1
|
Alzheimer M, Froschauer K, Svensson SL, König F, Hopp E, Drobnič T, Henderson LD, Ribardo DA, Hendrixson DR, Bischler T, Beeby M, Sharma CM. Functional genomics of Campylobacter -host interactions in an intestinal tissue model reveals a small lipoprotein essential for flagellar assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646747. [PMID: 40236077 PMCID: PMC11996450 DOI: 10.1101/2025.04.02.646747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Campylobacter jejuni is currently the most common cause of bacterial gastroenteritis worldwide. However, its genome provides few clues about how it interacts with the host. Moreover, infection screens have often been limited to classical cell culture or animal models. To identify C. jejuni genes involved in host cell interactions, we applied transposon sequencing in a humanized 3D intestinal infection model based on tissue engineering. This revealed key proteins required for host cell adherence and/or internalization, including an Rrf2 family transcriptional regulator as well as three so far uncharacterized genes ( pflC / Cj1643 , pflD / Cj0892c , pflE / Cj0978c ), which we demonstrate to encode factors essential for motility. Deletion mutants of pflC / D / E are non-motile but retain intact, paralysed flagella filaments. We demonstrate that two of these newly identified motility proteins, PflC and PflD, are components of the C. jejuni 's periplasmic disk structures of the high torque motor. The third gene, pflE , encodes a small protein of only 57 aa. Using CryoET imaging we uncovered that the small protein has a striking effect on motor biogenesis, leading to a complete loss of the flagellar disk and motor structures upon its deletion. While PflE does not appear to be a structural component of the motor itself, our data suggests that it is a lipoprotein and supports localization of the main basal disk protein FlgP, which is the first assembly step of the flagellar disk structure. Despite being annotated as a lipoprotein, we find that C. jejuni FlgP instead relies on PflE for its association with the outer membrane. Overall, our genome-wide screen revealed novel C. jejuni host interaction factors including a transcriptional regulator as well as two structural components and a small protein crucial for biogenesis of the C. jejuni high torque flagella motor. Since the flagella machinery is a critical virulence determining factor for C. jejuni , our work demonstrates how such a small protein can, quite literally, bring a bacterial pathogen to a halt.
Collapse
|
2
|
König F, Svensson SL, Sharma CM. Interplay of two small RNAs fine-tunes hierarchical flagella gene expression in Campylobacter jejuni. Nat Commun 2024; 15:5240. [PMID: 38897989 PMCID: PMC11187230 DOI: 10.1038/s41467-024-48986-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Like for many bacteria, flagella are crucial for Campylobacter jejuni motility and virulence. Biogenesis of the flagellar machinery requires hierarchical transcription of early, middle (RpoN-dependent), and late (FliA-dependent) genes. However, little is known about post-transcriptional regulation of flagellar biogenesis by small RNAs (sRNAs). Here, we characterized two sRNAs with opposing effects on C. jejuni filament assembly and motility. We demonstrate that CJnc230 sRNA (FlmE), encoded downstream of the flagellar hook protein, is processed from the RpoN-dependent flgE mRNA by RNase III, RNase Y, and PNPase. We identify mRNAs encoding a flagella-interaction regulator and the anti-sigma factor FlgM as direct targets of CJnc230 repression. CJnc230 overexpression upregulates late genes, including the flagellin flaA, culminating in longer flagella and increased motility. In contrast, overexpression of the FliA-dependent sRNA CJnc170 (FlmR) reduces flagellar length and motility. Overall, our study demonstrates how the interplay of two sRNAs post-transcriptionally fine-tunes flagellar biogenesis through balancing of the hierarchically-expressed components.
