1
|
Zorina AA, Los DA, Klychnikov OI. Serine-Threonine Protein Kinases of Cyanobacteria. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S287-S311. [PMID: 40164163 DOI: 10.1134/s0006297924604507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 04/02/2025]
Abstract
Protein phosphorylation is a pivotal mechanism for signal transduction, regulation of biochemical processes essential for reproduction, growth, and adaptation of organisms to changing conditions. Bacteria, which emerged more than 3.5 billion years ago, faced the need to adapt to a variety of ecological niches from the very beginning of their existence. It is not surprising that they developed a wide range of different types of kinases and target amino acid residues for phosphorylation. To date, many examples of phosphorylation of serine, threonine, tyrosine, histidine, arginine, lysine, aspartate, and cysteine have been discovered. Bacterial histidine kinases as part of two-component systems have been studied in most detail. More recently eukaryotic type serine-threonine and tyrosine kinases based on the conserved catalytic domain have been described in the genomes of many bacteria. The term "eukaryotic" is misleading, since evolutionary origin of these enzymes goes back to the last common universal ancestor - LUCA. Bioinformatics, molecular genetics, omics, and biochemical strategies combined provide new tools for researchers to establish relationship between the kinase abundance/activity and proteome changes, including studying of the kinase signaling network (kinome) within the cell. This manuscript presents several approaches to investigation of the serine-threonine protein kinases of cyanobacteria, as well as their combination, which allow to suggest new hypotheses and strategies for researchers.
Collapse
Affiliation(s)
- Anna A Zorina
- Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia.
| | - Dmitry A Los
- Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - Oleg I Klychnikov
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
2
|
Schätzle H, Arévalo S, Flores E, Schleiff E. A TonB-Like Protein, SjdR, Is Involved in the Structural Definition of the Intercellular Septa in the Heterocyst-Forming Cyanobacterium Anabaena. mBio 2021; 12:e0048321. [PMID: 34101487 PMCID: PMC8262864 DOI: 10.1128/mbio.00483-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Cyanobacteria are photosynthetic organisms with a Gram-negative envelope structure. Certain filamentous species such as Anabaena sp. strain PCC 7120 can fix dinitrogen upon depletion of combined nitrogen. Because the nitrogen-fixing enzyme, nitrogenase, is oxygen sensitive, photosynthesis and nitrogen fixation are spatially separated in Anabaena. Nitrogen fixation takes place in specialized cells called heterocysts, which differentiate from vegetative cells. During heterocyst differentiation, a microoxic environment is created by dismantling photosystem II and restructuring the cell wall. Moreover, solute exchange between the different cell types is regulated to limit oxygen influx into the heterocyst. The septal zone containing nanopores for solute exchange is constricted between heterocysts and vegetative cells, and cyanophycin plugs are located at the heterocyst poles. We identified a protein previously annotated as TonB1 that is largely conserved among cyanobacteria. A mutant of the encoding gene formed heterocysts but was impaired in diazotrophic growth. Mutant heterocysts appeared elongated and exhibited abnormal morphological features, including a reduced cyanophycin plug, an enhanced septum size, and a restricted nanopore zone in the septum. In spite of this, the intercellular transfer velocity of the fluorescent marker calcein was increased in the mutant compared to the wild type. Thus, the protein is required for proper formation of septal structures, expanding our emerging understanding of Anabaena peptidoglycan plasticity and intercellular solute exchange, and is therefore renamed SjdR (septal junction disk regulator). Notably, calcium supplementation compensated for the impaired diazotrophic growth and alterations in septal peptidoglycan in the sjdR mutant, emphasizing the importance of calcium for cell wall structure. IMPORTANCE Multicellularity in bacteria confers an improved adaptive capacity to environmental conditions and stresses. This includes an enhanced capability of resource utilization through a distribution of biochemical processes between constituent cells. This specialization results in a mutual dependency of different cell types, as is the case for nitrogen-fixing heterocysts and photosynthetically active vegetative cells in Anabaena. In this cyanobacterium, intercellular solute exchange is facilitated through nanopores in the peptidoglycan between adjacent cells. To ensure functionality of the specialized cells, septal size as well as the position, size, and frequency of nanopores in the septum need to be tightly established. The novel septal junction disk regulator SjdR characterized here is conserved in the cyanobacterial phylum. It influences septal size and septal nanopore distribution. Consequently, its absence severely affects the intercellular communication and the strains' growth capacity under nitrogen depletion. Thus, SjdR is involved in septal structure remodeling in cyanobacteria.
