels Division, The Energy and Resources Institute, Navi Mumbai, 400 708, India
| | | | - Obulisamy Parthiba Karthikeyan
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX, USA; Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR, China; Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA
| | - Gopal Dharani
- Marine Biotechnology Division, Ocean Science and Technology for Islands, National Institute of Ocean Technology, Ministry of Earth Sciences, Govt. of India, Pallikaranai, Chennai, 600100, Tamil Nadu, India
| | - Kulanthiyesu Arunkumar
- Microalgae Group-Phycoscience Laboratory, Department of Plant Science, School of Biological Sciences, Central University of Kerala, Periye, 671 320, Kasaragod, Kerala, India
| | - Sandra V Pereda
- Centro i-mar, CeBiB and Núcleo Milenio MASH, Universidad de Los Lagos, 5480000, Puerto Montt, Región de Los Lagos, Chile
| | - María C Hernández-González
- Centro i-mar, CeBiB and Núcleo Milenio MASH, Universidad de Los Lagos, 5480000, Puerto Montt, Región de Los Lagos, Chile
| | - Alejandro H Buschmann
- Centro i-mar, CeBiB and Núcleo Milenio MASH, Universidad de Los Lagos, 5480000, Puerto Montt, Región de Los Lagos, Chile
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
2
|
Sudhakar MP, Venkatnarayanan S, Dharani G. Fabrication and characterization of bio-nanocomposite films using κ-Carrageenan and Kappaphycus alvarezii seaweed for multiple industrial applications. Int J Biol Macromol 2022; 219:138-149. [PMID: 35926675 DOI: 10.1016/j.ijbiomac.2022.07.230] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/05/2022]
Abstract
In the present study, the whole seaweed from Kappaphycus alvarezii (containing carrageenan) was used for preparation of bio-nanocomposite films by blending with metal oxide nanoparticles such as zinc oxide (ZnONPs), cupric oxide (CuONPs) and silicon dioxide (SiO2NPs) for multiple applications, and their properties were compared with standard refined κ-Carrageenan (commercial grade). Simultaneously, the antibacterial activity and biodegradation profile of the prepared bio-nanocomposite film were also studied. The incorporation of nanoparticles into the bioplastic film matrices altered the surface morphology, increased the roughness and significantly (p < 0.05) reduced the UV transmittance, water uptake ratio (WUR), moisture content and solubility in both standard carrageenan-based bio-nanocomposite films (CBF) and Kappaphycus- based bio-nanocomposite films (KBF) compared to control. The average roughness (Ra) of KBF increased compared to CBF; however, CBF showed better tensile strength compared to KBF. Both KBF and CBF loaded with nanoparticles exhibited strong antibacterial activity against Staphylococcus aureus and Escherichia coli. However, KBF performed better compared to CBF. Antimicrobial effect of nanoparticles delayed the degradation of the bio-nanocomposite films. The present study proposes that the whole seaweed (Kappaphycus alvarezii) can be used directly for multiple industrial applications.
Collapse
Affiliation(s)
- Muthiyal Prabakaran Sudhakar
- National Institute of Ocean Technology (NIOT), Ministry of Earth Sciences (Govt. of India), Chennai 600 100, Tamil Nadu, India; Department of Biomaterials, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (Saveetha University), Chennai 600 077, Tamil Nadu, India.
| | - Srinivas Venkatnarayanan
- National Institute of Ocean Technology (NIOT), Ministry of Earth Sciences (Govt. of India), Chennai 600 100, Tamil Nadu, India
| | - Gopal Dharani
- National Institute of Ocean Technology (NIOT), Ministry of Earth Sciences (Govt. of India), Chennai 600 100, Tamil Nadu, India.