Collapse
Affiliation(s)
- Fabian König
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, 97080, Würzburg, Germany
| | - Sarah L Svensson
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, 97080, Würzburg, Germany
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cynthia M Sharma
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, 97080, Würzburg, Germany.
| |
Collapse
|
3
|
Paunkov A, Sóki J, Leitsch D. Modulation of Iron Import and Metronidazole Resistance in Bacteroides fragilis Harboring a nimA Gene. Front Microbiol 2022; 13:898453. [PMID: 35756037 PMCID: PMC9218692 DOI: 10.3389/fmicb.2022.898453] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteroides fragilis is a commensal of the human gut but can also cause severe infections when reaching other body sites, especially after surgery or intestinal trauma. Bacteroides fragilis is an anaerobe innately susceptible to metronidazole, a 5-nitroimidazole drug that is prescribed against the majority of infections caused by anaerobic bacteria. In most of the cases, metronidazole treatment is effective but a fraction of B. fragilis is resistant to even very high doses of metronidazole. Metronidazole resistance is still poorly understood, but the so-called nim genes have been described as resistance determinants. They have been suggested to encode nitroreductases which reduce the nitro group of metronidazole to a non-toxic aminoimidazole. More recent research, however, showed that expression levels of nim genes are widely independent of the degree of resistance observed. In the search for an alternative model for nim-mediated metronidazole resistance, we screened a strain carrying an episomal nimA gene and its parental strain 638R without a nim gene for physiological differences. Indeed, the 638R daughter strain with the nimA gene had a far higher pyruvate-ferredoxin oxidoreductase (PFOR) activity than the parental strain. High PFOR activity was also observed in metronidazole-resistant clinical isolates, either with or without a nim gene. Moreover, the strain carrying a nimA gene fully retained PFOR activity and other enzyme activities such as thioredoxin reductase (TrxR) after resistance had been induced. In the parental strain 638R, these were lost or very strongly downregulated during the development of resistance. Further, after induction of high-level metronidazole resistance, parental strain 638R was highly susceptible to oxygen whereas the daughter strain with a nimA gene was hardly affected. Ensuing RT-qPCR measurements showed that a pathway for iron import via hemin uptake is downregulated in 638R with induced resistance but not in the resistant nimA daughter strain. We propose that nimA primes B. fragilis toward an alternative pathway of metronidazole resistance by enabling the preservation of normal iron levels in the cell.
Collapse
Affiliation(s)
- Ana Paunkov
- Institute for Specific Prophylaxis and Tropical Medicine Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - József Sóki
- Faculty of Medicine, Institute of Medical Microbiology, University of Szeged, Szeged, Hungary
| | - David Leitsch
- Institute for Specific Prophylaxis and Tropical Medicine Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Svensson SL, Sharma CM. RNase III-mediated processing of a trans-acting bacterial sRNA and its cis-encoded antagonist. eLife 2021; 10:69064. [PMID: 34843430 PMCID: PMC8687705 DOI: 10.7554/elife.69064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/28/2021] [Indexed: 12/27/2022] Open
Abstract
Bacterial small RNAs (sRNAs) are important post-transcriptional regulators in stress responses and virulence. They can be derived from an expanding list of genomic contexts, such as processing from parental transcripts by RNase E. The role of RNase III in sRNA biogenesis is less well understood despite its well-known roles in rRNA processing, RNA decay, and cleavage of sRNA-mRNA duplexes. Here, we show that RNase III processes a pair of cis-encoded sRNAs (CJnc190 and CJnc180) of the food-borne pathogen Campylobacter jejuni. While CJnc180 processing by RNase III requires CJnc190, RNase III processes CJnc190 independent of CJnc180 via cleavage of an intramolecular duplex. We also show that CJnc190 directly represses translation of the colonization factor PtmG by targeting a G-rich ribosome-binding site, and uncover that CJnc180 is a cis-acting antagonist of CJnc190, indirectly affecting ptmG regulation. Our study highlights a role for RNase III in sRNA biogenesis and adds cis-encoded RNAs to the expanding diversity of transcripts that can antagonize bacterial sRNAs.