Collapse
Affiliation(s)
- Hannah Schätzle
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- FIERCE, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sergio Arévalo
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- FIERCE, Goethe University Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Garg R, Maldener I. The Dual Role of the Glycolipid Envelope in Different Cell Types of the Multicellular Cyanobacterium Anabaena variabilis ATCC 29413. Front Microbiol 2021; 12:645028. [PMID: 33897656 PMCID: PMC8064123 DOI: 10.3389/fmicb.2021.645028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Anabaena variabilis is a filamentous cyanobacterium that is capable to differentiate specialized cells, the heterocysts and akinetes, to survive under different stress conditions. Under nitrogen limited condition, heterocysts provide the filament with nitrogen by fixing N2. Akinetes are spore-like dormant cells that allow survival during adverse environmental conditions. Both cell types are characterized by the presence of a thick multilayered envelope, including a glycolipid layer. While in the heterocyst this glycolipid layer is required for the maintenance of a microoxic environment and nitrogen fixation, its function in akinetes is completely unknown. Therefore, we constructed a mutant deficient in glycolipid synthesis and investigated the performance of heterocysts and akinetes in that mutant strain. We chose to delete the gene Ava_2595, which is homolog to the known hglB gene, encoding a putative polyketide synthase previously shown to be involved in heterocyst glycolipid synthesis in Anabaena sp. PCC 7120, a species which does not form akinetes. Under the respective conditions, the Ava_2595 null mutant strain formed aberrant heterocysts and akinete-like cells, in which the specific glycolipid layers were absent. This confirmed firstly that both cell types use a glycolipid of identical chemical composition in their special envelopes and, secondly, that HglB is essential for glycolipid synthesis in both types of differentiated cells. As a consequence, the mutant was not able to fix N2 and to grow under diazotrophic conditions. Furthermore, the akinetes lacking the glycolipids showed a severely reduced tolerance to stress conditions, but could germinate normally under standard conditions. This demonstrates the importance of the glycolipid layer for the ability of akinetes as spore-like dormant cells to withstand freezing, desiccation, oxidative stress and attack by lytic enzymes. Our study established the dual role of the glycolipid layer in fulfilling different functions in the evolutionary-related specialized cells of cyanobacteria. It also indicates the existence of a common pathway involving HglB for the synthesis of glycolipids in heterocysts and akinetes.
Collapse
Affiliation(s)
- Ritu Garg
- Institute of Microbiology and Infection Medicine, Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Iris Maldener
- Institute of Microbiology and Infection Medicine, Organismic Interactions, University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
LytR-CpsA-Psr Glycopolymer Transferases: Essential Bricks in Gram-Positive Bacterial Cell Wall Assembly. Int J Mol Sci 2021; 22:ijms22020908. [PMID: 33477538 PMCID: PMC7831098 DOI: 10.3390/ijms22020908] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/28/2022] Open
Abstract
The cell walls of Gram-positive bacteria contain a variety of glycopolymers (CWGPs), a significant proportion of which are covalently linked to the peptidoglycan (PGN) scaffolding structure. Prominent CWGPs include wall teichoic acids of Staphylococcus aureus, streptococcal capsules, mycobacterial arabinogalactan, and rhamnose-containing polysaccharides of lactic acid bacteria. CWGPs serve important roles in bacterial cellular functions, morphology, and virulence. Despite evident differences in composition, structure and underlaying biosynthesis pathways, the final ligation step of CWGPs to the PGN backbone involves a conserved class of enzymes-the LytR-CpsA-Psr (LCP) transferases. Typically, the enzymes are present in multiple copies displaying partly functional redundancy and/or preference for a distinct CWGP type. LCP enzymes require a lipid-phosphate-linked glycan precursor substrate and catalyse, with a certain degree of promiscuity, CWGP transfer to PGN of different maturation stages, according to in vitro evidence. The prototype attachment mode is that to the C6-OH of N-acetylmuramic acid residues via installation of a phosphodiester bond. In some cases, attachment proceeds to N-acetylglucosamine residues of PGN-in the case of the Streptococcus agalactiae capsule, even without involvement of a phosphate bond. A novel aspect of LCP enzymes concerns a predicted role in protein glycosylation in Actinomyces oris. Available crystal structures provide further insight into the catalytic mechanism of this biologically important class of enzymes, which are gaining attention as new targets for antibacterial drug discovery to counteract the emergence of multidrug resistant bacteria.
