1
|
Biswas R, Ghosh D, Dutta B, Halder U, Goswami P, Bandopadhyay R. Potential Non-coding RNAs from Microorganisms and their Therapeutic Use in the Treatment of Different Human Cancers. Curr Gene Ther 2021; 21:207-215. [PMID: 33390136 DOI: 10.2174/1566523220999201230204814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022]
Abstract
Cancer therapy describes the treatment of cancer, often with surgery, chemotherapy, and radiotherapy. Additionally, RNA interference (RNAi) is likely to be considered a new emerging, alternative therapeutic approach for silencing/targeting cancer-related genes. RNAi can exert antiproliferative and proapoptotic effects by targeting functional carcinogenic molecules or knocking down gene products of cancer-related genes. However, in contrast to conventional cancer therapies, RNAi based therapy seems to have fewer side effects. Transcription signal sequence and conserved sequence analysis-showed that microorganisms could be a potent source of non-coding RNAs. This review concluded that mapping of RNAi mechanism and RNAi based drug delivery approaches is expected to lead a better prospective of cancer therapy.
Collapse
Affiliation(s)
- Raju Biswas
- UGC-Center of Advanced study, Department of Botany, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Dipanjana Ghosh
- UGC-Center of Advanced study, Department of Botany, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Bhramar Dutta
- UGC-Center of Advanced study, Department of Botany, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Urmi Halder
- UGC-Center of Advanced study, Department of Botany, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Prittam Goswami
- Haldia Institute of Technology, HIT College Rd, Kshudiram Nagar, Haldia-721657, West Bengal, India
| | - Rajib Bandopadhyay
- UGC-Center of Advanced study, Department of Botany, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| |
Collapse
|
2
|
Cousin FJ, Lynch DB, Chuat V, Bourin MJB, Casey PG, Dalmasso M, Harris HMB, McCann A, O'Toole PW. A long and abundant non-coding RNA in Lactobacillus salivarius. Microb Genom 2017; 3:e000126. [PMID: 29114404 PMCID: PMC5643018 DOI: 10.1099/mgen.0.000126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 06/21/2017] [Indexed: 01/12/2023] Open
Abstract
Lactobacillus salivarius, found in the intestinal microbiota of humans and animals, is studied as an example of the sub-dominant intestinal commensals that may impart benefits upon their host. Strains typically harbour at least one megaplasmid that encodes functions contributing to contingency metabolism and environmental adaptation. RNA sequencing (RNA-seq)transcriptomic analysis of L. salivarius strain UCC118 identified the presence of a novel unusually abundant long non-coding RNA (lncRNA) encoded by the megaplasmid, and which represented more than 75 % of the total RNA-seq reads after depletion of rRNA species. The expression level of this 520 nt lncRNA in L. salivarius UCC118 exceeded that of the 16S rRNA, it accumulated during growth, was very stable over time and was also expressed during intestinal transit in a mouse. This lncRNA sequence is specific to the L. salivarius species; however, among 45 L. salivarius genomes analysed, not all (only 34) harboured the sequence for the lncRNA. This lncRNA was produced in 27 tested L. salivarius strains, but at strain-specific expression levels. High-level lncRNA expression correlated with high megaplasmid copy number. Transcriptome analysis of a deletion mutant lacking this lncRNA identified altered expression levels of genes in a number of pathways, but a definitive function of this new lncRNA was not identified. This lncRNA presents distinctive and unique properties, and suggests potential basic and applied scientific developments of this phenomenon.
Collapse
Affiliation(s)
- Fabien J Cousin
- 1School of Microbiology, University College Cork, Cork, Ireland.,2APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Denise B Lynch
- 1School of Microbiology, University College Cork, Cork, Ireland.,2APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Victoria Chuat
- 1School of Microbiology, University College Cork, Cork, Ireland.,2APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Maxence J B Bourin
- 1School of Microbiology, University College Cork, Cork, Ireland.,2APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Pat G Casey
- 1School of Microbiology, University College Cork, Cork, Ireland.,2APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Marion Dalmasso
- 1School of Microbiology, University College Cork, Cork, Ireland.,2APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Hugh M B Harris
- 1School of Microbiology, University College Cork, Cork, Ireland.,2APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Angela McCann
- 1School of Microbiology, University College Cork, Cork, Ireland.,2APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Paul W O'Toole
- 2APC Microbiome Institute, University College Cork, Cork, Ireland.,1School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
3
|
van Bokhorst-van de Veen H, Smelt MJ, Wels M, van Hijum SAFT, de Vos P, Kleerebezem M, Bron PA. Genotypic adaptations associated with prolonged persistence ofLactobacillus plantarumin the murine digestive tract. Biotechnol J 2013; 8:895-904. [DOI: 10.1002/biot.201200259] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
4
|
Complete resequencing and reannotation of the Lactobacillus plantarum WCFS1 genome. J Bacteriol 2012; 194:195-6. [PMID: 22156394 DOI: 10.1128/jb.06275-11] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
There is growing interest in the beneficial effects of Lactobacillus plantarum on human health. The genome of L. plantarum WCFS1, first sequenced in 2001, was resequenced using Solexa technology. We identified 116 nucleotide corrections and improved function prediction for nearly 1,200 proteins, with a focus on metabolic functions and cell surface-associated proteins.
Collapse
|