Collapse
Affiliation(s)
- Sarah Lauren Svensson
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Cynthia Mira Sharma
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Svensson SL, Sharma CM. Small RNAs that target G-rich sequences are generated by diverse biogenesis pathways in Epsilonproteobacteria. Mol Microbiol 2021; 117:215-233. [PMID: 34818434 DOI: 10.1111/mmi.14850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022]
Abstract
Bacterial small RNAs (sRNAs) are widespread post-transcriptional regulators controlling bacterial stress responses and virulence. Nevertheless, little is known about how they arise and evolve. Homologues can be difficult to identify beyond the strain level using sequence-based approaches, and similar functionalities can arise by convergent evolution. Here, we found that the virulence-associated CJnc190 sRNA of the foodborne pathogen Campylobacter jejuni resembles the RepG sRNA from the gastric pathogen Helicobacter pylori. However, while both sRNAs bind G-rich sites in their target mRNAs using a C/U-rich loop, they largely differ in their biogenesis. RepG is transcribed from a stand-alone gene and does not require processing, whereas CJnc190 is transcribed from two promoters as precursors that are processed by RNase III and also has a cis-encoded antagonist, CJnc180. By comparing CJnc190 homologues in diverse Campylobacter species, we show that RNase III-dependent processing of CJnc190 appears to be a conserved feature even outside of C. jejuni. We also demonstrate the CJnc180 antisense partner is expressed in C. coli, yet here might be derived from the 3'UTR of the upstream flagella-related gene. Our analysis of G-tract targeting sRNAs in Epsilonproteobacteria demonstrates that similar sRNAs can have markedly different biogenesis pathways.
Collapse
Affiliation(s)
- Sarah L Svensson
- Department of Molecular Infection Biology II, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Bavaria, 97080, Germany
| | - Cynthia M Sharma
- Department of Molecular Infection Biology II, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Bavaria, 97080, Germany
| |
Collapse
|
6
|
Campylobacter jejuni BumSR directs a response to butyrate via sensor phosphatase activity to impact transcription and colonization. Proc Natl Acad Sci U S A 2020; 117:11715-11726. [PMID: 32398371 DOI: 10.1073/pnas.1922719117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Campylobacter jejuni monitors intestinal metabolites produced by the host and microbiota to initiate intestinal colonization of avian and animal hosts for commensalism and infection of humans for diarrheal disease. We previously discovered that C. jejuni has the capacity to spatially discern different intestinal regions by sensing lactate and the short-chain fatty acids acetate and butyrate and then alter transcription of colonization factors appropriately for in vivo growth. In this study, we identified the C. jejuni butyrate-modulated regulon and discovered that the BumSR two-component signal transduction system (TCS) directs a response to butyrate by identifying mutants in a genetic screen defective for butyrate-modulated transcription. The BumSR TCS, which is important for infection of humans and optimal colonization of avian hosts, senses butyrate likely by indirect means to alter transcription of genes encoding important colonization determinants. Unlike many canonical TCSs, the predicted cytoplasmic sensor kinase BumS lacked in vitro autokinase activity, which would normally lead to phosphorylation of the cognate BumR response regulator. Instead, BumS has likely evolved mutations to naturally function as a phosphatase whose activity is influenced by exogenous butyrate to control the level of endogenous phosphorylation of BumR and its ability to alter transcription of target genes. To our knowledge, the BumSR TCS is the only bacterial signal transduction system identified so far that mediates responses to the microbiota-generated intestinal metabolite butyrate, an important factor for host intestinal health and homeostasis. Our findings suggest that butyrate sensing by this system is vital for C. jejuni colonization of multiple hosts.