Collapse
|
5
|
Flores E, Picossi S, Valladares A, Herrero A. Transcriptional regulation of development in heterocyst-forming cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:673-684. [DOI: 10.1016/j.bbagrm.2018.04.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 01/02/2023]
|
6
|
Herrero A, Stavans J, Flores E. The multicellular nature of filamentous heterocyst-forming cyanobacteria. FEMS Microbiol Rev 2016; 40:831-854. [DOI: 10.1093/femsre/fuw029] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/10/2016] [Accepted: 07/09/2016] [Indexed: 11/13/2022] Open
|
7
|
Simultaneous gene inactivation and promoter reporting in cyanobacteria. Appl Microbiol Biotechnol 2014; 99:1779-93. [DOI: 10.1007/s00253-014-6209-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/28/2014] [Accepted: 10/31/2014] [Indexed: 10/24/2022]
|
8
|
Ehira S, Ohmori M. The pknH gene restrictively expressed in heterocysts is required for diazotrophic growth in the cyanobacterium Anabaena sp. strain PCC 7120. MICROBIOLOGY-SGM 2012; 158:1437-1443. [PMID: 22383473 DOI: 10.1099/mic.0.057729-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium in which certain vegetative cells differentiate into heterocysts, which are specialized cells for nitrogen fixation. Heterocysts are unable to carry out photosynthesis and are supplied with carbohydrate required for nitrogen fixation from neighbouring vegetative cells. Thus, filament integrity is very important for diazotrophic growth of the heterocystous cyanobacteria. The pknH gene (alr1336), encoding a putative Ser/Thr protein kinase, was upregulated in heterocysts after nitrogen deprivation. Its expression was developmentally regulated by the hetR gene. Expression levels of genes involved in heterocyst maturation, such as hepA, hglE and nifH, in the pknH disruptant were similar to those of the wild-type strain. The disruptant was able to form heterocysts with nitrogenase activity, but most heterocysts were detached from filaments. Hence, the pknH disruptant showed a growth defect in the medium without combined nitrogen. It is concluded that the pknH gene is not involved in the development of heterocyst function but is involved in maintaining connections between heterocysts and vegetative cells.
Collapse
Affiliation(s)
- Shigeki Ehira
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.,Department of Biological Science, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Masayuki Ohmori
- Department of Biological Science, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
9
|
Merino-Puerto V, Schwarz H, Maldener I, Mariscal V, Mullineaux CW, Herrero A, Flores E. FraC/FraD-dependent intercellular molecular exchange in the filaments of a heterocyst-forming cyanobacterium, Anabaena sp. Mol Microbiol 2011; 82:87-98. [PMID: 21819458 DOI: 10.1111/j.1365-2958.2011.07797.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The filamentous, heterocyst-forming cyanobacteria are multicellular organisms in which two different cell types, the CO₂-fixing vegetative cells and the N₂-fixing heterocysts, exchange nutrients and regulators. In Anabaena sp. strain PCC 7120, inactivation of sepJ or genes in the fraC operon (fraC, fraD and fraE) produce filament fragmentation. SepJ, FraC and FraD are cytoplasmic membrane proteins located in the filament's intercellular septa that are needed for intercellular exchange of the fluorescent tracer calcein (622 Da). Transmission electron microscopy showed an alteration in the heterocyst cytoplasmic membrane at the vegetative cell-heterocyst septa in ΔfraC and ΔfraD mutants. Immunogold labelling of FraD confirmed its localization in the intercellular septa and clearly showed the presence of part of the protein between the cytoplasmic membranes of the adjacent cells. This localization seemed to be affected in the ΔfraC mutant but was not impaired in a ΔsepJ mutant. Intercellular transfer of a smaller fluorescent tracer, 5-carboxyfluorescein (374 Da), was largely impaired in ΔfraC, ΔfraD and double ΔfraC-ΔfraD mutants, but much less in the ΔsepJ mutant. These results show the existence in the Anabaena filaments of a FraC/FraD-dependent intercellular molecular exchange that does not require SepJ.