| |
Collapse
|
3
|
Multilayer biodegradable films with a degradation initiation function triggered by weakly alkaline seawater. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Ibero J, Rivero-Buceta V, García JL, Galán B. Polyhydroxyalkanoate Production by Caenibius tardaugens from Steroidal Endocrine Disruptors. Microorganisms 2022; 10:706. [PMID: 35456754 PMCID: PMC9027588 DOI: 10.3390/microorganisms10040706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/10/2022] Open
Abstract
The α-proteobacterium Caenibius tardaugens can use estrogens and androgens as the sole carbon source. These compounds are steroidal endocrine disruptors that are found contaminating soil and aquatic ecosystems. Here, we show that C. tardaugens, which has been considered as a valuable biocatalyst for aerobic steroidal hormone decontamination, is also able to produce polyhydroxyalkanoates (PHA), biodegradable and biocompatible polyesters of increasing biotechnological interest as a sustainable alternative to classical oil-derived polymers. Steroid catabolism yields a significant amount of propionyl-CoA that is metabolically directed towards PHA production through condensation into 3-ketovaleryl-CoA, rendering a PHA rich in 3-hydroxyvalerate. To the best of our knowledge, this is the first report where PHAs are produced from steroids as carbon sources.
Collapse
Affiliation(s)
| | | | | | - Beatriz Galán
- Centro de Investigaciones Biológicas Margarita Salas, 28040 Madrid, Spain; (J.I.); (V.R.-B.); (J.L.G.)
| |
Collapse
|
5
|
Surface-Modified Highly Biocompatible Bacterial-poly(3-hydroxybutyrate- co-4-hydroxybutyrate): A Review on the Promising Next-Generation Biomaterial. Polymers (Basel) 2020; 13:polym13010051. [PMID: 33375622 PMCID: PMC7795663 DOI: 10.3390/polym13010051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 02/01/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs) are bacteria derived bio-based polymers that are synthesised under limited conditions of nutritional elements with excess carbon sources. Among the members of PHAs, poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [(P(3HB-co-4HB)] emerges as an attractive biomaterial to be applied in medical applications owing to its desirable mechanical and physical properties, non-genotoxicity and biocompatibility eliciting appropriate host tissue responses. The tailorable physical and chemical properties and easy surface functionalisation of P(3HB-co-4HB) increase its practicality to be developed as functional medical substitutes. However, its applicability is sometimes limited due to its hydrophobic nature due to fewer bio-recognition sites. In this review, we demonstrate how surface modifications of PHAs, mainly P(3HB-co-4HB), will overcome these limitations and facilitate their use in diverse medical applications. The integration of nanotechnology has drastically enhanced the functionality of P(3HB-co-4HB) biomaterials for application in complex biological environments of the human body. The design of versatile P(3HB-co-4HB) materials with surface modifications promise a non-cytotoxic and biocompatible material without inducing severe inflammatory responses for enhanced effective alternatives in healthcare biotechnology. The enticing work carried out with P(3HB-co-4HB) promises to be one of the next-generation materials in biomedicines which will facilitate translation into the clinic in the future.