Collapse
|
7
|
Alzheimer M, Svensson SL, König F, Schweinlin M, Metzger M, Walles H, Sharma CM. A three-dimensional intestinal tissue model reveals factors and small regulatory RNAs important for colonization with Campylobacter jejuni. PLoS Pathog 2020; 16:e1008304. [PMID: 32069333 PMCID: PMC7048300 DOI: 10.1371/journal.ppat.1008304] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/28/2020] [Accepted: 01/02/2020] [Indexed: 02/06/2023] Open
Abstract
The Gram-negative Epsilonproteobacterium Campylobacter jejuni is currently the most prevalent bacterial foodborne pathogen. Like for many other human pathogens, infection studies with C. jejuni mainly employ artificial animal or cell culture models that can be limited in their ability to reflect the in-vivo environment within the human host. Here, we report the development and application of a human three-dimensional (3D) infection model based on tissue engineering to study host-pathogen interactions. Our intestinal 3D tissue model is built on a decellularized extracellular matrix scaffold, which is reseeded with human Caco-2 cells. Dynamic culture conditions enable the formation of a polarized mucosal epithelial barrier reminiscent of the 3D microarchitecture of the human small intestine. Infection with C. jejuni demonstrates that the 3D tissue model can reveal isolate-dependent colonization and barrier disruption phenotypes accompanied by perturbed localization of cell-cell junctions. Pathogenesis-related phenotypes of C. jejuni mutant strains in the 3D model deviated from those obtained with 2D-monolayers, but recapitulated phenotypes previously observed in animal models. Moreover, we demonstrate the involvement of a small regulatory RNA pair, CJnc180/190, during infections and observe different phenotypes of CJnc180/190 mutant strains in 2D vs. 3D infection models. Hereby, the CJnc190 sRNA exerts its pathogenic influence, at least in part, via repression of PtmG, which is involved in flagellin modification. Our results suggest that the Caco-2 cell-based 3D tissue model is a valuable and biologically relevant tool between in-vitro and in-vivo infection models to study virulence of C. jejuni and other gastrointestinal pathogens. Enteric pathogens have evolved numerous strategies to successfully colonize and persist in the human gastrointestinal tract. However, especially for the research of virulence mechanisms of human pathogens, often only limited infection models are available. Here, we have applied and further advanced a tissue-engineered human intestinal tissue model based on an extracellular matrix scaffold reseeded with human cells that can faithfully mimic pathogenesis-determining processes of the zoonotic pathogen Campylobacter jejuni. Our three-dimensional (3D) intestinal infection model allows for the assessment of epithelial barrier function during infection as well as for the quantification of bacterial adherence, internalization, and transmigration. Investigation of C. jejuni mutant strains in our 3D tissue model revealed isolate-specific infection phenotypes, in-vivo relevant infection outcomes, and uncovered the involvement of a small RNA pair during C. jejuni pathogenesis. Overall, our results demonstrate the power of tissue-engineered models for studying host-pathogen interactions, and our model will also be helpful to investigate other gastrointestinal pathogens.
Collapse
Affiliation(s)
- Mona Alzheimer
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Sarah L. Svensson
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Fabian König
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Matthias Schweinlin
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Marco Metzger
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
- Fraunhofer-Institute for Silicate Research, Translational Centre Regenerative Therapies, Würzburg, Germany
| | - Heike Walles
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
- Core Facility Tissue Engineering, Otto-von-Guericke University, Magdeburg, Germany
- * E-mail: (HW); (CMS)
| | - Cynthia M. Sharma
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
- * E-mail: (HW); (CMS)
| |
Collapse
|
8
|
Abstract
The 5-nitroimidazole drug metronidazole has remained the drug of choice in the treatment of anaerobic infections, parasitic as well as bacterial, ever since its development in 1959. In contrast to most other antimicrobials, it has a pleiotropic mode of action and reacts with a large number of molecules. Importantly, metronidazole, which is strictly speaking a prodrug, needs to be reduced at its nitro group in order to become toxic. Reduction of metronidazole, however, only takes place under very low concentrations of oxygen, explaining why metronidazole is exclusively toxic to microaerophilic and anaerobic microorganisms. In general, resistance rates amongst the pathogens treated with metronidazole have remained low until the present day. Nevertheless, metronidazole resistance does occur, and for the treatment of some pathogens, especially Helicobacter pylori, metronidazole has become almost useless in some parts of the world. This review will give an account on the current status of research on metronidazole's mode of action, metronidazole resistance in eukaryotes and prokaryotes, and on other 5-nitroimidazoles in use.