Collapse
Affiliation(s)
- Victoria Merino-Puerto
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, E-41092, Seville, Spain
| | | | | | | | | | | | | |
Collapse
|
10
|
Identification of ten Anabaena sp. genes that under aerobic conditions are required for growth on dinitrogen but not for growth on fixed nitrogen. J Bacteriol 2011; 193:3482-9. [PMID: 21602343 DOI: 10.1128/jb.05010-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heterocysts are specialized cells required for aerobic fixation of dinitrogen by certain filamentous cyanobacteria. Numerous genes involved in the differentiation and function of heterocysts in Anabaena sp. strain PCC 7120 have been identified by mutagenizing and screening for mutants that require fixed nitrogen for growth in the presence of oxygen. We have verified that 10 Anabaena sp. genes, all1338, all1591, alr1728, all3278, all3520, all3582, all3850, all4019, alr4311, and all4388, identified initially by transposon mutagenesis, are such genes by complementing or reconstructing the original mutation and by determining whether the mutant phenotype might be due to a polar effect of the transposon. Elucidation of the roles of these genes should enhance understanding of heterocyst biology.
Collapse
|
11
|
Mella-Herrera RA, Neunuebel MR, Golden JW. Anabaena sp. strain PCC 7120 conR contains a LytR-CpsA-Psr domain, is developmentally regulated, and is essential for diazotrophic growth and heterocyst morphogenesis. MICROBIOLOGY-SGM 2010; 157:617-626. [PMID: 21088107 DOI: 10.1099/mic.0.046128-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The conR (all0187) gene of the filamentous cyanobacterium Anabaena (Nostoc) sp. strain PCC 7120 is predicted to be part of a family of proteins that contain the LytR-CpsA-Psr domain associated with septum formation and cell wall maintenance. The conR gene was originally misannotated as a transcription regulator. Northern RNA blot analysis showed that conR expression was upregulated 8 h after nitrogen step-down. Fluorescence microscopy of a P(conR)-gfp reporter strain revealed increased GFP fluorescence in proheterocysts and heterocysts beginning 9 h after nitrogen step-down. Insertional inactivation of conR caused a septum-formation defect of vegetative cells grown in nitrate-containing medium. In nitrate-free medium, mutant filaments formed abnormally long heterocysts and were defective for diazotrophic growth. Septum formation between heterocysts and adjacent vegetative cells was abnormal, often with one or both poles of the heterocysts appearing partially open. In a conR mutant, expression of nifH was delayed after nitrogen step-down and nitrogenase activity was approximately 70 % of wild-type activity, indicating that heterocysts of the conR mutant strain are partially functional. We hypothesize that the diazotrophic growth defect is caused by an inability of the heterocysts to transport fixed nitrogen to the neighbouring vegetative cells.
Collapse
Affiliation(s)
- Rodrigo A Mella-Herrera
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0116, USA.,Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - M Ramona Neunuebel
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - James W Golden
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
12
|
Flores E, Herrero A. Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat Rev Microbiol 2010; 8:39-50. [PMID: 19966815 DOI: 10.1038/nrmicro2242] [Citation(s) in RCA: 285] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Within the wide biodiversity that is found in the bacterial world, Cyanobacteria represents a unique phylogenetic group that is responsible for a key metabolic process in the biosphere - oxygenic photosynthesis - and that includes representatives exhibiting complex morphologies. Many cyanobacteria are multicellular, growing as filaments of cells in which some cells can differentiate to carry out specialized functions. These differentiated cells include resistance and dispersal forms as well as a metabolically specialized form that is devoted to N(2) fixation, known as the heterocyst. In this Review we address cyanobacterial intercellular communication, the supracellular structure of the cyanobacterial filament and the basic principles that govern the process of heterocyst differentiation.