Collapse
|
6
|
Insights into the metabolism pathway and functional genes of long-chain aliphatic alkane degradation in haloarchaea. Extremophiles 2020; 24:475-483. [DOI: 10.1007/s00792-020-01167-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/24/2020] [Indexed: 12/22/2022]
|
7
|
Biochemical properties and biotechnological applications of microbial enzymes involved in the degradation of polyester-type plastics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140315. [DOI: 10.1016/j.bbapap.2019.140315] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/07/2019] [Accepted: 10/22/2019] [Indexed: 01/03/2023]
|
8
|
López NI, Pettinari MJ, Nikel PI, Méndez BS. Polyhydroxyalkanoates: Much More than Biodegradable Plastics. ADVANCES IN APPLIED MICROBIOLOGY 2015; 93:73-106. [PMID: 26505689 DOI: 10.1016/bs.aambs.2015.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bacterial polyhydroxyalkanoates (PHAs) are isotactic polymers that play a critical role in central metabolism, as they act as dynamic reservoirs of carbon and reducing equivalents. These polymers have a number of technical applications since they exhibit thermoplastic and elastomeric properties, making them attractive as a replacement of oil-derived materials. PHAs are accumulated under conditions of nutritional imbalance (usually an excess of carbon source with respect to a limiting nutrient, such as nitrogen or phosphorus). The cycle of PHA synthesis and degradation has been recognized as an important physiological feature when these biochemical pathways were originally described, yet its role in bacterial processes as diverse as global regulation and cell survival is just starting to be appreciated in full. In the present revision, the complex regulation of PHA synthesis and degradation at the transcriptional, translational, and metabolic levels are explored by analyzing examples in natural producer bacteria, such as Pseudomonas species, as well as in recombinant Escherichia coli strains. The ecological role of PHAs, together with the interrelations with other polymers and extracellular substances, is also discussed, along with their importance in cell survival, resistance to several types of environmental stress, and planktonic-versus-biofilm lifestyle. Finally, bioremediation and plant growth promotion are presented as examples of environmental applications in which PHA accumulation has successfully been exploited.
Collapse
|
9
|
Hess J, Bednarz D, Bae J, Pierce J. Petroleum and health care: evaluating and managing health care's vulnerability to petroleum supply shifts. Am J Public Health 2011; 101:1568-79. [PMID: 21778473 DOI: 10.2105/ajph.2011.300233] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Petroleum is used widely in health care-primarily as a transport fuel and feedstock for pharmaceuticals, plastics, and medical supplies-and few substitutes for it are available. This dependence theoretically makes health care vulnerable to petroleum supply shifts, but this vulnerability has not been empirically assessed. We quantify key aspects of petroleum use in health care and explore historical associations between petroleum supply shocks and health care prices. These analyses confirm that petroleum products are intrinsic to modern health care and that petroleum supply shifts can affect health care prices. In anticipation of future supply contractions lasting longer than previous shifts and potentially disrupting health care delivery, we propose an adaptive management approach and outline its application to the example of emergency medical services.
Collapse
Affiliation(s)
- Jeremy Hess
- Department of Emergency Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA.
| | | | | | | |
Collapse
|
10
|
Martínez V, García P, García JL, Prieto MA. Controlled autolysis facilitates the polyhydroxyalkanoate recovery in Pseudomonas putida KT2440. Microb Biotechnol 2011; 4:533-47. [PMID: 21418544 PMCID: PMC3815265 DOI: 10.1111/j.1751-7915.2011.00257.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The development of efficient recovery processes is essential to reduce the cost of polyhydroxyalkanoates (PHAs) production. In this work, a programmed self‐disruptive Pseudomonas putida BXHL strain, derived from the prototype medium‐chain‐length PHA producer bacterium P. putida KT2440, was constructed as a proof of concept for exploring the possibility to control and facilitate the release of PHA granules to the extracellular medium. The new autolytic cell disruption system is based on two simultaneous strategies: the coordinated action of two proteins from the pneumococcal bacteriophage EJ‐1, an endolysin (Ejl) and a holin (Ejh), and the mutation of the tolB gene, which exhibits alterations in outer membrane integrity that induce lysis hypersensitivity. The ejl and ejh coding genes were expressed under a XylS/Pm monocopy expression system inserted into the chromosome of the tolB mutant strain, in the presence of 3‐methylbenzoate as inducer molecule. Our results demonstrate that the intracellular presence of PHA granules confers resistance to cell envelope. Conditions to control the cell autolysis in P. putida BXHL in terms of optimal fermentation, PHA content and PHA recovery have been set up by exploring the sensitivity to detergents, chelating agents and wet biomass solubility in organic solvents such as ethyl acetate.