Collapse
|
9
|
Flint A, Stintzi A, Saraiva LM. Oxidative and nitrosative stress defences of Helicobacter and Campylobacter species that counteract mammalian immunity. FEMS Microbiol Rev 2016; 40:938-960. [PMID: 28201757 PMCID: PMC5091033 DOI: 10.1093/femsre/fuw025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/29/2016] [Accepted: 07/02/2016] [Indexed: 12/18/2022] Open
Abstract
Helicobacter and Campylobacter species are Gram-negative microaerophilic host-associated heterotrophic bacteria that invade the digestive tract of humans and animals. Campylobacter jejuni is the major worldwide cause of foodborne gastroenteritis in humans, while Helicobacter pylori is ubiquitous in over half of the world's population causing gastric and duodenal ulcers. The colonisation of the gastrointestinal system by Helicobacter and Campylobacter relies on numerous cellular defences to sense the host environment and respond to adverse conditions, including those imposed by the host immunity. An important antimicrobial tool of the mammalian innate immune system is the generation of harmful oxidative and nitrosative stresses to which pathogens are exposed during phagocytosis. This review summarises the regulators, detoxifying enzymes and subversion mechanisms of Helicobacter and Campylobacter that ultimately promote the successful infection of humans.
Collapse
Affiliation(s)
- Annika Flint
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Lígia M. Saraiva
- Instituto de Tecnologia Química e Biológica, NOVA, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
10
|
Barrero-Tobon AM, Hendrixson DR. Flagellar biosynthesis exerts temporal regulation of secretion of specific Campylobacter jejuni colonization and virulence determinants. Mol Microbiol 2014; 93:957-74. [PMID: 25041103 DOI: 10.1111/mmi.12711] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2014] [Indexed: 01/26/2023]
Abstract
The Campylobacter jejuni flagellum exports both proteins that form the flagellar organelle for swimming motility and colonization and virulence factors that promote commensal colonization of the avian intestinal tract or invasion of human intestinal cells respectively. We explored how the C. jejuni flagellum is a versatile secretory organelle by examining molecular determinants that allow colonization and virulence factors to exploit the flagellum for their own secretion. Flagellar biogenesis was observed to exert temporal control of secretion of these proteins, indicating that a bolus of secretion of colonization and virulence factors occurs during hook biogenesis with filament polymerization itself reducing secretion of these factors. Furthermore, we found that intramolecular and intermolecular requirements for flagellar-dependent secretion of these proteins were most reminiscent to those for flagellin secretion. Importantly, we discovered that secretion of one colonization and virulence factor, CiaI, was not required for invasion of human colonic cells, which counters previous hypotheses for how this protein functions during invasion. Instead, secretion of CiaI was essential for C. jejuni to facilitate commensal colonization of the natural avian host. Our work provides insight into the versatility of the bacterial flagellum as a secretory machine that can export proteins promoting diverse biological processes.
Collapse
Affiliation(s)
- Angelica M Barrero-Tobon
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Room NL 4.138A, Dallas, TX, 75390-9048, USA
| | | |
Collapse
|
11
|
Szymanski CM, Gaynor E. How a sugary bug gets through the day: recent developments in understanding fundamental processes impacting Campylobacter jejuni pathogenesis. Gut Microbes 2012; 3:135-44. [PMID: 22555465 PMCID: PMC3370946 DOI: 10.4161/gmic.19488] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Campylobacter jejuni is a highly prevalent yet fastidious bacterial pathogen that poses a significant health burden worldwide. Lacking many hallmark virulence factors, it is becoming increasingly clear that C. jejuni pathogenesis involves different strategies compared with other well-characterized enteric organisms. This includes the involvement of basic biological processes and cell envelope glycans in a number of aspects related to pathogenesis. The past few years have seen significant progress in the understanding of these pathways and how they relate to C. jejuni fundamental biology, stress survival, colonization, and virulence attributes. This review focuses on recent studies in three general areas where "pathogenesis" and "basic biology" overlap: physiology, stress responses and glycobiology.
Collapse
Affiliation(s)
- Christine M. Szymanski
- Alberta Glycomics Centre and Department of Biological Sciences; University of Alberta; Edmonton, Canada,Correspondence to: Christine M. Szymanski, or Erin Gaynor,
| | - Erin Gaynor
- Department of Microbiology and Immunology; University of British Columbia; Vancouver, Canada,Correspondence to: Christine M. Szymanski, or Erin Gaynor,
| |
Collapse
|