Collapse
Affiliation(s)
- Enrique Flores
- Instituto de Bioqumica Vegetal y Fotosntesis, CSIC and Universidad de Sevilla, Amrico Vespucio 49, E41092 Seville, Spain.
| | | |
Collapse
|
13
|
Mutual regulation of ntcA and hetR during heterocyst differentiation requires two similar PP2C-type protein phosphatases, PrpJ1 and PrpJ2, in Anabaena sp. strain PCC 7120. J Bacteriol 2009; 191:6059-66. [PMID: 19633087 DOI: 10.1128/jb.01271-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The filamentous cyanobacterium Anabaena sp. strain PCC 7120 can form heterocysts for N(2) fixation. Initiation of heterocyst differentiation depends on mutual regulation of ntcA and hetR. Control of hetR expression by NtcA is partially mediated by nrrA, but other factors must be involved in this regulation. Anabaena has two closely related PP2C-type protein phosphatases, PrpJ1 (formerly PrpJ) and PrpJ2; PrpJ1 is involved in heterocyst maturation. In this study, we show that PrpJ2, like PrpJ1, has Mn(2+)-dependent phosphatase activity. We further demonstrate that whereas prpJ2 is dispensable for cell growth under different nitrogen regimens tested, a double mutant with both prpJ1 and prpJ2 disrupted did not initiate heterocyst differentiation. Ectopic expression of hetR in the double mutant could rescue the failure to initiate heterocyst development, but the heterocysts formed, like those of a prpJ1 single mutant, were not mature. The expression of prpJ2 was enhanced during heterocyst development, and the upregulation of the gene was directly under the control of NtcA. Upregulation of both ntcA and hetR was affected in the double mutant. We propose that PrpJ1 and PrpJ2 together are required for mutual regulation of ntcA and hetR and are thus involved in regulation of the initiation of heterocyst differentiation.
Collapse
|
14
|
|
15
|
Raymond J, Swingley WD. Phototroph genomics ten years on. PHOTOSYNTHESIS RESEARCH 2008; 97:5-19. [PMID: 18568416 DOI: 10.1007/s11120-008-9308-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 04/23/2008] [Indexed: 05/26/2023]
Abstract
The onset of the genome era means different things to different people, but it is clear that this new age brings with it paradigm shifts that will forever affect biological research. Less clear is just how these shifts are changing the scope and scale of research. Are gigabases of raw data more useful than a single well-understood gene? Do we really need a full genome to understand the physiology of a single organism? The photosynthetic field is poised at the periphery of the bulk of genome sequencing work--understandably skewed toward health-related disciplines--and, as such, is subject to different motivations, limitations, and primary focus for each new genome. To understand some of these differences, we focus here on various indicators of the impact that genomics has had on the photosynthetic community, now a full decade since the publication of the first photosynthetic genome. Many useful indicators are indexed in public databases, providing pre- and post-genome sequence snapshots of changes in factors such as publication rate, number of proteins characterized, and sequenced genome coverage versus known diversity. As more genomes are sequenced and metagenomic projects begin to pour out billions of bases, it becomes crucial to understand how to harness this data in order to accumulate possible benefits and avoid possible pitfalls, especially as resources become increasingly directed toward natural environments governed by photosynthetic activity, ranging from hot springs to tropical forest ecosystems to the open ocean.
Collapse
Affiliation(s)
- Jason Raymond
- School of Natural Sciences, University of California, Merced, Merced, CA, USA.
| | | |
Collapse
|
16
|
Wang Y, Lechno-Yossef S, Gong Y, Fan Q, Wolk CP, Xu X. Predicted glycosyl transferase genes located outside the HEP island are required for formation of heterocyst envelope polysaccharide in Anabaena sp. strain PCC 7120. J Bacteriol 2007; 189:5372-8. [PMID: 17483218 PMCID: PMC1951851 DOI: 10.1128/jb.00343-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
During maturation, heterocysts form an envelope layer of polysaccharide, called heterocyst envelope polysaccharide (HEP), whose synthesis depends on a cluster of genes, the HEP island, and on an additional, distant gene, hepB, or a gene immediately downstream from hepB. We show that HEP formation depends upon the predicted glycosyl transferase genes all4160 at a third locus and alr3699, which is adjacent to hepB and is cotranscribed with it. Mutations in the histidine kinase genes hepN and hepK appear to silence the promoter of hepB and incompletely down-regulate all4160.