Collapse
Affiliation(s)
- Virginia Martínez
- Environmental Biology Department, Centro de Investigaciones Biológicas, Madrid, Spain
| | | | | | | |
Collapse
|
11
|
Occurrence, production, and export of lipophilic compounds by hydrocarbonoclastic marine bacteria and their potential use to produce bulk chemicals from hydrocarbons. Appl Microbiol Biotechnol 2010; 86:1693-706. [DOI: 10.1007/s00253-010-2515-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 02/15/2010] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
|
12
|
Abstract
Pollution of soil and water environments by crude oil has been, and is still today, an important problem. Crude oil is a complex mixture of thousands of compounds. Among them, alkanes constitute the major fraction. Alkanes are saturated hydrocarbons of different sizes and structures. Although they are chemically very inert, most of them can be efficiently degraded by several microorganisms. This review summarizes current knowledge on how microorganisms degrade alkanes, focusing on the biochemical pathways used and on how the expression of pathway genes is regulated and integrated within cell physiology.
Collapse
Affiliation(s)
- Fernando Rojo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
13
|
Knoll M, Hamm TM, Wagner F, Martinez V, Pleiss J. The PHA Depolymerase Engineering Database: A systematic analysis tool for the diverse family of polyhydroxyalkanoate (PHA) depolymerases. BMC Bioinformatics 2009; 10:89. [PMID: 19296857 PMCID: PMC2666664 DOI: 10.1186/1471-2105-10-89] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 03/18/2009] [Indexed: 01/16/2023] Open
Abstract
Background Polyhydroxyalkanoates (PHAs) can be degraded by many microorganisms using intra- or extracellular PHA depolymerases. PHA depolymerases are very diverse in sequence and substrate specificity, but share a common α/β-hydrolase fold and a catalytic triad, which is also found in other α/β-hydrolases. Results The PHA Depolymerase Engineering Database (DED, ) has been established as a tool for systematic analysis of this enzyme family. The DED contains sequence entries of 587 PHA depolymerases, which were assigned to 8 superfamilies and 38 homologous families based on their sequence similarity. For each family, multiple sequence alignments and profile hidden Markov models are provided, and functionally relevant residues are annotated. Conclusion The DED is a valuable tool which can be applied to identify new PHA depolymerase sequences from complete genomes in silico, to classify PHA depolymerases, to predict their biochemical properties, and to design enzyme variants with improved properties.
Collapse
Affiliation(s)
- Michael Knoll
- Institute of Technical Biochemistry, University of Stuttgart, Allmandring, Germany.
| | | | | | | | | |
Collapse
|
14
|
Yakimov MM, Timmis KN, Golyshin PN. Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 2007; 18:257-66. [PMID: 17493798 DOI: 10.1016/j.copbio.2007.04.006] [Citation(s) in RCA: 465] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 03/18/2007] [Accepted: 04/30/2007] [Indexed: 11/17/2022]
Abstract
Over the past few years, a new and ecophysiologically unusual group of marine hydrocarbon-degrading bacteria - the obligate hydrocarbonoclastic bacteria (OHCB) - has been recognized and shown to play a significant role in the biological removal of petroleum hydrocarbons from polluted marine waters. The introduction of oil or oil constituents into seawater leads to successive blooms of a relatively limited number of indigenous marine bacterial genera--Alcanivorax, Marinobacter, Thallassolituus, Cycloclasticus, Oleispira and a few others (the OHCB)--which are present at low or undetectable levels before the polluting event. The types of OHCB that bloom depend on the latitude/temperature, salinity, redox and other prevailing physical-chemical factors. These blooms result in the rapid degradation of many oil constituents, a process that can be accelerated further by supplementation with limiting nutrients. Genome sequencing and functional genomic analysis of Alcanivorax borkumensis, the paradigm of OHCB, has provided significant insights into the genomic basis of the efficiency and versatility of its hydrocarbon utilization, the metabolic routes underlying its special hydrocarbon diet, and its ecological success. These and other studies have revealed the potential of OHCB for multiple biotechnological applications that include not only oil pollution mitigation, but also biopolymer production and biocatalysis.
Collapse
|