Collapse
Affiliation(s)
- Yu Wang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, People's Republic of China
| | | | | | | | | | | |
Collapse
|
17
|
Flores E, Pernil R, Muro-Pastor AM, Mariscal V, Maldener I, Lechno-Yossef S, Fan Q, Wolk CP, Herrero A. Septum-localized protein required for filament integrity and diazotrophy in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 2007; 189:3884-90. [PMID: 17369306 PMCID: PMC1913322 DOI: 10.1128/jb.00085-07] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heterocysts, formed when filamentous cyanobacteria, such as Anabaena sp. strain PCC 7120, are grown in the absence of combined nitrogen, are cells that are specialized in fixing atmospheric nitrogen (N(2)) under oxic conditions and that transfer fixed nitrogen to the vegetative cells of the filament. Anabaena sp. mutants whose sepJ gene (open reading frame alr2338 of the Anabaena sp. genome) was affected showed filament fragmentation and arrested heterocyst differentiation at an early stage. In a sepJ insertional mutant, a layer similar to a heterocyst polysaccharide layer was formed, but the heterocyst-specific glycolipids were not synthesized. The sepJ mutant did not exhibit nitrogenase activity even when assayed under anoxic conditions. In contrast to proheterocysts produced in the wild type, those produced in the sepJ mutant still divided. SepJ is a multidomain protein whose N-terminal region is predicted to be periplasmic and whose C-terminal domain resembles an export permease. Using a green fluorescent protein translationally fused to the carboxyl terminus of SepJ, we observed that in mature heterocysts and vegetative cells, the protein is localized at the intercellular septa, and when cell division starts, it is localized in a ring whose position is similar to that of a Z ring. SepJ is a novel composite protein needed for filament integrity, proper heterocyst development, and diazotrophic growth.
Collapse
Affiliation(s)
- Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C., Universidad de Sevilla, E-41092 Seville, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lechno-Yossef S, Fan Q, Ehira S, Sato N, Wolk CP. Mutations in four regulatory genes have interrelated effects on heterocyst maturation in Anabaena sp. strain PCC 7120. J Bacteriol 2006; 188:7387-95. [PMID: 16936023 PMCID: PMC1636280 DOI: 10.1128/jb.00974-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulatory genes hepK, hepN, henR, and hepS are required for heterocyst maturation in Anabaena sp. strain PCC 7120. They presumptively encode two histidine kinases, a response regulator, and a serine/threonine kinase, respectively. To identify relationships between those genes, we compared global patterns of gene expression, at 14 h after nitrogen step-down, in corresponding mutants and in the wild-type strain. Heterocyst envelopes of mutants affected in any of those genes lack a homogeneous, polysaccharide layer. Those of a henR mutant also lack a glycolipid layer. patA, which encodes a positive effector of heterocyst differentiation, was up-regulated in all mutants except the hepK mutant, suggesting that patA expression may be inhibited by products related to heterocyst development. hepS and hepK were up-regulated if mutated and so appear to be negatively autoregulated. HepS and HenR regulated a common set of genes and so appear to belong to one regulatory system. Some nontranscriptional mechanism may account for the observation that henR mutants lack, and hepS mutants possess, a glycolipid layer, even though both mutations down-regulated genes involved in formation of the glycolipid layer. HepK and HepN also affected transcription of a common set of genes and therefore appear to share a regulatory pathway. However, the transcript abundance of other genes differed very significantly from expression in the wild-type strain in either the hepK or hepN mutant while differing very little from wild-type expression in the other of those two mutants. Therefore, hepK and hepN appear to participate also in separate pathways.
Collapse
Affiliation(s)
- Sigal Lechno-Yossef
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, 48824-1312, USA
| | | | | | | | | |
Collapse
|